Search for displaced muonic lepton jets from light Higgs boson decay in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

DOI
10.1016/j.physletb.2013.02.058

Publication date
2013

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):
Search for displaced muonic lepton jets from light Higgs boson decay in proton–proton collisions at \(\sqrt{s} = 7 \) TeV with the ATLAS detector

ATLAS Collaboration

1. Introduction

A search is presented for long-lived neutral particles decaying to final states containing collimated muon pairs in proton–proton collisions at \(\sqrt{s} = 7 \) TeV centre-of-mass energy. The event sample, collected during 2011 at the LHC with the ATLAS detector, corresponds to an integrated luminosity of 1.9 fb\(^{-1}\). The model considered in this analysis consists of a Higgs boson decaying to a new hidden sector of particles which finally produce two sets of collimated muon pairs, but the search described is equally valid for other, distinct models such as heavier Higgs boson doublets or singlet scalars, produced through gluon fusion, that decay to a hidden sector and eventually produce collimated muon pairs.

Recent evidence for the production of a boson with a mass of about 126 GeV has been published by ATLAS [1] and CMS [2]. The observation is compatible with the expected production and decay of the Standard Model (SM) Higgs boson [3–5] at this mass. Testing the SM Higgs hypothesis is currently of utmost importance. To this end two effects may be considered: (i) additional resonances which arise in an extended Higgs sector found in many extensions of the SM, or (ii) rare Higgs boson decays which may deviate from those predicted by the SM. In this Letter we search for a scalar, produced through gluon fusion, that decays to a light hidden sector, according to the topology of Fig. 1, focusing on the 100 GeV to 140 GeV mass range.

The phenomenology of light hidden sectors has been studied extensively over the past few years [6–10]. Possible characteristic topological signatures of such extensions of the SM are “lepton jets”. A lepton jet is a cluster of highly collimated particles: electrons, muons and possibly pions [7,11–13]. These arise if light unstable particles with masses in the MeV to GeV range (for example dark photons, \(\gamma_d \)) reside in the hidden sector and decay predominantly to SM particles. At the LHC, hidden-sector particles may be produced with large boosts, causing the visible decay products to form jet-like structures. Hidden-sector particles such as \(\gamma_d \) may be long-lived, resulting in decay lengths comparable to, or larger than, the detector dimensions. The production of lepton jets can occur through various channels. For instance, in supersymmetric models, the lightest visible superpartner may decay into the hidden sector. Alternatively, a scalar particle that couples to the visible sector may also couple to the hidden sector through Yukawa couplings or the scalar potential. This analysis is focused on the case where the Higgs boson decays to the hidden sector [14,15]. The SM Higgs boson has a narrow width into SM final states if \(m_H < 2 m_W \). Consequently, any new (non-SM) coupling to additional states, which reside in a hidden sector, may contribute significantly to the Higgs boson decay branching ratios. Even with new couplings, the total Higgs boson width is typically small, well below the order of one GeV. If a SM-like Higgs boson is confirmed, it will remain important to constrain possible rare decays, e.g. into lepton jets.

Neutral particles with large decay lengths and collimated final states represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the detector. Collimated particles in the final state can be hard to disentangle due to the finite granularity of the detectors; moreover, in the absence of inner tracking detector information and a primary vertex constraint, it is difficult to reconstruct charged-particle tracks from decay vertices far from the interaction point (IP). The ATLAS detector [16] is equipped with a muon spectrometer (MS) with high-granularity tracking detectors that allow charged-particle tracks to be reconstructed in a standalone configuration using only the muon detector information (MS-only). This is a crucial feature for detecting muons not originating from the primary interaction vertex.
The Higgs boson decays to two hidden fermions (γ_d). Each hidden fermion decays to a γ_d and to a stable hidden fermion (f_d), resulting in two muon jets from the γ_d decays in the final state.

The search presented in this Letter focuses on neutral particles decaying to the simplest type of muon jets (MJ), containing only two muons; prompt MJ searches have been performed both at the Tevatron [17,18] and at the LHC [19]. Other searches for displaced decays of a light Higgs boson to heavy fermion pairs have also been performed at the LHC [20].

The benchmark model used for this analysis is a simplified scenario where the Higgs boson decays to a pair of neutral hidden fermions (f_d) each of which decays to one long-lived γ_d and one stable neutral hidden fermion (f_d) that escapes the detector unnoticed, resulting in two lepton jets from the γ_d decays in the final state (see Fig. 1). The mass of the γ_d (0.4 GeV) is chosen to provide a sizeable branching ratio to muons [14].

