I. INTRODUCTION

Many biologically important chromophores are conjugated linear polyenes (for example, retinal and β-carotene).

Since the original discovery that the 2 1A_s state is the lowest energy excited singlet state in α,ω-diphenyl-1,3,5,7-octatetraene instead of the 1B_g state, as predicted by molecular orbital theory at the Hartree–Fock level, a number of studies have elucidated the properties of the 2 1A_s state in linear polyenes with four or more conjugated double bonds in the polyene chain.

The high resolution studies that have been so effective in characterizing the 2 1A_s state in the longer polyenes have relied on the sensitivity that can be realized by using fluorescence to detect absorption. Because unsubstituted trienes and dienes have immeasurably small quantum yields for fluorescence, different techniques are required to obtain unambiguous spectra of the 2 1A_s state.

Recently, we used resonance enhanced multiphoton ionization spectroscopy to measure the 1 1A_s → 2 1A_s spectrum for cis-heptatriene seeded into a supersonic He expansion. The high resolution spectrum showed that, among the other things, the origin of the 2 1A_s state is 5270 cm$^{-1}$ below the origin of the 1 1A_s state and that, in contrast to what has been found for longer polyenes, the 2 1A_s state distorts to almost isoelectronic nonplanar conformations (although the molecular symmetries of cis-heptatriene and most of the alkyl substituted trienes discussed here are lower than C$_2h$, we continue to use the designations A_s and B_s to emphasize the correlation of the observed states to those of the symmetrical unsubstituted all-trans polyene).

The photochemistry of vitamin D involves isomerisations of alkyl substituted hexatriene. To understand this photochemistry at a fundamental level we need to develop an understanding of how alkyl substitution affects the hexatriene 2 1A_s state. This was one of the primary motivations for the spectroscopic studies of various alkyl substituted hexatrienes that we report here. By measuring the wavelength dependence of parent ion production by two-photon ionisation of molecules seeded into a supersonic jet expansion we have obtained fully resolved 1 1A_s → 2 1A_s excitation spectra for the isomers and conformers of heptatriene shown in Fig. 1. Our shorthand notation for these species is ZZ heptatriene for Z,Z-1,3,5-heptatriene, ZE heptatriene for Z,E-1,3,5-heptatriene, and EZ heptatriene for E,Z-1,3,5-heptatriene. Spectra were also obtained for octatriene and decatriene, but in these cases we were unable to decompose the measured spectra into contributions from single isomers.

II. EXPERIMENTAL

We have previously published a detailed description of our experimental setup for measuring resonance enhanced multiphoton ionization spectra. The excitation source is the beam from a Spectra Physics PDL-2 dye laser pumped by a DCR-3 Nd:YAG laser. After frequency doubling by a
spectra of Fig. 3.

correspond to the numbers with which bands are labeled in the excitation

FIG. 2. Capillary gas chromatogram of 1,3,5-heptatriene. The first band (12.2 minutes) is assigned as the EE isomer, the second band (13.1 minutes) consists of two bands assigned to the EZ and ZE isomer while the last band (14.0 minutes) is assigned to the ZZ isomer. The numbers in the figure correspond to the numbers with which bands are labeled in the excitation spectra of Fig. 3.

WEX-1 wavelength extender this excitation beam intersects the molecular beam at the entrance aperture of a time of flight mass spectrometer (R.M. Jordan Co.). The molecular beam is formed by a pulsed valve with a 0.5 mm diameter nozzle (R.M. Jordan Co.) that connects the reservoir containing a mixture of the substituted heptatriene at its equilibrium vapor pressure and 3 atm of He to the vacuum chamber. Ions produced at the intersection of the molecular and laser beams are accelerated through the time of flight mass spectrometer and detected by a dual microchannel plate. The mass peak for the molecular ion was selected and averaged by standard boxcar techniques (the mass resolution of our system at 94 amu is \(\Delta t = 2000 \)). The spectrometer is controlled by a HP310 computer which also takes care of data storage and analysis.

