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Comparing Maximum Likelihood to ®)
Markov Chain Monte Carlo Estimation Grechie
of the Multivariate Social Relations

Model

Aditi M. Bhangale (® and Terrence D. Jorgensen

Abstract The social relations model (SRM) is a linear random-effects model
applied to dyadic data within social networks (i.e., round-robin data). Such data
have a unique nesting structure in that dyads (pairs) are cross-classified within
individuals, who can also be nested in different networks. The SRM is used to
examine basic multivariate relations between components of dyadic variables at
two levels: individual-level random effects and dyad-level residuals. The current
“gold standard” for estimating multivariate SRMs is the maximum likelihood (ML)
estimation. However, Bayesian approaches, such as Markov chain Monte Carlo
(MCMC) estimators, may provide some practical advantages to estimate complex
or computationally intensive models. In this chapter, we report a small simulation
study to compare the accuracy and efficiency of ML and MCMC point (and
interval) estimates of a trivariate SRM on the ideal scenario: normally distributed,
complete round-robin data. We found that MLE outperformed MCMC at both
levels. MCMC greatly underestimated parameters and displayed poor coverage rates
at the individual level but was relatively accurate at the dyad level.

1 Introduction

This chapter provides the first simulation study to compare the accuracy and
efficiency of point and interval estimates of Markov chain Monte Carlo (MCMC)
and maximum likelihood estimation (MLE) of multivariate social relations model
(SRM) parameters. The SRM is a statistical and methodological approach tradition-
ally applied to examine dyadic data gathered using a round-robin design (Gleason
& Halperin, 1975). The round-robin design is typically a multiple-group reciprocal
design wherein each group member interacts with or rates every other group member
on some dyadic variable—for example, in group g € 1, ..., G, member i reports
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their liking of member j # i—such that in a group of ng individuals, each member
participates in n, — 1 pairs (dyads). Each interaction within a dyad {ij} yields two
observations—i’s rating of j and j’s rating of i—stored in a vector y; ;. The braces
{} indicate that when dyad members are indistinguishable (e.g., the same-sex peers
are indistinguishable on the basis of sex), the order of i and j is arbitrary. Round-
robin data have a unique nesting structure such that each dyadic observation yy;;j is
nested within both (a) data from dyads in which i is a member and (b) data from
dyads in which j is a member. Thus, these designs allow decomposition of a dyadic
variable into three! SRM components at two levels: out-going (ego) and in-coming
(alter) effects at the individual level and dyadic (relationship) effects at the dyad
level. In this manner, the SRM can quantify the degree to which the total variance in
a dyadic variable is attributable to group- or individual-level differences versus the
unique relationship shared between two individuals (Kenny et al., 2006, pp. 186—
187).

1.1 The Univariate Social Relations Model

The following random-effects model (Gill & Swartz, 2001)

o Yij]_ |:Ei+Aj+Rij:|
Vi) = =u+ M
) |:in Ej+ A + Rji

decomposes dyadic observations yy;;; into individual-level ego (E) and alter (A)
effects. E; is an out-going effect representing, for example, how much i generally
likes others. A ; is an in-coming effect indicative of how much j is generally liked by
others. The relationship effect Ry;;y is a residual effect composed of measurement
error and i’s unique liking of j beyond their individual tendencies to like others
and be liked by others, respectively. Finally, u is the grand mean of yy;;) within the
network (e.g., the average liking within a group).

Although individual-level effects are uncorrelated between individuals i and j,
each individual’s ego effect E; and alter effect A; are assumed to be bivariate
normally distributed with expected value 0, variances aé and O’i, and a generalized
covariance og 4 (generalized reciprocity pg 4 when standardized; Kenny et al., 2006,

ch. 8):
E,‘ ~ 0 Gl%
)= (o] [0 2)) ®

' When sampling data from multiple round-robin groups, not only are dyads cross-classified within
people, but people are also nested within groups, so group-level effects can also be decomposed
from individual and relationship effects. However, estimation can be simplified by first partialing
out group means (i.e., treated as fixed effects), simplifying the model by omitting group effects.
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Positive og 4 values indicate that if i generally likes others, then i is also generally
liked by others. Negative o4 values indicate if i generally likes others, then i is
generally less liked by others.

Likewise, R;; and R j; per dyad are assumed bivariate normally distributed:

Rij ~ 0 012?
|:Rjii| N ([0] ’ |:012€l0R 0122:|> 7 ®

2

where relationship variances o . and 01% _are assumed to be equal ((712?-~ =02 =
1] Jt 1]

Rji =
01%) when dyads are indistinguishable. The correlation between R;; and Rj; effects
per dyad is labeled the dyadic reciprocity pr (Kenny et al., 2006, ch. 8). A positive
pr value means that if i particularly likes j, then j also particularly likes i beyond
their individual-level tendencies to like others and be liked by others. A negative pg
value implies that if i particularly likes j, then j likes i particularly less than their
individual-level tendencies to like others and be liked by others, respectively.