2. The ATLAS detector

ATLAS is a multi-purpose detector [16] at the LHC, consisting of an inner tracking system (ID) embedded in a superconducting solenoid, which provides a 2 T magnetic field parallel to the beam direction, electromagnetic and hadronic calorimeters and a muon spectrometer using three air-core toroidal magnet systems. The trigger system has three levels [21] called Level-1 (L1), Level-2 (L2) and Event Filter (EF). L1 is a hardware-based system using information from the calorimeter and muon spectrometer, and defines one or more Regions of Interest (ROIs), geometrical regions of the detector, identified by (η, ϕ) coordinates, containing interesting physics objects. L2 and the EF (globally called the High Level Trigger, HLT) are software-based systems and can access information from all sub-detectors. The ID, consisting of silicon pixel and micro-strip detectors and a straw-tube tracker, provides precision tracking of charged particles for $|\eta| \leq 2.5$. The electromagnetic and hadronic calorimeter system covers $|\eta| \leq 4.9$ and, at $\eta = 0$, has a total depth of 9.7 interaction lengths (22 radiation lengths in the electromagnetic part). The MS provides trigger information ($|\eta| \leq 2.4$) and momentum measurements ($|\eta| \leq 2.7$) for charged particles entering the spectrometer. It consists of one barrel and two endcap parts, each with 16 sectors in ϕ, equipped with precision tracking chambers and fast detectors for triggering. Monitored drift tubes are used for precision tracking in the region $|\eta| \leq 2.0$ and cathode strip chambers are used for $2.0 \leq |\eta| \leq 2.7$. The MS detectors are arranged in three stations of increasing distance from the IP: inner, middle and outer. The air core toroidal magnetic field allows an accurate charged particle reconstruction independent of the ID information. The three planes of trigger chambers (resistive plate chambers in the barrel and thin gap chambers in the endcaps) are located in middle and outer (only in the barrel) stations. The L1 muon trigger requires hits in the middle stations to create a low transverse momentum (p_T) muon ROI or hits in both the middle and outer stations for a high p_T ROI. The muon ROIs have a spatial extent of 0.2×0.2 ($\Delta \eta \times \Delta \phi$) in the barrel and of 0.1×0.1 in the endcap. L1 ROI information seeds, at HLT level, the reconstruction of muon momenta using the precision chamber information. In this way sharp trigger thresholds up to 40 GeV can be obtained.

3. Signal and background simulation

The set of parameters used to generate the signal Monte Carlo samples is listed in Table 1. The Higgs boson is generated through the gluon–gluon fusion production mechanism which is the dominant process for a low mass Higgs boson. The gluon–gluon fusion Higgs boson production cross section in pp collisions at $\sqrt{s} = 7$ TeV, estimated at the next-to-next-to-leading order (NNLO) [22], is $\sigma_{SM} = 24.0$ pb for $m_H = 100$ GeV and $\sigma_{SM} = 12.1$ pb for $m_H = 140$ GeV. The PYTHIA generator [23] is used, linked together with MadGraph4.4.2 [24] and BRIDGE [25], for gluon–gluon fusion production of the Higgs boson and the subsequent decay to hidden-sector particles.

As discussed in the introduction, the signal is chosen to enable a study of rare, non-SM, Higgs boson decays in the (possibly extended) Higgs sector. To do so we choose two points which envelop a mass range covering the 126 GeV resonance. The lower mass point, $m_H = 100$ GeV, is chosen to be compatible with the decay-mode-independent search by OPAL at LEP [26]. The higher mass point, $m_H = 140$ GeV, is chosen well below the WW threshold, where a sizeable branching ratio into a hidden sector may be naturally achieved. The masses of f_d and f_d are chosen to be light relative to the Higgs boson mass, and far from the kinematic threshold at $m_{f_d} + m_{f_d} = m_H$. For the chosen dark photon mass (0.4 GeV), the γ_d decay branching ratios are expected to be [14]: $45\% e^+e^-$, $45\% \mu^+\mu^-$, $10\% \pi^+\pi^-$. Thus 20% of the Higgs $H \rightarrow \gamma_d\gamma_d + X$ decays are expected to have the required four-muon final state.