Heptatriene, octatriene, and decatriene were prepared by the procedure described in Ref. 14. As can be seen in Fig. 2, injection of heptatriene into a capillary gas chromatograph (Shimadzu GC-14A) with a 25 meter column (liquid phase, 007 series methyl silicon, I.D. 0.32 mm) shows that at least four isomers are present. In the case of hexatriene we found that the \(E \) isomer has a smaller retention time than does the Z isomer. As is discussed further in Sec. III A 1, this is one of the pieces of evidence that with the relative abundances and observed spectra lead to the structural assignments given in Fig. 2.

Samples for the spectroscopic experiments were separated with a preparative gas chromatograph (F&M Laboratory Model 700 Series) using an 8 foot long 1/4 inch diameter column (chromosome P/AW 60/80 mesh support, \(\beta,\beta' \)-oxydipropionitrile phase). The heptatriene separations were run at a column temperature of 50 °C, an injection temperature of 110 °C, a detector temperature of 180 °C and a He carrier gas flow rate of 50 ml/min. Under these conditions only two distinct peaks could be seen: one for \(E,E-1,3,5 \)-heptatriene or the all-trans isomer and one that is the unresolved envelope of peaks for the ZE, EZ, and ZZ cis isomers. To obtain samples with different ratios of the three cis isomers we collected the leading or trailing half of the unresolved cis peak.

Analysis of octatriene on the capillary gas chromatograph showed that the sample contained at least seven isomers including two isomers of ethyl-hexatriene. With the preparative gas chromatograph using a column temperature of 80 °C, four bands could be distinguished. In order of elution they were: one band for the isomers of ethylhexatriene, one band for the EEE isomer of octatriene, and a pair of overlapping bands for octatriene isomers containing a Z linkage. In the following we will refer to EEE octatriene as \(E \)-octatriene and samples collected from the leading and trailing parts of the last band eluded as \(cts(1) \)-octatriene and \(cis(2) \)-octatriene, respectively.

Finally, because analysis of our decatriene by the capillary gas chromatograph showed at least six closely spaced bands no attempt was made to separate isomers with the preparative instrument.

III. RESULTS AND DISCUSSION

In this section we will first present and discuss the spectra obtained for the isomers for heptatriene where we have succeeded in unambiguously resolving the excitation spectra into the spectra of individual isomers. Then the results obtained for octatriene and decatriene where a complete decomposition of the measured spectra into the spectra of individual isomers was not possible will be presented and discussed in the context of the heptatriene results.

A. Excitation spectra of heptatriene

In our previous study of hexatriene we found we could not measure resonance enhanced multiphoton ionization excitation spectra with an acceptably high signal-to-noise ratio for the \(trans \) isomer.\(^{12,13}\) We attributed this to the strict symmetry forbidden character of the \(1^2A_g \rightarrow 2^2A_g \) transition for a centrosymmetric \(trans \) geometry. Thus, it was not a surprise to find that our present apparatus was not sensitive enough to obtain spectra for \(FF \)-heptatriene.
However, reasonable spectra could be obtained for material from the cis heptatriene fraction. The upper trace in Fig. 3 shows the spectrum measured for material taken from the leading half of the cis isomer fraction, hereafter called sample A. The lower trace in Fig. 3 shows the spectrum measured for the trailing half, hereafter called sample B. The spectra in Fig. 3 have been constructed by linking consecutive scans to each other as described previously. Since in this case the overlap region used to determine the parameters for linearly scaling one spectrum to the other did not contain any significant bands, the relative intensities of bands from different scans are subject to relatively large errors. Checks of the relative intensities of the major bands show that the errors are no larger than 20%.

From the absorption spectrum of cis-heptatriene vapor in equilibrium with the room temperature liquid we estimate that the origin of the $1^1A_g \rightarrow 1^1B_g$ transition is at approximately 256.6 nm. This is shifted by 695 cm$^{-1}$ to lower energy from the location of the $1^1A_g \rightarrow 1^1B_g$ origin determined for jet cooled cis-hexatriene. The absorption spectrum of trans-heptatriene vapor shows the 0–0 transition at 255.5 nm, which means a shift to lower energy with respect to trans-hexatriene by 648 cm$^{-1}$ higher in energy which can be assigned as the symmetric C=C stretch fundamental roughly 1730 cm$^{-1}$ to higher energy.