1.2 The Multivariate Social Relations Model

The SRM can be extended to multivariate cases. For example, Salazar Kdmpf et al.
(2018) investigated the association between liking of strangers at first impression
and subsequent mimicry during a 5-minute interaction. In this scenario, the vector
of SRM equations expands as follows:

Yij Ey,i Ay,j Ry.ij
[Y{m}z Vi | = | Bvi | o | Avi | 4 | Ryt | @
Zij) zjj Eyi Az, j Ryij

Zj Eq j Agi Rz, ji

where y are pre-interaction liking ratings and z are mimicry ratings.

Similar to the univariate case, individual-level effects of every person are
assumed to be multivariate normally distributed so that individual-level covariances
between the two dyadic variables can be estimated:

2
o

Ey, 0 Ey 5

AYi ,\,N 0 , GAy’Ey UAy ) (5)

Ey, 0| | ok, E 0F,.4, O,

A 0

2
O—ALEy O—Az’Ay OAz Ey GAZ

For example, o4, g, is an ego-alter covariance that can be used to investigate
whether individuals who are generally liked more at first impression also display
greater mimicry during a 5-minute interaction. Likewise, ego—ego covariances (e.g.,
OE,, £,) and alter—alter covariances (e.g., OAy, 4A,) can be estimated.



68 A. M. Bhangale and T. D. Jorgensen

At the dyad level, the interchangeability of {ij} implies constraints:

2
o
RYij 0 Ry )
Ryil o ar O [ ORPR ORy (6)
R 0 > | gintra - inter 02 :
Zij Rz,Ry “Ry,Ry R,
R, 0 inter intra 2
Jji

2
ORy.Ry ORy Ry OR, PRz O,

Note the equality-constrained intrapersonal covariance (e.g., Ulie"ztf;y), which esti-
mates the degree to which i’s unique liking of j at the first impression covaries with
i’s unique mimicry of j. Note also the equality-constrained interpersonal covariance
(e.g., J}gtflgy), which estimates the degree to which i’s unique liking of j at the first
impression covaries with j’s unique mimicry of i. These equalities follow from dyad
members being indistinguishable, similar to the equality-constrained relationship
variance per variable.

1.3 Estimation of Social Relations Models

Several techniques including ANOVA-based estimators (Warner et al., 1979),
MLE, and MCMC have previously been applied to estimate the SRM parameters
introduced in the previous sections. For the purpose of this chapter, we concentrate
on MLE and MCMC.

The MLE approach (Nestler, 2018; Nestler et al., 2020), applied in the R package
srm (Nestler et al., 2022), is the most recently proposed method for estimating
SRM parameters. Nestler et al. (2020) apply a Fisher-scoring algorithm to derive
SRM (co)variance point and SE estimates, which is applicable with unbalanced
or incomplete normally-distributed data. However, the accuracy of this method
generally depends on the sample size (Hoff, 2005) and the shape of the SRM
variance components’ sampling distributions (Liidtke et al., 2013).

MCMC estimators, for example, Gibbs sampling (Gill & Swartz, 2001; Hoff,
2005; Liidtke et al., 2013), provide some practical advantages. The specification
of prior distributions can incorporate expectations and previous knowledge about
SRM parameters. Point estimators of SRM (co)variances may be selected as the
mean (expected a posteriori, EAP), median, or mode (maximum a posteriori, MAP)
of the empirical posterior distribution. These approaches handle unbalanced and
incomplete designs (Gill & Swartz, 2001) and can incorporate model uncertainty
well. Additionally, Bayesian estimators possess the added benefit of estimating
complex or computationally intensive models that MLE cannot. However, the
posterior summaries may perform differently depending on the nature of the data
(see Liidtke et al., 2013).

In this chapter, we compared MLE and MCMC estimation of (co)variances of
trivariate SRM components.
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2 Method

2.1 Population Values and Simulation Conditions

We used population (co)variance matrices from the Open Science Framework (OSF)
project of Nestler et al. (2020, see https://osf.io/9twkm/):

0.600

0.480 0.776
0.280 0.336 0.396
EEA = and
0.100 0.060 0.035 0.300
0.030 0.036 0.021 0.120 0.172

0.030 0.036 0.051 0.120 0.072 0.172

0.900

0.150 0.900

0.480 0.120 0.884

0.120 0.480 0.196 0.884

0.840 0.210 0.672 0.168 1.576
0.210 0.840 0.168 0.672 0.094 1.576

Yp =

The rows and columns of X' 4 are arranged such that the first three rows correspond
to the ego effects and the last three rows correspond to the alter effects of the dyadic
variables. The rows and columns of X'g are arranged such that the first two rows
correspond to the ij and ji effects of the first dyadic variable, the center two rows
correspond to the ij and ji effects of the second dyadic variable, and the final two
rows correspond to the ij and ji effects of the third dyadic variable.