The mean lifetime τ of the γ_d (expressed throughout this Letter as τ times the speed of light c) is a free parameter of the model. In the generated samples τ is chosen so that a large fraction of the decays occur inside the sensitive ATLAS detector volume, i.e. up to 7 m in radius and 13 m along the z-axis, where the trigger chambers of the middle stations are located. The detection efficiency can then be estimated for a range of γ_d mean lifetimes through re-weighting of the generated samples.

Potential backgrounds include all the processes which lead to real prompt muons in the final state such as the SM processes $W +$ jets, $Z +$ jets, $t\bar{t}$, WW, WZ, and ZZ. However, the main contribution to the background is expected from processes giving a high production rate of secondary muons which do not point to the primary vertex, such as decays in flight of K/π and heavy flavour decays in multi-jet processes, or muons due to cosmic rays. The prompt lepton background samples are generated using PYTHIA ($W +$ jets, and $Z +$ jets) and $\mathcal{MC@NLO}$ [27] ($t\bar{t}$, WW, WZ, and ZZ).
The generated Monte Carlo events are processed through the full ATLAS simulation chain based on GEANT4 [28,29]. Additional pp interactions in the same and nearby bunch crossings (pile-up) are included in the simulation. All Monte Carlo samples are re-weighted to reproduce the observed distribution of the number of interactions per bunch crossing in the data. For the multi-jet background evaluation a data-driven method is used. The cosmic-ray interactions per bunch crossing in the data. For the multi-jet back-

interactions in the same and nearby bunch crossings (pile-up) are included in the simulation. All Monte Carlo samples are re-weighted to reproduce the observed distribution of the number of interactions per bunch crossing in the data. For the multi-jet background evaluation a data-driven method is used. The cosmic-ray interactions per bunch crossing in the data. For the multi-jet back-

interactions in the same and nearby bunch crossings (pile-up) are included in the simulation. All Monte Carlo samples are re-weighted to reproduce the observed distribution of the number of interactions per bunch crossing in the data. For the multi-jet background evaluation a data-driven method is used. The cosmic-ray interactions per bunch crossing in the data. For the multi-jet back-

interactions in the same and nearby bunch crossings (pile-up) are included in the simulation. All Monte Carlo samples are re-weighted to reproduce the observed distribution of the number of interactions per bunch crossing in the data. For the multi-jet background evaluation a data-driven method is used. The cosmic-ray interactions per bunch crossing in the data. For the multi-jet back-

interactions in the same and nearby bunch crossings (pile-up) are included in the simulation. All Monte Carlo samples are re-weighted to reproduce the observed distribution of the number of interactions per bunch crossing in the data. For the multi-jet background evaluation a data-driven method is used. The cosmic-ray interactions per bunch crossing in the data. For the multi-jet back-

interactions in the same and nearby bunch crossings (pile-up) are included in the simulation. All Monte Carlo samples are re-weighted to reproduce the observed distribution of the number of interactions per bunch crossing in the data. For the multi-jet background evaluation a data-driven method is used. The cosmic-ray interactions per bunch crossing in the data. For the multi-jet back-

interactions in the same and nearby bunch crossings (pile-up) are included in the simulation. All Monte Carlo samples are re-weighted to reproduce the observed distribution of the number of interactions per bunch crossing in the data. For the multi-jet background evaluation a data-driven method is used. The cosmic-ray interactions per bunch crossing in the data. For the multi-jet back-

The main reason for the relatively low trigger efficiency is the small opening ΔR between the two muons of the $\gamma \mu$ decay ($\Delta R < 0.1$) shown in Fig. 2. These values of ΔR are often smaller than the L1 trigger granularity; in this case the L1 produces only one ROI. The trigger only fires if at least one of the $\gamma \mu$ produces two distinct L1 ROIs. The single $\gamma \mu$ ROI efficiency, $\varepsilon_{\text{ROI}}(\varepsilon_{\text{ROI}})$, defined as the fraction of $\gamma \mu$ passing the offline selection that give two (one) trigger ROIs is 0.296 ± 0.004(stat) (0.626 ± 0.004(stat) for $m_H = 100$ GeV and 0.269 ± 0.003(stat) (0.653 ± 0.003(stat) for $m_H = 140$ GeV. Fig. 3 shows the ε_{ROI} as a function of the dark photon η and of the ΔR of the two muons from the $\gamma \mu$ decay. The increased trigger granularity in the endcap and the efficiency decrease at small values of ΔR are clearly visible.