In all spectra measured for sample A the lowest energy excitation feature is the band at 33 809 cm$^{-1}$. Thus, the 33 809 cm$^{-1}$ band must be the O-O transition of one of the heptatriene isomers. This assignment is supported by the significantly intense band at 33 475 + 1709 cm$^{-1}$ which we assign as the symmetric C=C stretching mode of this heptatriene isomer.

Samples A and B are prepared by dividing one gas chromatographic band which contains three isomers. Since this separation has been performed many different times, the ratios of the three isomers in the separated samples will inevitably be different in different scans. This means that bands can be divided into groups that have the same relative intensities in all scans. Comparing the upper to the lower trace in Fig. 3 it is apparent that there are a number of bands whose relative intensities are about the same in both spectra. Among these

1. Assignment of excitation spectra to isomers

To assign peaks in the spectra shown in Fig. 3 to particular isomers of heptatriene we must first determine which of the bands in these spectra represent 0–0 transitions. In doing this it is useful to recall that the most intense fundamental in the $1^1A_g \rightarrow 2^1A_g$ excitation spectrum of any linear polyene is the symmetric C=C stretch vibration. In cis-hexatriene this vibration has a frequency of 1724 cm$^{-1}$ in the 2^1A_g state. Thus, the assignment of a band as a 0–0 transition implies that there must be a relatively intense C=C stretch fundamental roughly 1730 cm$^{-1}$ to higher energy.

FIG. 3. $1^1A_g \rightarrow 2^1A_g$ excitation spectra of 1,3,5-heptatriene detected using resonance enhanced multiphoton ionization spectroscopy. The upper half of the figure shows the excitation spectrum measured for the leading part of the gas chromatographic peak containing the EZ, ZE, and ZZ isomers, the lower part shows the excitation spectrum measured for the trailing half. The numbers in the spectra refer to bands assigned to the specific isomers: 1 = ZZ, 2 = ZE, and 3 = EZ (see also Tables I, II, and III).
are the two bands at 34 237 cm\(^{-1}\) and 34 282 cm\(^{-1}\) which correlate with two prominent bands 1720 cm\(^{-1}\) to higher energy and two other weak bands 1259 cm\(^{-1}\) to higher energy. From this we conclude that the bands at 34 237 cm\(^{-1}\) and 34 282 cm\(^{-1}\) represent the 0–0 transitions of two closely related hexatriene isomers that are distinctly different from the ones responsible for the lowest energy excitation features seen for samples A and B, respectively.

The assignment of a specific hexatriene conformation to each of the four origins uses several lines of argument. First of all, we use the fact that the ZZ isomer has a longer retention time than do the EZ and the ZE isomers. This means that the species whose origin band is 33 475 cm\(^{-1}\) must be the ZZ isomer since it is present only in sample B. Consequently, the origin band at 33 809 cm\(^{-1}\) and the ones at 34 237 cm\(^{-1}\) and 34 282 cm\(^{-1}\) belong to EZ and ZE isomers. Because of the nearly identical vibronic development of the spectra with origins at 34 237 cm\(^{-1}\) and 34 282 cm\(^{-1}\) we believe that they belong to single bond isomers (conformers) of a single double bond isomer, either EZ or ZE. In principle, the doubled spectra could represent different conformations in the ground state, the 2 \(^1\)A\(_g\) state, or both (previous studies have shown that conformers present in the ground state can be frozen out in a supersonic jet expansion at the ratio that reflects equilibrium at the reservoir temperature\(^{16,17}\)). Since this doubling is not observed for any of the other isomers, we believe that it reflects the presence of two different ground state conformers with distinct, albeit very similar, 2 \(^1\)A\(_g\) states. Using only the measured spectra and gas chromatographic behaviors, we are not able to arrive at a unique assignment of the four origins to molecular conformations. Thus, we have augmented the available information with quantum chemical calculations of relative stabilities.

To decide whether the origin at 33 809 cm\(^{-1}\) belongs to the ZE isomer and the origins at 34 237 cm\(^{-1}\) and 34 282 cm\(^{-1}\) belong to conformations of the EZ isomer or vice versa, we have performed MM-2 calculations of ground state energy as a function of conformation\(^{18,19}\). Though we are well aware that there may be substantial errors in the calculated values of the absolute energies, the highly empirical nature of the MM-2 method should give a reasonably accurate picture of the relative energies.