Round-robin group size (ny) and the number of round-robin groups (G) were
manipulated such that as n, and G increased, so did the number of persons and
dyads within the sample. We sampled G = 10 or 20 networks of size ng = 6, 8, or
10. We generated 100 samples per sample size condition.

2.2 Analysis Plan

All analyses were conducted in R (R Core Team, 2023). Specifically, the SRM
(co)variances for each of the 100 samples across the six conditions were estimated
with MLE using the srm package (Nestler et al., 2022) and with a modified
Hamiltonian Monte Carlo (HMC) algorithm called the No-U-Turn Sampler (NUTS;
Hoffman et al., 2014), which is available in the rstan package (Stan Development
Team, 2023).

The srm package assumes the SRM components to be multivariate normally
distributed latent factors with mean vector p and covariance matrix X' and can
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accommodate structural relations between SRM components. However, we fit a
saturated model at each level, which results in unconstrained (co)variance estimates
between the SRM components (other than equality constraints for indistinguishable
dyads), which is simply a multivariate SRM.

The mvsrm () function within the lavaan.srm package estimates a multi-
variate SRM using MCMC estimation via rstan. The lavaan.srm package
specifies diffuse prior distributions for all parameters by default. Priors for the SDs
of level-specific effects were student-7 distributions:

OEA@rR) ~1(v=4,u=0.5,0=0.)5). (7)

The correlation matrix at the individual level followed an LK J distribution
(Lewandowski et al., 2009):

Rpa~LKJ(n=2), ®)
whereas each nonredundant dyad-level correlation followed a beta distribution:
Rg ~ Beta(a = 1.5, 8 =1.5), )

from which sampled parameters were rescaled as 2x — 1 to provide support across
the range {—1, 41} rather than the usual {0, 1} range.

Each person’s vector of random effects (E and A per variable) was sampled
from a multivariate standard normal distribution (sampling z scores is more
computationally stable). Sampled random effects E and A were scaled by their
estimated SDs when calculating expected values per dyad and per variable:

Sij =GrEi +GaA;. (10)

Finally, the likelihood for the round-robin observations y;; followed a multivariate
normal distribution with mean equal to each dyad’s expected values and covariance
matrix equal to X'g:

Vij ~ MVN (1 = 5ij, £ = Zp). (11)

We initialized four Markov chains with random starting values, running each
for 2000 iterations and discarding the first half of each as burn-in samples. This
yielded 4000 posterior samples to estimate the joint posterior distribution of SRM
parameters. We monitored the bulk effective sample size (ESS) and R to check for
convergence issues. If ESS < 100 or R>1.05, we repeated MCMC estimation with
double the iterations (again discarding the first half as burn-in). For each sampled
data set, we saved the EAP and MAP estimates of SRM (co)variances, the latter
being analogous to ML estimates.

In both srm and lavaan.srm, group effects were treated as fixed by group-
mean centering all dyadic variables. We estimated 33 unique (co)variances across
the two levels: 21 at the individual level and 12 at the dyad level. To evaluate the
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accuracy of each estimator consistently with Nestler et al. (2020), we inspected the
robust relative bias (RB) of the point estimates and the coverage rates (CRs) of the
interval estimates. We also computed the relative efficiency (RE) with respect to the
root mean-squared error (RMSE) of the estimators.

3 Results

The original four Markov chains appeared to converge on the same posterior
distribution within 2000 iterations, for 98—100% of all samples per condition. For
seven samples that underwent 4000 iterations, ESS > 100 or R < 1.05 indicated that
doubling the number of posterior samples appeared to resolve convergence issues.
The results for all 33 (co)variances are visualized in plots presented in Figs. 1,
2, 3,4, 5 and 6 and are summarized below. All the results can be found in our
supplementary material on the OSF: https://osf.io/w3jue/.

3.1 Accuracy of Point Estimates

As shown in Fig. 1, parameters are, on average, underestimated at the individual
level. Some ML estimates display acceptable bias; however, most parameters are
greatly underestimated across all conditions. The bias in EAP and MAP estimates is
even greater. When estimated via MCMC, the RBs of two parameters are greatly
exacerbated due to dividing by near-zero values: the generalized covariance of
the second dyadic variable (0]%1 A population value = 0.036) and the covariance
between the alter effect of the second dyadic variable and ego effect of the third
dyadic variable (oﬁ2 Es» population value = 0.021).

