
Marie Wiberg • Jee-Seon Kim • Heungsun Hwang • 
Hao Wu • Tracy Sweet 
Editors 

Quantitative Psychology 
The 88th Annual Meeting of the 
Psychometric Society, Maryland, USA, 2023



Editors 
Marie Wiberg 
Department of Statistics 
Umeå School of Business, 
Economics and Statistics 
Umeå University 
Umeå, Sweden 

Heungsun Hwang 
Department of Psychology 
McGill University 
Montreal, QC, Canada 

Tracy Sweet 
College of Education, HDQM 
University of Maryland 
College Park, MD, USA 

Jee-Seon Kim 
Department of Educational Psychology 
University of Wisconsin-Madison 
Madison, WI, USA 

Hao Wu 
Department of Psychology and Human 
Development 
Peabody College, Vanderbilt University 
Nashville, TN, USA 

ISSN 2194-1009 ISSN 2194-1017 (electronic) 
Springer Proceedings in Mathematics & Statistics 
ISBN 978-3-031-55547-3 ISBN 978-3-031-55548-0 (eBook) 
https://doi.org/10.1007/978-3-031-55548-0 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland 
AG 2024 
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0001-5549-8262
https://orcid.org/0000-0002-3392-3675
https://doi.org/10.1007/978-3-031-55548-0
https://doi.org/10.1007/978-3-031-55548-0
https://doi.org/10.1007/978-3-031-55548-0
https://doi.org/10.1007/978-3-031-55548-0
https://doi.org/10.1007/978-3-031-55548-0
https://doi.org/10.1007/978-3-031-55548-0
https://doi.org/10.1007/978-3-031-55548-0
https://doi.org/10.1007/978-3-031-55548-0
https://doi.org/10.1007/978-3-031-55548-0
https://doi.org/10.1007/978-3-031-55548-0


Comparing Maximum Likelihood to 
Markov Chain Monte Carlo Estimation 
of the Multivariate Social Relations 
Model 

Aditi M. Bhangale and Terrence D. Jorgensen 

Abstract The social relations model (SRM) is a linear random-effects model 
applied to dyadic data within social networks (i.e., round-robin data). Such data 
have a unique nesting structure in that dyads (pairs) are cross-classified within 
individuals, who can also be nested in different networks. The SRM is used to 
examine basic multivariate relations between components of dyadic variables at 
two levels: individual-level random effects and dyad-level residuals. The current 
“gold standard” for estimating multivariate SRMs is the maximum likelihood (ML) 
estimation. However, Bayesian approaches, such as Markov chain Monte Carlo 
(MCMC) estimators, may provide some practical advantages to estimate complex 
or computationally intensive models. In this chapter, we report a small simulation 
study to compare the accuracy and efficiency of ML and MCMC point (and 
interval) estimates of a trivariate SRM on the ideal scenario: normally distributed, 
complete round-robin data. We found that MLE outperformed MCMC at both 
levels. MCMC greatly underestimated parameters and displayed poor coverage rates 
at the individual level but was relatively accurate at the dyad level. 

1 Introduction 

This chapter provides the first simulation study to compare the accuracy and 
efficiency of point and interval estimates of Markov chain Monte Carlo (MCMC) 
and maximum likelihood estimation (MLE) of multivariate social relations model 
(SRM) parameters. The SRM is a statistical and methodological approach tradition-
ally applied to examine dyadic data gathered using a round-robin design (Gleason 
& Halperin, 1975). The round-robin design is typically a multiple-group reciprocal 
design wherein each group member interacts with or rates every other group member 
on some dyadic variable—for example, in group .g ∈ 1, . . . ,G, member i reports 
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their liking of member .j ̸= i—such that in a group of . ng individuals, each member 
participates in .ng − 1 pairs (dyads). Each interaction within a dyad .{ij} yields two 
observations—i’s rating of j and j ’s rating of i—stored in a vector .y{ij}. The braces 
. {} indicate that when dyad members are indistinguishable (e.g., the same-sex peers 
are indistinguishable on the basis of sex), the order of i and j is arbitrary. Round-
robin data have a unique nesting structure such that each dyadic observation .y{ij} is 
nested within both (a) data from dyads in which i is a member and (b) data from 
dyads in which j is a member. Thus, these designs allow decomposition of a dyadic 
variable into three1 SRM components at two levels: out-going (ego) and in-coming 
(alter) effects at the individual level and dyadic (relationship) effects at the dyad 
level. In this manner, the SRM can quantify the degree to which the total variance in 
a dyadic variable is attributable to group- or individual-level differences versus the 
unique relationship shared between two individuals (Kenny et al., 2006, pp. 186– 
187). 