2. Vibrational analysis

The vibrational assignments of the excitation spectra of ZZ, ZE, and EZ heptatriene are summarized in Tables I, II, and III, respectively. As is the general situation for polyenes the symmetric C–C stretching mode is strongly active in these spectra and has a significantly higher frequency in the 2 \(^1\)A\(_g\) excited state than in the ground state. IR spectra show that the C–C stretch vibration in the ground state has a frequency of 1627 cm\(^{-1}\) for sample A and 1624 cm\(^{-1}\) for

TABLE I. Vibrational assignments of tCtC-heptatriene. The numbers in brackets give the deviation from the harmonic approximation.

<table>
<thead>
<tr>
<th>Frequency (cm(^{-1}))</th>
<th>(\Delta v) (cm(^{-1}))</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 475</td>
<td>0</td>
<td>(0–0)</td>
</tr>
<tr>
<td>33 540</td>
<td>65</td>
<td>(v_1)</td>
</tr>
<tr>
<td>33 608</td>
<td>133</td>
<td>2(x) (v_1)</td>
</tr>
<tr>
<td>33 621</td>
<td>146</td>
<td>(v_3)</td>
</tr>
<tr>
<td>33 629</td>
<td>154</td>
<td>(v_5)</td>
</tr>
<tr>
<td>33 692</td>
<td>217</td>
<td>(v_6) (C=C)</td>
</tr>
<tr>
<td>35 184</td>
<td>1709</td>
<td>(v_1) + (v_5) (C=C)</td>
</tr>
<tr>
<td>35 339</td>
<td>1864</td>
<td>(v_3) + (v_5) (C=C)</td>
</tr>
<tr>
<td>35 401</td>
<td>1926</td>
<td>(v_6) + (v_5) (U)</td>
</tr>
<tr>
<td>35 471</td>
<td>1996</td>
<td>(v_6)</td>
</tr>
</tbody>
</table>

TABLE II. Vibrational assignments of tCtT-heptatriene. The numbers in brackets give the deviation from the harmonic approximation.

<table>
<thead>
<tr>
<th>Frequency (cm(^{-1}))</th>
<th>(\Delta v) (cm(^{-1}))</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 809</td>
<td>0</td>
<td>(0–0)</td>
</tr>
<tr>
<td>34 926</td>
<td>117</td>
<td>(v_1)</td>
</tr>
<tr>
<td>33 964</td>
<td>155</td>
<td>(v_5)</td>
</tr>
<tr>
<td>33 996</td>
<td>187</td>
<td>(v_5)</td>
</tr>
<tr>
<td>34 022</td>
<td>213</td>
<td>(v_4)</td>
</tr>
<tr>
<td>34 041</td>
<td>232</td>
<td>2(x) (v_1) (–2)</td>
</tr>
<tr>
<td>34 118</td>
<td>309</td>
<td>2(x) (v_2) (–1)</td>
</tr>
<tr>
<td>34 102</td>
<td>333</td>
<td>3(x) (v_1) (–2)</td>
</tr>
<tr>
<td>34 413</td>
<td>604</td>
<td>(v_6)</td>
</tr>
<tr>
<td>35 569</td>
<td>1760</td>
<td>(v_6) (C=C)</td>
</tr>
</tbody>
</table>

TABLE III. Vibrational assignments of tTtC and cTtC-heptatriene.