In contrast with the individual level, most estimates at the dyad level are
overestimated (see Fig.2). However, relative biases have much smaller magnitude
than at the individual level, indicating that parameters are more accurately estimated
at the dyad level. One reason for this is that whereas information from only
ng X G individuals is used to estimate individual-level parameters, information from
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Parameters

;i i :};E!; vyA

® Ugg, = Oga

OAA, ® Ofa

OAA, @ Opa

2 o o
o, AA, ® UAE

2 o o
), EA, ® UAE

Robust Relative Bias

0 e smoe
-

e e meniew
oo
.

OEA, ® OAf
ISIES P D O O O P P P O O § g g
AR o AR ¥ ¥ & © ¥ O ¢ ¥ & @ ¥ 8

Simulation Condition

Fig. 1 Robust relative bias of point estimates at the individual level
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Fig. 3 Coverage rates of interval estimates at the individual level

ng(ng—1) x G dyads is used to estimate relationship-level parameters. Bias for both
MLE and MCMC tended to be worse in smaller groups, indicating individual-level
random effects are more reliably estimated when individuals are observed across
more interactions (Bonito & Kenny, 2010; Liidtke et al., 2018).

3.2 Accuracy of Interval Estimates

CR for ML estimates is close to the nominal 95%, even in the small group (17, = 6)
conditions. CR for EAPs and MAPs at the individual level are extremely poor (see
Fig. 3). Although CR for MCMC improved in larger groups, they did not converge
on nominal levels at the individual level, and coverage was worse when more
groups were sampled. These patterns can be attributed to the greatly underestimated
parameters at the individual level and the narrowing of CIs (around inaccurate point
estimates) when analyzing larger samples. CR at the dyad level was substantially
better (see Fig. 4), especially in larger groups.

3.3 Relative Efficiency of Estimators

Figures 5 and 6 first depict the relative efficiency of the MCMC estimates with
respect to the ML estimates and then depict the relative efficiency of EAP versus
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Fig. 6 Relative efficiency of point estimates at the dyad level

MAP estimates. RE ~ 1 indicates that the RMSE values of both estimation
approaches are approximately equal. RE > 1 indicates that the estimation technique
in the numerator is less efficient (has more biased estimates or displays greater
sampling variability), whereas RE < 1 indicates that the estimation technique in
the numerator is more efficient.

At both levels, MLE tends to outperform the MCMC estimators across all
conditions. EAP and MAP estimates generally perform similarly at either level.
Nestler et al. (2020) computed RMSE as the square root of the sum of squares
of the robust bias and median absolute deviation (MAD) of a parameter. MAD?
provides a robust alternative to quantify the sampling variance (Talloen et al., 2019).
Across all parameters at both levels, the sampling variability for MCMC and MLE
is near-zero and, on average, approximately equal (see https://osf.io/w3jue/). In fact,
specifically at the individual level, sampling variability for MLE is slightly higher
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than that of MCMC. Thus, the poor performance of MCMC relative to MLE is
largely attributable to MCMC'’s greater magnitude of (relative) bias.

4 Discussion

We presented simulation results comparing the accuracy and efficiency of MCMC
and MLE in estimating a multivariate SRM. Although both MLE and MCMC
provide rather biased point estimates (particularly in small-group conditions),
MCMC generally performed worse than MLE under the conditions investigated
here (data are complete and normally distributed, there are no small variances, and
diffuse MCMC priors are used).

One explanation for the poor performance of MCMC compared to MLE in
this simulation is the combination of small sample conditions without sufficiently
informative priors for the given model complexity (estimating 21 parameters at the
individual level and 12 parameters at the dyad level). In their systematic review,
Smid et al. (2020) found that Bayesian estimates computed based on naive (i.e.,
software-default) priors led to much more bias than frequentist estimates in small
samples. The diffuse priors might have influenced the posterior by placing too much
weight on implausibly large values, which our small samples could not overcome.

Consistent with past research (Nestler, 2018; Liidtke et al., 2013, 2018), we found
that the accuracy of ML and MCMC estimates slightly improved as n, increased,
irrespective of G. Large groups provide more interactions per person, stabilizing
individual-level estimates. However, increasing G from 10 to 20 for a given n;
did not appear to substantially improve the accuracy of estimation. This is because
increasing G decreases sampling variability, giving inaccurate estimates greater
precision. Hence, in a trade-off of n, and G, fewer large groups yield more accurate
estimates than many small groups (Kenny et al., 2006, p. 215).