1.1 The Univariate Social Relations Model 

The following random-effects model (Gill & Swartz, 2001) 

.y{ij} =
[
yij
yj i

]
= µ+

[
Ei + Aj + Rij

Ej + Ai + Rji

]
(1) 

decomposes dyadic observations .y{ij} into individual-level ego (E) and alter (A) 
effects. . Ei is an out-going effect representing, for example, how much i generally 
likes others. . Aj is an in-coming effect indicative of how much j is generally liked by 
others. The relationship effect .R{ij} is a residual effect composed of measurement 
error and i’s unique liking of j beyond their individual tendencies to like others 
and be liked by others, respectively. Finally, . µ is the grand mean of .y{ij} within the 
network (e.g., the average liking within a group). 

Although individual-level effects are uncorrelated between individuals i and j , 
each individual’s ego effect . Ei and alter effect . Ai are assumed to be bivariate  
normally distributed with expected value 0, variances . σ 2

E and . σ 2
A, and a generalized 

covariance .σEA (generalized reciprocity .ρEA when standardized; Kenny et al., 2006, 
ch. 8): 

.

[
Ei

Ai

]
∼ N

([
0
0

]
,

[
σ 2
E

σEA σ 2
A

])
. (2)

1 When sampling data from multiple round-robin groups, not only are dyads cross-classified within 
people, but people are also nested within groups, so group-level effects can also be decomposed 
from individual and relationship effects. However, estimation can be simplified by first partialing 
out group means (i.e., treated as fixed effects), simplifying the model by omitting group effects. 
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Positive .σEA values indicate that if i generally likes others, then i is also generally 
liked by others. Negative .σEA values indicate if i generally likes others, then i is 
generally less liked by others. 

Likewise, . Rij and .Rji per dyad are assumed bivariate normally distributed: 

.

[
Rij

Rji

]
∼ N

([
0
0

]
,

[
σ 2
R

σ 2
RρR σ 2

R

])
, (3) 

where relationship variances .σ 2
Rij

and .σ 2
Rji

are assumed to be equal (.σ 2
Rij

= .σ 2
Rji

= 

. σ 2
R) when dyads are indistinguishable. The correlation between . Rij and .Rji effects 

per dyad is labeled the dyadic reciprocity . ρR (Kenny et al., 2006, ch. 8). A positive 
. ρR value means that if i particularly likes j , then j also particularly likes i beyond 
their individual-level tendencies to like others and be liked by others. A negative . ρR
value implies that if i particularly likes j , then j likes i particularly less than their 
individual-level tendencies to like others and be liked by others, respectively. 

1.2 The Multivariate Social Relations Model 

The SRM can be extended to multivariate cases. For example, Salazar Kämpf et al. 
(2018) investigated the association between liking of strangers at first impression 
and subsequent mimicry during a 5-minute interaction. In this scenario, the vector 
of SRM equations expands as follows: 

.

[
y{ij}
z{ij}

]
=

⎡

⎢⎢⎣

yij
yj i
zij
zj i

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

Ey,i

Ey,j

Ez,i

Ez,j

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

Ay,j

Ay,i

Az,j

Az,i

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

Ry,ij

Ry,j i

Rz,ij

Rz,j i

⎤

⎥⎥⎦ , (4) 

where . y are pre-interaction liking ratings and . z are mimicry ratings. 
Similar to the univariate case, individual-level effects of every person are 

assumed to be multivariate normally distributed so that individual-level covariances 
between the two dyadic variables can be estimated: 

.