<table>
<thead>
<tr>
<th>Frequency (cm(^{-1}))</th>
<th>(\Delta v) (cm(^{-1}))</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 237</td>
<td>0</td>
<td>(0–0)</td>
</tr>
<tr>
<td>34 263</td>
<td>26</td>
<td>(A(0–0) + v_1)</td>
</tr>
<tr>
<td>34 282</td>
<td>45</td>
<td>(B(0–0))</td>
</tr>
<tr>
<td>34 307</td>
<td>25</td>
<td>(B(0–0) + v_1)</td>
</tr>
<tr>
<td>34 325</td>
<td>42</td>
<td>(B(0–0) + v_2)</td>
</tr>
<tr>
<td>34 337</td>
<td>56</td>
<td>(B(0–0) + v_3)</td>
</tr>
<tr>
<td>34 348</td>
<td>67</td>
<td>(B(0–0) + v_4)</td>
</tr>
<tr>
<td>34 496</td>
<td>1259</td>
<td>(A(0–0) + v_5(C=C))</td>
</tr>
<tr>
<td>35 550</td>
<td>1258</td>
<td>(B(0–0) + v_5(C=C))</td>
</tr>
<tr>
<td>35 956</td>
<td>1719</td>
<td>(A(0–0) + v_5(C=C))</td>
</tr>
<tr>
<td>36 002</td>
<td>1720</td>
<td>(B(0–0) + v_6(C=C))</td>
</tr>
</tbody>
</table>
sample B. This increase in frequency upon excitation reflects the intrinsic electronic character of the 2 \(^1\)A\(_g\) state\(^{21}\) which may be explained in terms of vibronic mixing of the 1 \(^{1}\)A\(_g\) and 2 \(^1\)A\(_g\) states.\(^{22}\)

The frequency of the C=C stretching mode in the 2 \(^1\)A\(_g\) state is significantly different for the three heptatriene double bond isomers. In unsubstituted cis-hexatriene it is 1724 cm\(^{-1}\).\(^{13}\) Adding a methyl group trans to the terminal double bond induces a shift to higher frequency (1760 cm\(^{-1}\)) for ZE heptatriene while adding a methyl group cis to the terminal double bond induces a shift to lower frequency (1709 cm\(^{-1}\)) for ZZ heptatriene. This sensitivity to double bond conformation stands in contrast to the insensitivity of the frequency of this mode to single bond conformation (1720 cm\(^{-1}\) for both single bond isomers of EZ heptatriene). While the basis for the strong dependence on conformation about the terminal double bond is not clear, the increase in C=C stretching frequency in the 2 \(^1\)A\(_g\) state with increasing number of trans double bond linkages is consistent with what has previously been observed for octatetraene.\(^{23-25}\)

Whereas the intensity of the C=C stretching mode is relatively strong in the excitation spectra of all three double bond isomers, the C=C stretching mode is only observed as a very weak feature for the EZ isomer. Since experiments on octatetraene have demonstrated that the intensity of the C=C stretching mode is strongly influenced by small perturbations,\(^{26}\) this could explain the absence of this mode in the excitation spectra of the other two isomers.

In addition to the C=C and C-C stretching modes, a number of low frequency vibrations are active in the spectra as seen in Fig. 3 and Tables I–III. Similar activity in low frequency modes was seen for cis-hexatriene as well although in that case the intensity was significantly lower than the intensity of the symmetric C=C stretch mode. This is not the case for the isomers of heptatriene where some of the low frequency modes have greater relative intensity than does the C=C stretch vibration. This indicates that the torsional and bending vibrations are even more involved in the changes of equilibrium geometry upon excitation to the 2 \(^1\)A\(_g\) state in heptatriene than they are in cis-hexatriene. Among the significantly active low frequency modes are the ones at 154 cm\(^{-1}\) and 217 cm\(^{-1}\) in the ZZ isomer and the ones at 155 cm\(^{-1}\) and 213 cm\(^{-1}\) in the ZE isomer whose frequencies are nearly identical to the 155 cm\(^{-1}\) and 250 cm\(^{-1}\) modes seen in the excitation spectrum of cis-hexatriene.\(^{12,13}\)

The mode at 117 cm\(^{-1}\) that forms the most intense progression in the spectrum of the ZE isomer has no counterpart in the spectrum of cis-hexatriene. This suggests that this mode involves the hindered rotation of the CH\(_3\) group and that in the ZE isomer there are appreciable changes in the orientation of the CH\(_3\) group upon excitation to the 2 \(^1\)A\(_g\) state.