Finally, our results indicate that the choice of EAP or MAP would not substan-
tially affect the accuracy of (co)variance estimates when using MCMC under the
conditions we investigated. This is because our population values did not contain
any small or near-zero variances. When the distribution of a particular parameter
is skewed (e.g., near-zero variances are a boundary condition), the EAP of the
posterior provides a more extreme estimate than the MAP (Ludtke et al., 2013).
Thus, when variances are expected to be near-zero (e.g., when dyadic behavior
is driven predominantly by ego or by alter effects), EAP and MAP estimates will
diverge unless more informative priors are specified (Ten Hove et al., 2020).

In conclusion, small round-robin group conditions lead to biased estimates of
multivariate SRM parameters when using MLE or MCMC estimation, although
the latter can perform worse when using diffuse priors. More research is needed
to ascertain whether (and under what conditions) MCMC estimation can provide
more accurate and efficient results. One solution worth exploring is specifying more
thoughtful (but weakly informative) empirical Bayes priors to stabilize the MCMC
estimates.



ML vs. MCMC Estimation of Multivariate SRM 75

References

Bonito, J. A., & Kenny, D. A. (2010). The measurement of reliability of social relations
components from round-robin designs. Personal Relationships, 17(2), 235-251.

Gill, P. S., & Swartz, T. B. (2001). Statistical analyses for round robin interaction data. Canadian
Journal of Statistics, 29(2), 321-331.

Gleason, J. R., & Halperin, S. (1975). A paired compositions model for round-robin experiments.
Psychometrika, 40(4), 433-454.

Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the American
Statistical Association, 100(469), 286-295.

Hoffman, M. D., Gelman, A., et al. (2014). The No-U-Turn Sampler: Adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593—
1623.

Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). Dyadic data analysis. Guilford Press.
Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation matrices based
on vines and extended onion method. Journal of Multivariate Analysis, 100(9), 1989-2001.
Liidtke, O., Robitzsch, A., Kenny, D. A., & Trautwein, U. (2013). A general and flexible approach
to estimating the social relations model using Bayesian methods. Psychological Methods,

18(1), 101.

Lidtke, O., Robitzsch, A., & Trautwein, U. (2018). Integrating covariates into social relations
models: A plausible values approach for handling measurement error in perceiver and target
effects. Multivariate Behavioral Research, 53(1), 102—124.

Nestler, S. (2018). Likelihood estimation of the multivariate social relations model. Journal of
Educational and Behavioral Statistics, 43(4), 387-406.

Nestler, S., Liidtke, O., & Robitzsch, A. (2020). Maximum likelihood estimation of a social
relations structural equation model. Psychometrika, 85(4), 870-889.

Nestler, S., Robitzsch, A., & Luedtke, O. (2022). srm: Structural equation modeling for the social
relations model. R Package Version 0.4-26.

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.

Salazar Kampf, M., Liebermann, H., Kerschreiter, R., Krause, S., Nestler, S., & Schmukle, S. C.
(2018). Disentangling the sources of mimicry: Social relations analyses of the link between
mimicry and liking. Psychological Science, 29(1), 131-138.

Smid, S. C., McNeish, D., Miocevié, M., & van de Schoot, R. (2020). Bayesian versus frequentist
estimation for structural equation models in small sample contexts: A systematic review.
Structural Equation Modeling, 27(1), 131-161.

Stan Development Team (2023). RStan: The R interface to Stan. R Package Version 2.26.23.

Talloen, W., Loeys, T., & Moerkerke, B. (2019). Consequences of unreliability of cluster means
and unmeasured confounding on causal effects in multilevel mediation models. Structural
Equation Modeling, 26(2), 191-211.

Ten Hove, D., Jorgensen, T. D., & van der Ark, L. A. (2020). Comparing hyperprior distributions to
estimate variance components for interrater reliability coefficients. In Quantitative Psychology:
84th Annual Meeting of the Psychometric Society, Santiago, Chile, 2019 (pp. 79-93). Springer.

Warner, R. M., Kenny, D. A., & Stoto, M. (1979). A new round robin analysis of variance for
social interaction data. Journal of Personality and Social Psychology, 37(10), 1742.