⎡

⎢⎢⎣

Eyi
Ayi
Ezi
Azi

⎤

⎥⎥⎦ ∼ N

⎛

⎜⎜⎜⎝

⎡

⎢⎢⎣

0
0
0
0

⎤

⎥⎥⎦ ,

⎡

⎢⎢⎢⎣

σ 2
Ey

σAy,Ey σ 2
Ay

σEz,Ey σEz,Ay σ 2
Ez

σAz,Ey σAz,Ay σAz,Ez σ 2
Az

⎤

⎥⎥⎥⎦

⎞

⎟⎟⎟⎠
. (5) 

For example, .σAz,Ey is an ego–alter covariance that can be used to investigate 
whether individuals who are generally liked more at first impression also display 
greater mimicry during a 5-minute interaction. Likewise, ego–ego covariances (e.g., 
.σEy,Ez) and alter–alter covariances (e.g., .σAy,Az ) can be estimated.
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At the dyad level, the interchangeability of .{ij} implies constraints: 

.

⎡

⎢⎢⎢⎣

Ryij
Ryji
Rzij
Rzji

⎤

⎥⎥⎥⎦
∼ N

⎛

⎜⎜⎜⎜⎝

⎡

⎢⎢⎣

0
0
0
0

⎤

⎥⎥⎦ ,

⎡

⎢⎢⎢⎢⎣

σ 2
Ry

σ 2
Ry

ρRy σ 2
Ry

σ intra
Rz,Ry

σ inter
Rz,Ry

σ 2
Rz

σ inter
Rz,Ry

σ intra
Rz,Ry

σ 2
Rz

ρRz σ 2
Rz

⎤

⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎠
. (6) 

Note the equality-constrained intrapersonal covariance (e.g., .σ intra
Rz,Ry

), which esti-
mates the degree to which i’s unique liking of j at the first impression covaries with 
i’s unique mimicry of j . Note also the equality-constrained interpersonal covariance 
(e.g., .σ inter

Rz,Ry
), which estimates the degree to which i’s unique liking of j at the first 

impression covaries with j ’s unique mimicry of i. These equalities follow from dyad 
members being indistinguishable, similar to the equality-constrained relationship 
variance per variable. 

1.3 Estimation of Social Relations Models 

Several techniques including ANOVA-based estimators (Warner et al., 1979), 
MLE, and MCMC have previously been applied to estimate the SRM parameters 
introduced in the previous sections. For the purpose of this chapter, we concentrate 
on MLE and MCMC. 

The MLE approach (Nestler, 2018; Nestler et al., 2020), applied in the R package 
srm (Nestler et al., 2022), is the most recently proposed method for estimating 
SRM parameters. Nestler et al. (2020) apply a Fisher-scoring algorithm to derive 
SRM (co)variance point and SE estimates, which is applicable with unbalanced 
or incomplete normally-distributed data. However, the accuracy of this method 
generally depends on the sample size (Hoff, 2005) and the shape of the SRM 
variance components’ sampling distributions (Lüdtke et al., 2013). 

MCMC estimators, for example, Gibbs sampling (Gill & Swartz, 2001; Hoff,  
2005; Lüdtke et al., 2013), provide some practical advantages. The specification 
of prior distributions can incorporate expectations and previous knowledge about 
SRM parameters. Point estimators of SRM (co)variances may be selected as the 
mean (expected a posteriori, EAP), median, or mode (maximum a posteriori, MAP)  
of the empirical posterior distribution. These approaches handle unbalanced and 
incomplete designs (Gill & Swartz, 2001) and can incorporate model uncertainty 
well. Additionally, Bayesian estimators possess the added benefit of estimating 
complex or computationally intensive models that MLE cannot. However, the 
posterior summaries may perform differently depending on the nature of the data 
(see Lüdtke et al., 2013). 