The systematic uncertainty on the trigger efficiency is estimated with a sample of $J/\psi \rightarrow \mu^+ \mu^-$ from collision data and a corresponding sample of Monte Carlo events, using the tag-and-probe (TP) method. A cut on $\Delta R < 0.1$ between the two muons is used to reproduce the small track-to-track spatial separation in the MS of the signal. The tag is a (MS + ID) combined muon, defined as a MS-reconstructed muon that is associated with a trigger object and combined with a matching “good ID track”. Good ID tracks must have at least one hit in the pixel detector, at least six hits in the silicon micro-strip detectors and at least six hits in the straw-

track. The probe is a good ID track which, when combined with the tag track, gives an invariant mass inside a 100 MeV window around the J/ψ mass. A muon ROI that matches the probe in η and ϕ, and is different from the ROI associated with the tag, is searched for. The number of probes with a matched ROI divided by the number of probes without a matched ROI gives the ε_{ROI} ratio. Values of $\varepsilon_{\text{ROI}} / \varepsilon_{\text{ROI}} = 0.42 ± 0.05$ for the $J/\psi \rightarrow \mu^+ \mu^-$ data and $\varepsilon_{\text{ROI}} / \varepsilon_{\text{ROI}} = 0.39 ± 0.05$ for the corresponding Monte Carlo sample are obtained. The relative statistical uncertainty on the difference between these two estimates is 17% and this is taken conservatively to be the systematic uncertainty on the trigger efficiency.

4. The kinematics of the signal

The main kinematic characteristics of the signal sample are:

- The $\gamma \mu$ pair are emitted approximately back-to-back in ϕ, with an angular spread of the emission due to the mass of the $f_{\eta !}$.
- The average p_T of the $\gamma \mu$ in the laboratory frame is about 20 GeV for $m_H = 100$ GeV and 30 GeV for $m_H = 140$ GeV; due to the small mass of the $\gamma \mu$, large boost factors in the decay length should be expected.
- Fig. 2 shows the distribution of $\Delta R = \sqrt{(|\Delta \eta|^2 + (|\Delta \phi|^2)$ between the two muons from the $\gamma \mu$ decay. The ΔR is computed at the decay vertex of the $\gamma \mu$ from the vector momenta of the two muons. Due to the small mass of the $\gamma \mu$, the ΔR is almost always below 0.1.

Since the two $f_{\eta !}$ are, like the two $\gamma \mu$, emitted back-to-back in ϕ, the observed missing transverse momentum E_T^{miss}, computed at the event-generator level, is small and cannot be used as a discriminating variable against the background.

5. Data samples and trigger selection

The dataset used for this analysis was collected at a centre-of-
mass energy of 7 TeV during the first part of 2011, where a low level of pile-up events in the same bunch-crossing was present (an average of ≈ 6 interactions per crossing) [30,31]. All events are required to have at least one reconstructed vertex along the beam line with at least three associated tracks, each with $p_T > 0.4 \text{ GeV}$. The primary interaction vertex is defined to be the vertex whose constituent tracks have the largest $\sum p_T^2$. This analysis deals with displaced $\gamma \mu$ decays with final states containing only muons. Signal events are therefore characterized by a four-muon final state.

2 High pile-up levels will introduce a pile-up dependence for the isolation variables used in the analysis and needs to be further investigated.

![Fig. 2. ΔR distribution between the two muons from the $\gamma \mu$ decay for the signal Monte Carlo samples with $m_H = 100$ GeV and $m_H = 140$ GeV.](image-url)
are formed. The MJ direction and momentum are obtained from the vector sum over all muons in the MJ. Only MJs with two reconstructed muons are accepted and only events with two MJs are kept for the subsequent analysis. In order to keep the search as model independent as possible no requirement on the muon momenta has been introduced.

The possible contribution to the background of SM processes which lead to real prompt muon pairs in the final state is evaluated using simulated samples. After the trigger and the requirement of having two MJs in the event, their contributions have been found to be negligible. The only significant background sources are expected to be from processes giving a high production rate of secondary muons which do not point to the primary vertex, such as decays in flight of K/π and heavy flavour decays in multi-jet production, or cosmic-ray muons not pointing to the primary vertex.