We are left with a puzzle which is the assignment of the band 1996 cm\(^{-1}\) above the origin of the ZZ isomer. This frequency is too high to be assigned as another C=C stretch-\ing mode: There is no precedent for a fundamental with this high of a frequency in the 2 \(^1\)A\(_g\) state of a short linear polyene.\(^{27}\) A possible assignment of this band could be that it is the 0–0 transition of another conformer. The relatively small differences in 0–0 transition energies measured for other isomers makes this assignment unlikely. Further, in a careful search 1600 cm\(^{-1}\) to 1800 cm\(^{-1}\) higher in energy we were unable to locate any feature that could be attributed to a C=C stretch fundamental added to this band. This leaves the assignment of 1996 cm\(^{-1}\) band in the spectrum of ZZ heptatriene as the overtone of a nontotally symmetric \(\approx1000\) cm\(^{-1}\) fundamental. Such an assignment is buttressed by the fact that there are several nontotally symmetric modes around 1000 cm\(^{-1}\) in the ground states of EE and EZ (or ZE) heptatriene.\(^{20,28}\) In the case of EE octatetraene a comparison of one-photon and two-photon fluorescence excitation spectra has shown some vibronic bands were in fact overtones in nontotally symmetric modes.\(^{23}\)

3. Properties of the 2 \(^1\)A\(_g\) State

A comparison of the results obtained for heptatriene to those previously reported for hexatriene shows that while substituent induced shifts in electronic excitation energies are relatively small, there are significant differences in the vibronic development of the 1 \(^1\)A\(_g\) \(\rightarrow\) 2 \(^1\)A\(_g\) excitation spectrum. In hexatriene, as in other unsubstituted polyenes, most of the vibronic intensity is concentrated in the fundamental and overtones of the symmetric C=C stretch vibration. This is not the case for the isomers and conformers of heptatriene: the C=C stretch fundamental has an intensity that is only roughly equal to those of the low frequency vibrations in the EZ isomer and that is smaller than the intensities of those vibrations in the ZE and ZZ isomers.

In the 2 \(^1\)A\(_g\) state the equilibrium geometry of hexatriene (unsubstituted heptatriene) distorts to two nonplanar geometries.\(^{19,11}\) This distortion produces a 3 cm\(^{-1}\) splitting of the 1 \(^1\)A\(_g\) \(\rightarrow\) 2 \(^1\)A\(_g\) origin band and multiplet structures for the low frequency vibrations. Further, combinations and overtones of the low frequency vibrations exhibit significant anharmonicity as would be expected for a double minimum potential. There is no evidence for a similar distortion in the 2 \(^1\)A\(_g\) states of any of the isomers and conformers of heptatriene. The 0–0 transitions and all vibronic features appear as a single line with widths limited by the bandwidth of the laser. This and the fact that the low frequency vibronic features exhibit less anharmonicity suggests that the ground and excited state potential surfaces both have single minima.

One might expect that the vibronic development of the 1 \(^1\)A\(_g\) \(\rightarrow\) 2 \(^1\)A\(_g\) excitation spectra of the various isomers of heptatriene would be very similar. This is not the case. The degree to which the low frequency fundamentals are important in the vibronic development depends strongly on the ground state conformation. In the excitation spectrum of the ZZ isomer the 0–0 transition is the most intense band in the spectrum and the band at 154 cm\(^{-1}\) is the most intense fundamental. In the case of the ZE isomer the 0–0 band is less intense than the 117 cm\(^{-1}\) fundamental that dominates the vibronic development of the spectrum. In the EZ isomer the 0–0 band and the C=C stretch fundamental have roughly equal intensities and the low frequency vibrations make almost no contribution to the vibronic development. This
means that the details of changes in equilibrium geometries are quite different for the different isomers.

B. Octatriene and Decatriene

The resonance enhanced two-photon ionization spectrum of the cis(1) fraction of octatriene is shown in Fig. 4. As was the case for the cis fraction of heptatriene, this spectrum is the sum of spectra of several isomers and conformers of octatriene. The inset in Fig. 4 shows a set of weak narrow bands that are only observed for the cis(2) fraction octatriene. By analogy to heptatriene we tentatively assign the lowest energy band in the insert (33 309 cm\(^{-1}\)) as the origin of the \(1^1A_g \rightarrow 2^1A_g\) transition of an isomer of octatriene that contains at least one Z linkage and the band at 33 562 cm\(^{-1}\) (the lowest energy band seen in the main spectrum in Fig. 4) as the 0-0 transition of another octatriene isomer that contains at least one Z linkage.