In this chapter, we compared MLE and MCMC estimation of (co)variances of 
trivariate SRM components.
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2 Method 

2.1 Population Values and Simulation Conditions 

We used population (co)variance matrices from the Open Science Framework (OSF) 
project of Nestler et al. (2020, see  https://osf.io/9twkm/): 

. ΣEA =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.600

0.480 0.776

0.280 0.336 0.396

0.100 0.060 0.035 0.300

0.030 0.036 0.021 0.120 0.172

0.030 0.036 0.051 0.120 0.072 0.172

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

ΣR =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.900

0.150 0.900

0.480 0.120 0.884

0.120 0.480 0.196 0.884

0.840 0.210 0.672 0.168 1.576

0.210 0.840 0.168 0.672 0.094 1.576

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The rows and columns of .ΣEA are arranged such that the first three rows correspond 
to the ego effects and the last three rows correspond to the alter effects of the dyadic 
variables. The rows and columns of .ΣR are arranged such that the first two rows 
correspond to the ij and ji  effects of the first dyadic variable, the center two rows 
correspond to the ij and ji  effects of the second dyadic variable, and the final two 
rows correspond to the ij and ji  effects of the third dyadic variable. 

Round-robin group size (. ng) and the number of round-robin groups (G) were  
manipulated such that as . ng and G increased, so did the number of persons and 
dyads within the sample. We sampled .G = 10 or 20 networks of size .ng = 6, 8, or 
10. We generated 100 samples per sample size condition. 

2.2 Analysis Plan 

All analyses were conducted in R (R Core Team, 2023). Specifically, the SRM 
(co)variances for each of the 100 samples across the six conditions were estimated 
with MLE using the srm package (Nestler et al., 2022) and with a modified 
Hamiltonian Monte Carlo (HMC) algorithm called the No-U-Turn Sampler (NUTS; 
Hoffman et al., 2014), which is available in the rstan package (Stan Development 
Team, 2023). 

The srm package assumes the SRM components to be multivariate normally 
distributed latent factors with mean vector . µ and covariance matrix . Σ and can

https://osf.io/9twkm/
https://osf.io/9twkm/
https://osf.io/9twkm/
https://osf.io/9twkm/
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accommodate structural relations between SRM components. However, we fit a 
saturated model at each level, which results in unconstrained (co)variance estimates 
between the SRM components (other than equality constraints for indistinguishable 
dyads), which is simply a multivariate SRM. 

The mvsrm() function within the lavaan.srm package estimates a multi-
variate SRM using MCMC estimation via rstan. The  lavaan.srm package 
specifies diffuse prior distributions for all parameters by default. Priors for the SDs 
of level-specific effects were student-t distributions: 

.σEA(orR) ∼ t (ν = 4, µ = 0.5, σ = 0.5). (7) 

The correlation matrix at the individual level followed an LKJ distribution 
(Lewandowski et al., 2009): 

.REA ∼ LKJ(η = 2), (8) 

whereas each nonredundant dyad-level correlation followed a beta distribution: 

.RR ∼ Beta(α = 1.5,β = 1.5), (9) 

from which sampled parameters were rescaled as .2x − 1 to provide support across 
the range .{−1,+1} rather than the usual .{0, 1} range. 

Each person’s vector of random effects (E and A per variable) was sampled 
from a multivariate standard normal distribution (sampling z scores is more 
computationally stable). Sampled random effects . ̂E and . ̂A were scaled by their 
estimated SDs when calculating expected values per dyad and per variable: 

.̂yij = σ̂EÊi + σ̂AÂj . (10) 

Finally, the likelihood for the round-robin observations . yij followed a multivariate 
normal distribution with mean equal to each dyad’s expected values and covariance 
matrix equal to . Σ̂R: 

.yij ∼ MVN (µ = ŷij ,Σ = Σ̂R). (11) 

We initialized four Markov chains with random starting values, running each 
for 2000 iterations and discarding the first half of each as burn-in samples. This 
yielded 4000 posterior samples to estimate the joint posterior distribution of SRM 
parameters. We monitored the bulk effective sample size (ESS) and . ̂R to check for 
convergence issues. If ESS < 100 or . ̂R > 1.05, we repeated MCMC estimation with 
double the iterations (again discarding the first half as burn-in). For each sampled 
data set, we saved the EAP and MAP estimates of SRM (co)variances, the latter 
being analogous to ML estimates. 