In order to separate the signal from the background, a number of discriminating variables have been studied. The multi-jet background can be significantly reduced by using calorimeter isolation requirements around the MJ direction. The calorimetric isolation variable \(E^{\text{isol}}_{T} \) is defined as the difference between the transverse calorimeter energy \(E_{T} \) in a cone of \(\Delta R = 0.4 \) around the highest \(p_{T} \) muon of the MJ and the \(E_{T} \) in a cone of \(\Delta R = 0.2 \); a cut \(E^{\text{isol}}_{T} \leq 5 \text{ GeV} \) keeps almost all the signal. The isolation modelling is validated for real isolated muons with a sample of muons coming from \(Z \rightarrow \mu \mu \) decays. To further improve the signal-to-background ratio, two additional discriminating variables are used: \(\Delta \phi \) between the two MJs and \(\sum p_{T}^{\text{ID}} \) for the MJ, defined as the scalar sum of the transverse momentum of the tracks, measured in the ID, inside a cone \(\Delta R = 0.4 \) around the direction of the MJ. The muon tracks of the MJ in the ID, if any, are not removed from the isolation sum, so that prompt muons, which give a reconstructed track in both the ID and MS, will contribute to the \(\sum p_{T}^{\text{ID}} \). As a consequence a cut on \(\sum p_{T}^{\text{ID}} \) of a few GeV will remove prompt MJs or MJs with very short decay length.

For the background coming from cosmic-ray muons (mainly pairs of almost parallel cosmic-ray muons crossing the detector) a cut on the impact parameters of the muon tracks with respect to the primary interaction vertex is used.

The final set of selection criteria used is the following:

- Topology cut: events are required to have exactly two MJs, \(N_{\text{MJ}} = 2 \).
- MJ isolation: require MJ isolation with \(E^{\text{isol}}_{T} \leq 5 \text{ GeV} \) for both MJs in the event.
- Require \(|\Delta \phi| \geq 2 \) between the two MJs.
- Require opposite charges for the two muons in a MJ (\(Q_{\text{MJ}} = 0 \)).
- Require a cut on the transverse and longitudinal impact parameters of the muons with respect to the primary vertex: \(|d_{0}| < 200 \text{ mm} \) and \(|z_{0}| < 270 \text{ mm} \).
- Require \(\sum p_{T}^{\text{ID}} \leq 3 \text{ GeV} \) for both MJs.

The distributions of the relevant variables used in the selection before each step of the cut flow are shown in Fig. 4. The results are summarized in Table 2. No events survive the selection in the data sample whereas the expected signals from Monte Carlo simulation, assuming the Higgs boson SM production cross section, 100% branching ratio for \(H \rightarrow \gamma \gamma + X \) and the parameters given in Table 1, are 75 or 48 events for Higgs boson masses of 100 GeV and 140 GeV respectively. The method used to estimate the cosmic-ray and multi-jet background yields, quoted in Table 2, is discussed in Section 7.

The resulting single \(\gamma \gamma \) reconstruction efficiency for the mean lifetimes given in Table 1 is shown in Fig. 5 as a function of \(\eta \), the \(\Delta R \) separation of the two muons from the \(\gamma \gamma \) decay and the decay length in the transverse plane, \(L_{\text{xy}} \), of the \(\gamma \gamma \). The efficiency is defined as the number of \(\gamma \gamma \) passing the offline selection divided by the number of \(\gamma \gamma \) in the spectrometer acceptance (\(|\eta| \leq 2.4 \)) with both muons having \(p_{T} \geq 6 \text{ GeV} \). The low reconstruction efficiency at very short \(L_{\text{xy}} \) is a consequence of the \(\sum p_{T}^{\text{ID}} \) cut.

The systematic uncertainty on the reconstruction efficiency is evaluated using a tag-and-probe method by comparing the reconstruction efficiency \(\epsilon_{\text{rec}}^{\text{MC}} \) for \(J/\psi \rightarrow \mu^{+} \mu^{-} \) samples from collision data and \(J/\psi \rightarrow \mu^{+} \mu^{-} \) Monte Carlo simulation. The tag-and-probe definitions and the cut on \(\Delta R < 0.1 \) between the two muons are the same as in Section 5. To measure the reconstruction efficiency the ID probe track is associated with a MS-only muon track, different from the one associated with the tag. The result is shown in Fig. 6.