	Preface
	Contents
	A Family of Discrete Kernels for Presmoothing Test Score Distributions
	1 Introduction
	2 Kernel Estimation
	2.1 Density Estimation
	2.2 Probability Mass Function Estimation

	3 Discrete Kernels
	3.1 Three Discrete Kernels
	3.1.1 Binomial Kernel
	3.1.2 Triangular Kernel
	3.1.3 Dirac Discrete Uniform Kernel


	4 Log-Linear Modeling
	5 Empirical Illustration
	5.1 Results

	6 Discussion
	References

	Priors in Bayesian Estimation Under the Graded Response Model
	1 Introduction
	1.1 Graded Response Model and Priors
	1.2 Model Selection

	2 Method
	3 Results
	3.1 French Test Estimates
	3.2 DIC Results

	4 Discussion
	References

	Identifiability Conditions in Cognitive Diagnosis: Implications for Q-Matrix Estimation Algorithms
	1 Introduction and Research Objectives
	2 Review of Key Technical Concepts
	3 Simulation Study
	4 Results
	5 Discussion
	References

	A Two-Stage Approach to a Latent Variable Mixed-Effects Location-Scale Model
	1 Introduction
	2 Midlife in the United States (MIDUS) Study
	3 MELS Models
	3.1 Latent MELS Model for a Normal Outcome

	4 Two-Stage Approach
	5 Results
	6 Concluding Remarks
	References

	A Hierarchical Prior for Bayesian Variable Selection with Interactions
	1 Introduction
	2 Bayesian Variable Selection with Strong Heredity
	3 Methods
	3.1 SSVS Prior
	3.2 Dirac Spike and Slab Prior
	3.3 Hyper g-Prior

	4 Simulation Study
	4.1 Simulation I
	4.2 Simulation II

	5 Real Data Example
	6 Conclusion and Discussion
	References

	Application of Topic Modeling Techniques in Meta-analysis Studies
	1 Introduction
	2 Methods
	2.1 Data Collection
	2.2 Data Analysis

	3 Results and Conclusions
	3.1 Topic Structure by Interpreting the Top 10 Words and Top 20 Representative Abstracts
	3.2 Application of Extracted Topic Structure to Understand Two- to Three-Topic Indexed Abstracts

	4 Discussion
	References

	Comparing Maximum Likelihood to Markov Chain Monte Carlo Estimation of the Multivariate Social Relations Model
	1 Introduction
	1.1 The Univariate Social Relations Model
	1.2 The Multivariate Social Relations Model
	1.3 Estimation of Social Relations Models

	2 Method
	2.1 Population Values and Simulation Conditions
	2.2 Analysis Plan

	3 Results
	3.1 Accuracy of Point Estimates
	3.2 Accuracy of Interval Estimates
	3.3 Relative Efficiency of Estimators

	4 Discussion
	References

	Exploring Attenuation of Reliability in Categorical Subscore Reporting
	1 Methods
	2 Resampling Study Design
	3 Results
	4 Discussion
	References

	Assessing Cross-Level Interactions in Clustered Data Using CATE Estimation Methods
	1 Introduction
	1.1 Potential Outcomes Notation in Clustered Data
	1.2 Subgroup Analysis and CATE

	2 Statistcal Methods for Multilevel Data
	2.1 Multilevel Models and Cross-Level Interactions
	2.2 Causal Machine Learning Methods for CATE

	3 Application: Moderating Effects of School Characteristics on Student Outcome
	3.1 Data and Variables
	3.2 CATE for Cross-Level Interactions

	4 Discussion
	References

	A Comparison of Full Information Maximum Likelihood and Machine Learning Missing Data Analytical Methods in Growth Curve Modeling
	1 Introduction
	2 Growth Curve Models
	3 Missing Data Analytical Methods
	3.1 Full Information Maximum Likelihood Method
	3.2 Random Forest Imputation Method
	3.3 K-Nearest Neighbors Imputation Method

	4 A Simulation to Compare the Performance of FIML, RF, and KNN
	4.1 Simulation Design
	4.2 Results

	5 Discussion and Conclusion
	References

	Investigating Variable Selection Techniques Under Missing Data: A Simulation Study
	1 Introduction
	2 Methods
	2.1 Simulation Design
	2.2 Variable Selection and Algorithmic Evaluation

	3 Results
	4 Discussion
	References

	Comparison of DIF Detection Methods
	1 Introduction
	2 Methods
	3 Simulation Design
	4 Results
	5 Conclusion
	References

	Validity Evidence for an ECE Classroom Observation Tool
	1 Introduction
	2 Objective
	2.1 Research Questions

	3 Methods
	3.1 Participants and Settings
	3.2 Measurement Tool: Teach ECE
	3.3 Psychometric Models and Data Analysis

	4 Results
	5 Conclusions
	Appendix: Code in R
	References

	Enhancing Multilevel Models Through Supervised Machine Learning
	1 Introduction
	2 Linear (LME) and Non-linear Mixed-Effects Model
	3 Mixed Effects in Machine Learning (MixedML) Framework
	3.1 Estimation
	3.2 Application in Traditional Mixed-Effects Models
	3.3 Prediction