In both srm and lavaan.srm, group effects were treated as fixed by group-
mean centering all dyadic variables. We estimated 33 unique (co)variances across 
the two levels: 21 at the individual level and 12 at the dyad level. To evaluate the
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accuracy of each estimator consistently with Nestler et al. (2020), we inspected the 
robust relative bias (RB) of the point estimates and the coverage rates (CRs) of the 
interval estimates. We also computed the relative efficiency (RE) with respect to the 
root mean-squared error (RMSE) of the estimators. 

3 Results 

The original four Markov chains appeared to converge on the same posterior 
distribution within 2000 iterations, for 98–100% of all samples per condition. For 
seven samples that underwent 4000 iterations, ESS > 100 or . ̂R < 1.05 indicated that 
doubling the number of posterior samples appeared to resolve convergence issues. 
The results for all 33 (co)variances are visualized in plots presented in Figs. 1, 
2, 3, 4, 5 and 6 and are summarized below. All the results can be found in our 
supplementary material on the OSF: https://osf.io/w3jue/. 

3.1 Accuracy of Point Estimates 

As shown in Fig. 1, parameters are, on average, underestimated at the individual 
level. Some ML estimates display acceptable bias; however, most parameters are 
greatly underestimated across all conditions. The bias in EAP and MAP estimates is 
even greater. When estimated via MCMC, the RBs of two parameters are greatly 
exacerbated due to dividing by near-zero values: the generalized covariance of 
the second dyadic variable (.σ 2

E1A1
, population value . = 0.036) and the covariance 

between the alter effect of the second dyadic variable and ego effect of the third 
dyadic variable (.σ 2

A2E3
, population value . = 0.021). 

In contrast with the individual level, most estimates at the dyad level are 
overestimated (see Fig. 2). However, relative biases have much smaller magnitude 
than at the individual level, indicating that parameters are more accurately estimated 
at the dyad level. One reason for this is that whereas information from only 
.ng×G individuals is used to estimate individual-level parameters, information from 

Fig. 1 Robust relative bias of point estimates at the individual level

https://osf.io/w3jue/
https://osf.io/w3jue/
https://osf.io/w3jue/
https://osf.io/w3jue/


72 A. M. Bhangale and T. D. Jorgensen

Fig. 2 Robust relative bias of point estimates at the dyad level 

Fig. 3 Coverage rates of interval estimates at the individual level 

.ng(ng−1)×G dyads is used to estimate relationship-level parameters. Bias for both 
MLE and MCMC tended to be worse in smaller groups, indicating individual-level 
random effects are more reliably estimated when individuals are observed across 
more interactions (Bonito & Kenny, 2010; Lüdtke et al., 2018). 

3.2 Accuracy of Interval Estimates 

CR for ML estimates is close to the nominal 95%, even in the small group (.ng = 6) 
conditions. CR for EAPs and MAPs at the individual level are extremely poor (see 
Fig. 3). Although CR for MCMC improved in larger groups, they did not converge 
on nominal levels at the individual level, and coverage was worse when more 
groups were sampled. These patterns can be attributed to the greatly underestimated 
parameters at the individual level and the narrowing of CIs (around inaccurate point 
estimates) when analyzing larger samples. CR at the dyad level was substantially 
better (see Fig. 4), especially in larger groups. 