Even though the octatriene excitation spectra cannot be decomposed into the spectra of individual isomers, Fig. 4 clearly shows that for all the isomers vibronic intensity is concentrated in the low frequency region: Fundamentals of the symmetric C=C and C-C stretch vibrations are not seen. The density of band in the low frequency region of the spectrum is much higher than was the case for either hexatriene or heptatriene. Because of the increased molecular complexity and sample heterogeneity a detailed vibrational analysis at this time is impossible. However, we note that above 34 200 cm\(^{-1}\) (approximately 650 cm\(^{-1}\) above the onset of excitation intensity) the sharp vibronic bands disappear into a very broad feature. We can suggest three possible explanations. First, and we think most likely, this could reflect band broadening due to increased rates of internal energy redistribution since methyl substitution is known to enhance internal vibrational relaxation. Second, it may be due to vibronic structure that is simply too dense to be resolved with our current setup. Third, it could be that multiphoton ionization events other than the 1+1 process are enhanced in this region.

The excitation spectrum for \(1^1A_g \rightarrow 2^1A_g\) resonance enhanced two-photon ionization of decatriene is shown in Fig. 5. Since no attempts were made to separate this sample into individual isomers, this is certainly the superposition of a number of different spectra. It seems reasonable that the most intense band in the spectrum (the one located at 33 868 cm\(^{-1}\)) is the 0-0 transition of a decatriene isomer with at least one Z linkage. Beyond this little can be said except to remark that the symmetric C=C and C-C stretch fundamentals are not seen and that the vibronic development is even more intense and complex in the low frequency region than was the case for octatriene. The excitation spectrum of decatriene has a broad feature analogous to that observed for octatriene although the energy separation of this broad feature from the onset of the excitation spectrum is somewhat smaller (about 350 cm\(^{-1}\) for decatriene versus about 650 cm\(^{-1}\) for octatriene).

The importance of low frequency modes in the vibronic development of the \(1^1A_g \rightarrow 2^1A_g\) excitation spectrum increases with the addition of methyl groups to the hexatriene skeleton. In the case of unsubstituted hexatriene the vibronic development closely resembles that observed for other unsubstituted polyenes: the symmetric C=C stretch vibration dominates the spectrum. In heptatriene progressions in the
low frequency modes are at least as active as the symmetric C=C stretching mode. Finally, in octatriene and decatriene the symmetric C=C stretching mode is not seen and the vibronic development is restricted to the low frequency region. This is consistent with the idea that alkyl substitution significantly increases the rate of vibrational energy redistribution in the 2 1A_g state of hexatriene.

C. All-trans-trienes

Because the 1 1A_g \rightarrow 2 1A_g transition in trans-hexatriene is both configurationally and symmetry 1-photon forbidden, we have not yet been able to observe a well developed 1 + 1 resonance enhanced two-photon ionization excitation spectrum for this isomer. This is also true for EE heptatriene, which implies that the substitution of a single methyl group to the terminus of the hexatriene skeleton does not significantly break the symmetry of the 2 1A_g state.

The situation is different for EEE octatriene. Figure 6 shows that for this molecule the cross section for one-photon excitation of the 2 1A_g state is large enough that we can, for the first time, observe the 2 1A_g state of an all-trans triene in the gas phase. The lowest energy band in the 1 1A_g \rightarrow 2 1A_g excitation spectrum is at 34 291 cm$^{-1}$. As was the case in the excitation spectra of the other isomers of octatriene, the vibronic development is restricted to the low frequency region: the fundamental of the symmetric C=C stretching mode is not observed.