The relative difference between the result obtained from the \(J/\psi \rightarrow \mu^{+} \mu^{-} \) data and the \(J/\psi \rightarrow \mu^{+} \mu^{-} \) Monte Carlo sample in the same range of \(\Delta R \leq 0.1 \), as for the signal, is taken as the systematic uncertainty on the reconstruction efficiency and amounts to 13%.

7. Multi-jet and cosmic-ray background evaluation

To estimate the multi-jet background contamination in the signal region we use a data-driven ABCD method slightly modified to cope with the problem of the very low number of events in the control regions. The ABCD method assumes that two variables can be identified, which are relatively uncorrelated, and which can each be used to separate signal and background. It is assumed that the multi-jet background distribution can be factorized in the MJ \(E^{\text{isol}}_{T} - |\Delta \phi| \) plane. The region A is defined by \(E^{\text{isol}}_{T} < 5 \text{ GeV} \) and \(|\Delta \phi| < 2 \); the region B, defined by \(E^{\text{isol}}_{T} < 5 \text{ GeV} \) and \(|\Delta \phi| > 2 \), is the signal region. The regions C and D are the anti-isolated regions \(E^{\text{isol}}_{T} > 5 \text{ GeV} \) and they are defined by \(|\Delta \phi| < 2 \) and \(|\Delta \phi| > 2 \), respectively. Neglecting the signal contamination in regions A, C and
as the systematic uncertainty, that amounts to the primary vertex ratio and for the active time (since the trigger in the empty bunch crossings). The number of events is negligible and the statistical uncertainty on the data; the background event and signal yields are normalized to an integrated luminosity of 1 fb⁻¹. The uncertainties are statistical only.

Table 2

<table>
<thead>
<tr>
<th>Cut</th>
<th>Cosmic-rays</th>
<th>Multi-jet</th>
<th>Total background</th>
<th>m_H = 100 GeV</th>
<th>m_H = 140 GeV</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{HI} = 2</td>
<td>3.0 ± 2.1</td>
<td>N/A</td>
<td>N/A</td>
<td>135 ± 11</td>
<td>90 ± 9</td>
<td>871</td>
</tr>
<tr>
<td>E_T^{miss} < 5 GeV</td>
<td>3.0 ± 2.1</td>
<td>N/A</td>
<td>N/A</td>
<td>132 ± 11</td>
<td>88 ± 9</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>153 ± 18 ± 9</td>
<td>155 ± 18 ± 9</td>
<td>153 ± 18 ± 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57 ± 15 ± 22</td>
<td>59 ± 15 ± 22</td>
<td>57 ± 15 ± 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111 ± 39 ± 63</td>
<td>111 ± 39 ± 63</td>
<td>111 ± 39 ± 63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.06 ± 0.02 ± 0.06</td>
<td>0.06 ± 0.02 ± 0.06</td>
<td>0.06 ± 0.02 ± 0.06</td>
</tr>
</tbody>
</table>

8. Systematic uncertainties

The following effects are considered as possible sources of systematic uncertainty:

- **Luminosity**
 The overall normalization uncertainty of the integrated luminosity is 3.7% [30,31].

- **Muon momentum resolution**
 The systematic uncertainty on the muon momentum resolution for MS-only muons has been evaluated by smearing and shifting the momenta of the muons by scale factors derived from Z → \(\mu\mu\) data-Monte Carlo comparison, and by observing the effect of this shift on the signal efficiency. The overall effect of the muon momentum resolution uncertainty is negligible.

- **Trigger**
 The systematic uncertainty on the single \(H \rightarrow \gamma \gamma \) trigger efficiency, evaluated using a tag-and-probe method is 17% (see Section 5).

- **Reconstruction efficiency**
 The systematic uncertainty on the reconstruction efficiency, evaluated using a tag-and-probe method for the single \(H \rightarrow \gamma \gamma \) reconstruction efficiency, is 13% (see Section 6).