3.3 Relative Efficiency of Estimators 

Figures 5 and 6 first depict the relative efficiency of the MCMC estimates with 
respect to the ML estimates and then depict the relative efficiency of EAP versus
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Fig. 4 Coverage rates of interval estimates at the dyad level 

Fig. 5 Relative efficiency of point estimates at the individual level 

Fig. 6 Relative efficiency of point estimates at the dyad level 

MAP estimates. RE .≈ 1 indicates that the RMSE values of both estimation 
approaches are approximately equal. RE .> 1 indicates that the estimation technique 
in the numerator is less efficient (has more biased estimates or displays greater 
sampling variability), whereas RE .< 1 indicates that the estimation technique in 
the numerator is more efficient. 

At both levels, MLE tends to outperform the MCMC estimators across all 
conditions. EAP and MAP estimates generally perform similarly at either level. 
Nestler et al. (2020) computed RMSE as the square root of the sum of squares 
of the robust bias and median absolute deviation (MAD) of a parameter. MAD. 2

provides a robust alternative to quantify the sampling variance (Talloen et al., 2019). 
Across all parameters at both levels, the sampling variability for MCMC and MLE 
is near-zero and, on average, approximately equal (see https://osf.io/w3jue/). In fact, 
specifically at the individual level, sampling variability for MLE is slightly higher

https://osf.io/w3jue/
https://osf.io/w3jue/
https://osf.io/w3jue/
https://osf.io/w3jue/
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than that of MCMC. Thus, the poor performance of MCMC relative to MLE is 
largely attributable to MCMC’s greater magnitude of (relative) bias. 

4 Discussion 

We presented simulation results comparing the accuracy and efficiency of MCMC 
and MLE in estimating a multivariate SRM. Although both MLE and MCMC 
provide rather biased point estimates (particularly in small-group conditions), 
MCMC generally performed worse than MLE under the conditions investigated 
here (data are complete and normally distributed, there are no small variances, and 
diffuse MCMC priors are used). 

One explanation for the poor performance of MCMC compared to MLE in 
this simulation is the combination of small sample conditions without sufficiently 
informative priors for the given model complexity (estimating 21 parameters at the 
individual level and 12 parameters at the dyad level). In their systematic review, 
Smid et al. (2020) found that Bayesian estimates computed based on naïve (i.e., 
software-default) priors led to much more bias than frequentist estimates in small 
samples. The diffuse priors might have influenced the posterior by placing too much 
weight on implausibly large values, which our small samples could not overcome. 

Consistent with past research (Nestler, 2018; Lüdtke et al., 2013, 2018), we found 
that the accuracy of ML and MCMC estimates slightly improved as . ng increased, 
irrespective of G. Large groups provide more interactions per person, stabilizing 
individual-level estimates. However, increasing G from 10 to 20 for  a given  . ng
did not appear to substantially improve the accuracy of estimation. This is because 
increasing G decreases sampling variability, giving inaccurate estimates greater 
precision. Hence, in a trade-off of . ng and G, fewer large groups yield more accurate 
estimates than many small groups (Kenny et al., 2006, p. 215). 

Finally, our results indicate that the choice of EAP or MAP would not substan-
tially affect the accuracy of (co)variance estimates when using MCMC under the 
conditions we investigated. This is because our population values did not contain 
any small or near-zero variances. When the distribution of a particular parameter 
is skewed (e.g., near-zero variances are a boundary condition), the EAP of the 
posterior provides a more extreme estimate than the MAP (Lüdtke et al., 2013). 
Thus, when variances are expected to be near-zero (e.g., when dyadic behavior 
is driven predominantly by ego or by alter effects), EAP and MAP estimates will 
diverge unless more informative priors are specified (Ten Hove et al., 2020). 

In conclusion, small round-robin group conditions lead to biased estimates of 
multivariate SRM parameters when using MLE or MCMC estimation, although 
the latter can perform worse when using diffuse priors. More research is needed 
to ascertain whether (and under what conditions) MCMC estimation can provide 
more accurate and efficient results. One solution worth exploring is specifying more 
thoughtful (but weakly informative) empirical Bayes priors to stabilize the MCMC 
estimates.
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