The observation of a one-photon 1 1A_g \rightarrow 2 1A_g excitation spectrum for EEE octatriene and the absence of such spectra for the all-trans isomers of hexatriene and heptatriene is puzzling. In first instance one would try to explain the spectrum of Fig. 6 as originating from a conformer which is s-cis to at least one of the single bonds. MM2 calculations rule out such an explanation since they indicate that the energy difference between s-trans and s-cis conformers is about the same in hexatriene, heptatriene and octatriene. Though our experiments show that the electronic symmetry of the hexatriene skeleton is increasingly affected by an increasing number of methyl substituents they do not as yet allow for a detailed explanation of this symmetry breaking. It is however interesting to note that recent experiments on methyl substituted octatetraenes have shown results which seem to indicate an analogous increase of transition dipole moment upon methyl substitution as that observed here for substituted hexatrienes.30

IV. CONCLUSIONS

We have obtained resonance enhanced two-photon ionization excitation spectra for the lowest energy excited singlet states of heptatriene, octatriene and decatriene. In all cases this state is the 2 1A_g state as is true for hexatriene. In the case of heptatriene we have been able to decompose the observed spectra into the spectra of four different isomers whose structures are assigned on the basis of abundance, gas chromatographic behavior and energy as estimated by MM-2 calculations. This allows a detailed determination of the changes in the electronic character of the 2 1A_g state that follow from methyl substitution at the terminal carbon. Unlike cis-hexatriene where the vibronic development in the 2 1A_g state is dominated by the symmetric C=C stretch vibration, the low frequency modes are very important in the
vibrational structure of the $1\,^1A_g \rightarrow 2\,^1A_g$ transition in hepta-
atriene. Further, in heptatriene the intensity distribution in the
vibrational fine structure strongly depends on the molecular
geometry. In octatriene and decatriene the vibrational
development in the $1\,^1A_g \rightarrow 2\,^1A_g$ excitation spectrum is
completely limited to the low frequency region, which points
to an increase in the importance of vibrational relaxation
effects with increasing alkyl substitution of the hexatriene
skeleton. None of the alkyl substituted hexatrienes exhibited
the multiplet structures seen for cis-hexatriene and attribut-
ed to an out of plane distortion in the $2\,^1A_g$ state. If our
assignment of chromatographic peaks for octatriene is cor-
rect, dimethyl substitution can induce enough one-photon
absorption cross section as to allow us, for the first time, to
observe the $2\,^1A_g$ state for an all-E polyene in the gas phase.

ACKNOWLEDGMENTS

This work has been supported by the National Science
Foundation (CHE-8803916) and the National Institute of
Health (EY-06466). We wish to thank C. W. Spangler for
the synthesis of heptatriene and C. Westerfield for the syn-
thesis of octatriene and decatriene. W. J. B. acknowledges
the Netherlands Organization for Scientific Research (NWO)
for a research fellowship and the Konink-
lijke/Shell for the award of a bursary.

1 T. W. Goodwin, The Biochemistry of the Carotenoids (Chapman and Hall,
London and New York, 1980), Vols. I and II.
(1973); 18, 293 (1973).
10 B. E. Kohler, in Conjugated Polymers: The Novel Science and Technology
of Conducting and Nonlinear Optically Active Materials, edited by J. L.
Broadas and R. Silbye (Kluwer Press, Amsterdam, 1991), and references
therein.
15 D. G. Leopold, K. D. Pendley, J. L. Roebber, K. L. Hembry, and V. Varda,
17 A. Okawa, H. Abe, N. Mikami, and M. Ito, J. Phys. Chem. 88, 5180
18 J. Burkett and N. L. Allinger, Molecular Mechanics (American Chemical
19 J. J. Gajewski, K. E. Gilbert, and J. McKelvey, Advances in Molecular
22 F. Zerbetto, M. Zgiouzis, F. Negri, and G. Orlandi, J. Chem. Phys. 89,
3681 (1988).
23 W. J. Buma, B. E. Kohler, and K. Song, Chem. Phys. 72, 4671
(1980).
25 M. Hassain, B. E. Kohler, and P. E. West, J. Phys. Chem. 86, 4918
(1982).
(1988).
28 F. W. Langkilde, R. Wilbrandt, O. F. Nielsen, D. H. Christensen, and F.
30 W. G. Bouwman, A. C. Jones, D. Phillips, P. Thibodeau, C. Friel, and R.

FIG. 6. $1\,^1A_g \rightarrow 2\,^1A_g$ excitation spectrum of EEE octatriene.