	4 Empirical Example
	5 Conclusion and Discussion
	References

	Assessing the Effects of a Yearly Renewable Education Program Through Causal Mediation Analysis
	1 Evaluating Yearly Renewable Education Programs as Time-Varying Treatments
	2 Disentangling Time-Varying Treatment Effects as Causal Mediation Effects
	2.1 Long-Term Effects of the Initial Treatment as Natural Direct Effects
	2.2 Sequential Effects of Time-Varying Treatments as Natural Indirect Effects

	3 Regression-Based Estimation of Causal Mediation Effects
	4 Empirical Example: The Effects of Head Start on Children's School Readiness by Attendance History
	4.1 Data and Analysis
	4.2 Results

	5 Discussion
	References

	Gumbel-Reverse Gumbel (GRG) Model: A New Asymmetric IRT Model for Binary Data
	1 Introduction
	2 The Gumbel-Reverse Gumbel Model
	3 Empirical Example: Synthetic Aperture Personality Assessment Intelligence Items
	3.1 Methods
	3.2 Results

	4 Discussion
	References

	Fisher Information-Based Item Difficulty and Discrimination Indices for Binary Item Response Models
	1 Introduction
	2 Fisher Information for the 2PL Model
	3 3PL Example
	3.1 Using Fisher Information in Analogy to the 2PL

	4 Asymmetric IRT Example
	4.1 Logistic Positive Exponent Model
	4.2 Complementary Log–Log Model
	4.3 Using Fisher Information in Analogy to the 2PL

	5 Discussion
	References

	Investigating the Impact of Equating on Measurement Error Using Generalizability Theory
	1 Introduction
	2 A Framework for Generalizability Theory Applications and Example Designs
	3 The Contribution of Equating to Individual and Group Mean Error Variances
	4 Data Simulation
	5 Generalizability Analysis Results
	6 Concluding Remarks
	References

	Fitting a Drift–Diffusion Item Response Theory Model to Complex Cognition Response Times
	1 Introduction
	2 Describing Diffusion Process as a Markov Random Walk Process
	3 Simulating Response Distributions Using DDM Random Walk
	3.1 Drift Rate Configurations
	3.2 Random Walk

	4 The Q-Diffusion Model (QDM)
	5 Bayesian Modeling of the Q-Diffusion Model
	5.1 Bayesian Inference
	5.2 Bayesian Model Fit Evaluation

	6 Results
	6.1 Simulated Dataset
	6.2 Model Fit

	7 Conclusion
	References

	Comparing Correlation Tests
	1 Introduction
	2 Testing Methods
	2.1 Traditional Parametric Procedure
	2.2 Bivariate Bootstrapping Procedure
	2.3 Univariate Bootstrap Procedure
	2.4 Bootstrap Hypothesis Testing Procedure

	3 Inference of Correlation
	3.1 Data Generation Methods
	3.2 Asymptotic Distribution of Covariance Matrix
	3.3 Asymptotic Distribution of Correlation

	4 Simulation Studies
	5 Results
	6 Conclusions and Discussion
	References

	Optimizing Maximum Likelihood Estimation in Performance Factor Analysis: A Comparative Study of Estimation Methods
	1 Background and Motivation
	2 Method
	2.1 Research Design
	2.2 PFA Model and Parameters
	2.3 MLE Optimizers
	2.4 Model Evaluation

	3 Results
	4 Discussion
	References

	Validation of the Household Food Security Survey Module (HFSSM) Using Factor Analysis and Rasch Measurement Theory
	1 Introduction
	1.1 Purpose

	2 Methodology
	2.1 Participants
	2.2 Procedure
	2.3 Instrument
	2.4 Models

	3 Results
	4 Discussion
	References

	Are We Playing the Same Game? Translating Fairness Content
	1 Background
	2 Methods
	2.1 Assessments
	2.2 Data Collection
	2.3 Factor Model
	2.4 Factorial Invariance Testing

	3 Results
	3.1 European Spanish
	3.2 Latin American Spanish
	3.3 Comparing the Spanish Dialects

	4 Discussion
	5 Conclusion
	References

	Diagnosing Skills and Misconceptions with Bayesian Networks Applied to Diagnostic Multiple-Choice Tests
	1 Introduction
	2 A Brief Introduction to Bayesian Networks
	3 Bayesian Networks in Psychometrics Research
	4 Application: Diagnosing “Bugs” in Multicolumn Subtraction
	5 Discussion
	References

