Coagulation and fibrinolysis in tuberculosis, melioidosis and beyond
Kager, L.M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
TABLE OF CONTENTS

1 General introduction

Part I: Coagulation and fibrinolysis in tuberculosis

2 Pulmonary tuberculosis induces a systemic hypercoagulable state.
 Submitted

3 The endothelial protein C receptor and activated protein C play a limited role in host defense during experimental tuberculosis.
 Thrombosis and Haemostasis, 2013

4 The thrombomodulin lectin-like domain does not change host responses to tuberculosis.
 Thrombosis and Haemostasis, 2013

5 Plasminogen activator inhibitor type I may contribute to transient, non-specific changes in immunity in the subacute phase of murine tuberculosis.
 Microbes and Infection, 2012

Part II: Coagulation and fibrinolysis in melioidosis

6 Endogenous protein C has a protective role during Gram-negative pneumosepsis (melioidosis).
 Journal of Thrombosis and Haemostasis, 2013

7 A thrombomodulin mutation that impairs active protein C generation is detrimental in severe pneumonia-derived Gram-negative sepsis (melioidosis).
 Submitted

8 Overexpression of activated protein C is detrimental during severe experimental Gram-negative sepsis (melioidosis).
 Critical Care Medicine, 2013

9 Overexpression of the endothelial protein C receptor is detrimental during pneumonia-derived Gram-negative sepsis (melioidosis).
 PLoS Neglected Tropical Diseases, 2013
10 Deficiency of protease-activated receptor 1 limits bacterial dissemination during severe Gram-negative sepsis (melioidosis).
Microbes and Infection, in press

11 Mice lacking the lectin-like domain of thrombomodulin are protected against melioidosis.
Critical Care Medicine, in press

12 Endogenous tissue-type plasminogen activator impairs host defense during severe experimental Gram-negative sepsis (melioidosis).
Critical Care Medicine, 2012

13 Plasminogen activator inhibitor type I contributes to protective immunity during experimental Gram-negative sepsis (melioidosis).
Journal of Thrombosis and Haemostasis, 2011

14 Endogenous alpha-2-antiplasmin is protective during severe Gram-negative sepsis (melioidosis).
American Journal of Respiratory and Critical Care Medicine, 2013

Part III: ...and beyond

15 Intrabronchial activated protein C enhances lipopolysaccharide-induced pulmonary responses.
European Respiratory Journal, 2012

16 A new murine model to study musculoskeletal tuberculosis.
Submitted

17 Summary, general discussion and conclusion

Addendum

Samenvatting voor niet-ingewijden (Dutch summary)
Common abbreviations
Authors and affiliations
PhD portfolio
List of publications
Dankwoord (Acknowledgements)
About the author