- **Effect of pile-up**
 The systematic uncertainty on the signal efficiency related to the effect of pile-up is evaluated by comparing the number of signal events after imposing all the selection criteria on the signal Monte Carlo sample increasing the average number of interactions per crossing from \(\approx 6 \) to \(\approx 16 \). This systematic uncertainty is negligible.
The uncertainties are statistical only.

\[\varepsilon_{\text{rec}} = \frac{\text{number of } \gamma}{\text{number of } \gamma} \] for the mean lifetimes given in Table 1. The reconstruction efficiency is defined as the number of γ passing the offline selection divided by the number of γ in the spectrometer acceptance ($|\eta| \leq 2.4$) with both muons having $p_T \geq 6$ GeV. The uncertainties are statistical only.

\begin{align*}
\varepsilon_{\text{rec}} & = \frac{\text{number of } \gamma}{\text{number of } \gamma} \\
\Delta R_{\gamma\mu} & = \sqrt{\Delta \eta^2 + \Delta \phi^2} \\

\end{align*}

Fig. 6. Tag-and-probe reconstruction efficiency $\varepsilon_{\text{rec}}^{TP}$ as a function of ΔR between the two muons, evaluated on a sample of $J/\psi \rightarrow \mu^+ \mu^-$ from collision data and a corresponding sample of Monte Carlo events. The $\varepsilon_{\text{rec}}^{TP}$ for the signal Monte Carlo, evaluated with a similar tag-and-probe method, is also shown. The uncertainties are statistical only.

Table 3

<table>
<thead>
<tr>
<th>Higgs boson mass [GeV]</th>
<th>Excluded γ [mm]</th>
<th>Excluded γ [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BR(100%)</td>
<td>BR(10%)</td>
</tr>
<tr>
<td>100</td>
<td>1 < γ < 670</td>
<td>5 < γ < 159</td>
</tr>
<tr>
<td>140</td>
<td>1 < γ < 430</td>
<td>7 < γ < 82</td>
</tr>
</tbody>
</table>

9. Results and interpretation

The efficiency of the selection criteria described above is evaluated for the simulated signal samples (see Table 1) as a function of the mean lifetime of the γ. The signal Monte Carlo events are weighted by the detection probability of the two γ in the various parts of the detector, generating their decay points according to a chosen value of the γ lifetime, with γ ranging from 0 to 700 mm. In this way the number of expected signal events is predicted as function of the γ mean lifetime. These numbers, together with the expected number of background events (multi-jet and cosmic rays) and taking into account the zero data events surviving the selection criteria in 1.9 fb^{-1}, are used as input to obtain limits at the 95% confidence level (CL). The CLs method [33] is used to set 95% CL upper limits on the cross section times branching ratio ($\sigma \times BR$) for the process $H \rightarrow \gamma\gamma + X$, according to the model of Fig. 1. Here the branching ratio of $\gamma_{\gamma\gamma}$ to $\mu\mu$ is set to 45% with the γ mass set to 0.4 GeV, as previously discussed. The $\sigma \times BR$ is given as a function of the γ mean lifetime, expressed as γ for $m_H = 100$ GeV and $m_H = 140$ GeV. These limits are shown on Fig. 7. Table 3 shows the ranges in which the γ is excluded at the 95% CL for $H \rightarrow \gamma\gamma + X$ branching ratios of 100% and 10%.

10. Conclusions

The ATLAS detector at the LHC was used to search for a light Higgs boson decaying into a pair of hidden fermions (f_{d2}), each of which decays to a γ and to a stable hidden fermion (f_{d1}), resulting in two muon jets from the γ decay in the final state. In a 1.9 fb^{-1} sample of $\sqrt{s} = 7$ TeV proton–proton collisions no events consistent with this Higgs boson decay mode are observed. The observed data are consistent with the Standard Model background expectations. Limits are set on the $\sigma \times BR$ to $H \rightarrow \gamma\gamma + X$, according to the model of Fig. 1, as a function of the long-lived particle mean lifetime for $m_H = 100$ GeV and 140 GeV with the chosen γ mass that gives a decay branching ratio of 45% for $\gamma \rightarrow \mu\mu$. Assuming the SM production rate for a 140 GeV Higgs boson, its branching ratio to two hidden-sector photons is found to be below 10%, at 95% CL for hidden photon γ in the range 7 mm < γ < 82 mm. Bounds

on the $\sigma \times BR$ of a 126 GeV Higgs boson may be conservatively extracted using the corresponding 140 GeV exclusion curve.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and BMBF, Germany; INFN, Italy; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