	Exploring Conceptual Differences Among Nonparametric Estimators of Treatment Heterogeneity in the Context of Clustered Data
	1 Causal Inference and the Potential Outcomes Framework
	1.1 Continuous Covariates and CATE

	2 Simulation Study
	2.1 Trends in International Mathematics and Sciences Study
	2.2 Data Generation Method

	3 Methods
	3.1 Nonparametric Methods for Estimating CATE
	3.2 Background on Selected Methods
	3.2.1 Causal Forests
	3.2.2 Bayesian Causal Forests
	3.2.3 Multilevel Model + Bayesian Additive Regression Trees


	4 Results
	5 Discussion
	References

	Assessment of Testlet Effects: Testing it All at Once
	1 Introduction
	2 Testlets and the Assumption of Local Independence
	2.1 Methods for Testing Testlet Effects

	3 Parametric Bootstrap Mantel–Haenszel Statistic
	4 Simulation Studies
	4.1 Simulation Study I: Type-I-Error
	4.2 Simulation Study II: Power

	5 Discussion
	References

	Item Response Theory Modeling with Response Times: Some Issues
	1 Introduction
	2 Studies on Within-Person Variability
	2.1 Study 1: Within-Person Modeling of the Abstract Reasoning Test
	2.2 Study 2: Within-Person Modeling of the Mathematical Achievement Test

	3 Discussion
	References

	DIF Detection in a Response Time Measure: A Likelihood Ratio Test Method
	1 Context
	2 The Likelihood Ratio Test for DIF in Item Responses
	3 The Likelihood Ratio Test for DIF in Response Times
	4 Study 1: Performance of the Method
	5 Study 2: Time Limits
	6 Conclusion
	References

	Revisiting the 1PL-AG Item Response Model: Bayesian Estimation and Application
	1 Introduction
	2 IRT Models for Dichotomous Response
	3 Estimation
	4 Results
	4.1 Simulation Study
	4.2 Application

	5 Final Comments
	Appendix: JAGS Code for 1PNAG IRT Model
	References

	MAP Estimation Using a Possibly Misspecified Parameter Redundant Model
	1 Introduction
	2 MAP Estimation Theory for Parameter Redundant Models
	2.1 Assumptions and Definitions
	2.1.1 DGP and Modeling Assumptions
	2.1.2 MAP and ML Estimation Algorithms
	2.1.3 Theorem Assumptions and Notation
	2.1.4 Identifiability and Redundancy Definitions

	2.2 Theorems
	2.2.1 Parameter Redundancy and Identifiability
	2.2.2 MAP Estimate Asymptotic Distribution


	3 Simulation Study
	3.1 Methods
	3.1.1 Data Set, Model, and Estimation Algorithm
	3.1.2 Evaluation of Confidence Interval Estimation Methods

	3.2 Results and Discussion

	References

	Global Validity of Assessments: Location and Currency Effects
	1 Background
	2 Study Design
	2.1 Data Collection
	2.2 Constructs
	2.3 Measurement Invariance Testing

	3 Results
	3.1 Currency
	3.2 Location

	4 Conclusion
	References

	The Deconstruction of Measurement Invariance (and DIF)
	1 A Geometric Perspective on Measurement and Measurement Invariance
	1.1 Measurement
	1.2 Measurement Invariance

	2 A Taxonomy of Measurement Invariance and DIF
	2.1 Complete Overlap
	2.2 Complete Parallelism
	2.3 Embedded Dimensions without Overlap
	2.4 Partial Parallelism
	2.5 Neither Parallelism nor Overlap
	2.6 Singular Overlap
	2.7 Nonsingular Overlap
	2.8 Embeddedness
	2.9 General Remarks

	3 Conclusions
	References

	Assessment of Misspecification in CDMs Using a Generalized Information Matrix Test
	1 Introduction
	2 Mathematical Theory
	2.1 Model Misspecification
	2.2 Cognitive Diagnostic Model Specification 
	2.2.1 Data Set
	2.2.2 Evidence Model
	2.2.3 Proficiency Model

	2.3 Model Parameter Estimation 
	2.4 Information Matrix Test Methods for Detection of Model Misspecification
	2.4.1 Determinant Generalized Information Matrix Test Statistical Theory


	3 Simulation Study
	3.1 Data set
	3.2 Methods
	3.3 Results and Discussion

	References

	The Impact of Generating Model on Preknowledge Detection in CAT
	1 Introduction
	2 Method
	2.1 Modeling Item Scores
	2.2 Modeling Item Response Times
	2.3 Model Comparison

	3 Simulation Study
	3.1 Design and Analysis
	3.2 Results

	4 Discussion
	References

	Empirical Comparisons Among Models in Detecting Extreme Response Style
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	References

	Index