N.S. Knecht157, E. Kringer60, E.B.F.G. Knoops82, A. Knue53, B.R. Ko44, T. Kobayashi154, M. Kobel43, M. Koci142, P. Kodys125, K. Korneck29, A.C. König103, S. Koenig80, L. Köpke80, F. Koetsveld103, P. Kouesvarki20, T. Koffas28, E. Koffeman104, L.A. Kogan117, S. Kohlmann174, F. Kohn53, Z. Kohout126, T. Kohriki64, T. Koi142, G.M. Kolachenko106, H. Kolanowski15, V. Kolesnikov63, I. Koletso88a, J. Kol87, M. Kollefrath47, A.A. Komar53, Y. Komori154, T. Kondo41, T. Kono41, A.I. Kononov47, R. Konoplich107, N. Konstantinidis76, S. Koperny37, K. Koryci38, K. Kordas153, A. Korn117, A. Kori106, I. Korolkov11, E.V. Korolkova138, V.A. Korotkov87, O. Kortner98, S. Kortner98, V.V. Kostyukin20, S. Kotov98, V.M. Kotov63, A. Kotwal44, C. Kourkoumelis8, V. Kouskourgia153, A. Koutsman158a, R. Kowalewski168, T.Z. Kowalski37, W. Kozanecki135, A.S. Kozhin127, V. Krai126, V.A. Kramarenko96, G. Kramberger73, M.W. Krasny77, A. Krasznahorkai107, J.K. Kraus20, S. Kreiss107, F. Krejci126, J. Kretzschmar72, N. Krieger53, P. Krieger157, K. Kroening53, H. Kroe98, J. Kroll119, J. Kroseberg20, J. Krstic12a, U. Kruchonak63, H. Kruger20, T. Kubrat62, N. Krumnack62, Z.V. Krumshteyn63, T. Kubota85, S. Kuday3a, S. Kuehn47, A. Kugel57c, T. Kuhl41, D. Kuhn60, V. Kukhtin63, Y. Kulchitsky89, S. Kuleshov31b, F. Malek54, U. Mallik61, D. Malon5, C. Malone29, S. Maltz9, V. Malyshev106, S. Malysuk29, R. Mameghani97, J. Mammuzi12b, A. Manabe64, L. Mandelli88a, I. Mandic73, R. Mandrisc15, J.A. Manjarres Ramos135, A. Mann53, P.M. Manning136, A. Manousakis-Katsikakis8, B. Mansoulie135, A. Mapelli28, L. Mapelli29, L. Marc79, J.F. Marchand28, F. Marchese132, R. Marchioni77, M. Marcisovsky124, C.P. Marino168, F. Marroquino23a, Z. Marshall29, F.K. Martens157, L.F. Marti16, S. Marti-Garcia166, B. Martin29, B. Martin87, J.P. Martin92, T.A. Martin17, V.J. Martin45, B. Martin dit Lautour48, S. Martin-Hbaugh148, M. Martinez11, V. Martinez Outschoorn56, A.C. Martyniuk168, M. Marx15, F. Marzano131a, A. Marzin110, L. Masetti80, T. Mashimo154,
Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas – LIP, Lisboa, Portugal.

Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at TRIUMF, Vancouver, BC, Canada.

Also at Department of Physics, California State University, Fresno, CA, United States.

Also at Novosibirsk State University, Novosibirsk, Russia.

Also at Fermilab, Batavia, IL, United States.

Also at Department of Physics, University of Coimbra, Coimbra, Portugal.

Also at Department of Physics, UASLP, San Luis Potosi, Mexico.

Also at Università di Napoli Parthenope, Napoli, Italy.

Also at Institute of Particle Physics (IPP), Canada.

Also at Department of Physics, Middle East Technical University, Ankara, Turkey.

Also at Louisiana Tech University, Ruston, LA, United States.

Also at Departamento de Fisica e CEFITEC de Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.

Also at Department of Physics and Astronomy, University College London, London, United Kingdom.

Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.

Also at Department of Physics, University of Cape Town, Cape Town, South Africa.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

Also at Manhattan College, New York, NY, United States.

Also at School of Physics, Shandong University, Shandong, China.

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.

Also at DFN/IKERBASQUE, Institute de Investigaciones en Fisica de Particulas, Donostia, Spain.

Also at Section de Physique, Université de Genève, Geneva, Switzerland.

Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.

Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at California Institute of Technology, Pasadena, CA, United States.

Also at Institute of Physics, Jagiellonian University, Krakow, Poland.

Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.

Also at Department of Physics, University of California, Berkeley, CA, United States, and Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.

Also at Nevis Laboratory, Columbia University, Irvington, NY, United States.

Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.

Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.

* Deceased.