Coagulation and fibrinolysis in tuberculosis, melioidosis and beyond
Kager, L.M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Intrabronchial activated protein C enhances lipopolysaccharide-induced pulmonary responses

Liesbeth M. Kager
J. Daan de Boer
Paul Bresser
Jaring S. van der Zee
Sacha Zeerleder
Joost C. M. Meijers
Cornelis van 't Veer
Tom van der Poll

Eur Respir J 2013;42(1):188-97
Chapter 15

ABSTRACT

Background
Intravenous administration of activated protein C (APC) inhibits coagulation and inflammation in the lungs of humans and animals. Investigations in rodents demonstrated that direct intrapulmonary delivery of APC also exerts anticoagulant and anti-inflammatory effects. The effect of intrabronchial administration of recombinant human (rh)APC on lipopolysaccharide (LPS)-induced hemostatic and inflammatory alterations in the bronchoalveolar space of humans was studied.

Methods
Eight subjects received rhAPC via intrabronchial instillation by bronchoscope, while in a contralateral subsegment subjects received saline; all subjects were challenged bilaterally with LPS in the same lung subsegments. Four additional subjects received rhAPC (75 µg), with saline as control in the contralateral subsegment, while they were bilaterally ‘challenged’ with saline. After 6 hours a bronchoalveolar lavage was performed and coagulation and inflammatory parameters were measured.

Results
rhAPC enhanced LPS-induced coagulation activation in the bronchoalveolar space, when compared with control side. In addition, rhAPC amplified LPS-induced proinflammatory responses, as indicated by higher concentrations of cytokines and chemokines. RhAPC alone did not have procoagulant or proinflammatory effects.

Conclusions
Locally administered rhAPC has unexpected procoagulant and proinflammatory effects in LPS-challenged lung subsegments. These data argue against a role for intrapulmonary delivery of rhAPC as a treatment strategy for lung inflammatory disorders in humans. (ClinicalTrials.gov number: NCT00943267; Nederlands Trial register number: NTR1544).
Effects of intrabronchial APC after LPS challenge

INTRODUCTION

The airways represent a body site in which procoagulant and anticoagulant mechanisms can be initiated and regulated locally. Activated protein C (APC), an important anticoagulant, has been shown to have a reduced activity in the bronchoalveolar space in various lung inflammatory diseases. Diminished APC levels may contribute to the disturbed hemostatic equilibrium in the lungs of patients suffering from these conditions, shifting the physiological anticoagulant environment into a net procoagulant state. Besides its anticoagulant effects, APC has been implicated in a variety of anti-inflammatory and/or cytoprotective effects, characterized by down-regulation of pro-inflammatory pathways, upregulation of anti-inflammatory pathways and inhibition of neutrophil activity.

We recently demonstrated that intrabronchial instillation of lipopolysaccharide (LPS), a constituent of the cell wall of Gram-negative bacteria, can reproduce hemostatic alterations found in inflammatory lung disorders, including a reduction in APC levels in the lungs of healthy volunteers. This human model of intrabronchial LPS delivery also has been used to study the in vivo effects of intravenous recombinant human (rh)APC treatment on pulmonary inflammation and coagulation. Intravenous rhAPC reduced LPS-induced neutrophil accumulation in the bronchoalveolar space and inhibited local activation of coagulation. Concurrently, LPS-induced suppression of fibrinolysis was partially prevented by intravenous rhAPC.

When administered intravenously, the strong anticoagulant effects of rhAPC may contribute to serious systemic side effects such as intracranial hemorrhages, which may be circumvented by local administration of rhAPC. Although preclinical animal studies have shown that administration of APC via the airways exerts local anti-inflammatory and anticoagulant effects, no studies exist that evaluated the effects of direct rhAPC administration into the lungs of humans. The present study therefore sought to determine the feasibility of local, intrabronchial administration of rhAPC to inhibit LPS-induced lung inflammation and coagulation in humans.

METHODS

Study subjects & materials

Twelve nonsmoking males (age, 23.2 ± 1.1 year) were enrolled. Screening, consisting of a questionnaire, physical examination, routine blood and urine investigation, electrocardiogram and spirometry did not reveal any abnormality. The protocol was approved by the institutional Medical Ethics Review Committee. All subjects provided written informed consent before enrollment. LPS was derived from Escherichia coli O:113 (Reference Endotoxin, CC-RE-Lot 3, National Institutes of Health, Bethesda, MD). RhAPC (drotrecogin alpha (activated), Eli Lilly, Indianapolis, IN) was purchased from a commercial supplier.
Study design

The study was set-up as a single blind intervention study with a dose-escalation and a follow-up phase. A bilateral challenge of two contralateral lung subsegments was performed by intrabronchial instillation of LPS (4 ng/kg) by bronchoscopy, diluted in 10 mL sterile saline. In one lung subsegment the instillation of LPS was followed immediately by administration of rhAPC (in 10 mL) in the same lung subsegment, whereas in the contralateral lung subsegment LPS administration was followed by instillation of 10 mL saline alone. The subjects were randomized to left or right lungs for rhAPC instillation. In the dose-escalating phase of the study, 5-fold increases in the rhAPC dose were intended to be given in cohorts of four subjects per dose, starting at 15 µg. The pre-defined primary end-point was to reach a 30% decrease in thrombin-antithrombin complex (TATc) concentrations in the rhAPC-treated lung 6 hours after intrabronchial LPS challenge relative to the contralateral LPS challenged side; this end-point was based on the capacity of intravenous rhAPC to inhibit the rise in LPS-induced TATc concentrations in bronchoalveolar lavage fluid (BALF) by approximately 30% in our previous study. Per study design, the sample size of the rhAPC dose group that would reach this primary end-point would be increased to a total of 12 subjects in the follow-up phase of the study. After completion of the first two cohorts in the dose-escalation phase (15 and 75 µg; N = 4 for each dose), we decided to stop the study because it was considered highly unlikely that the primary study end-point could be reached. Instead, 4 additional subjects were included who received 75 µg rhAPC in one lung subsegment without previous intrabronchial LPS challenge; in these volunteers saline was given as a control in the contralateral lung subsegment.

Methods

A bilateral bronchoalveolar lavage (BAL) was performed 6 hours post-challenge in a standardized fashion. Citrated and heparinised blood was taken by venipuncture before the first (t = 0) and the second (t = 6 hours) bronchoscopy. The assays used are described in the Supplementary Material.

Statistical analysis

Values are expressed as means (± SEM). Paired t tests were used to establish significance between data sets. P-values < 0.05 were considered statistically significant.

RESULTS

Clinical signs and systemic inflammatory response

Instillation of LPS in two contralateral lung subsegments (combined with rhAPC in one lung segment) was well tolerated. A modest rise in body temperature was recorded 6 hours after instillation of LPS (from 36.0 ± 0.2°C at T=0h to 36.6 ± 0.1°C at T = 6h, P < 0.05). Intrabronchial LPS caused a rise in neutrophil counts in blood (from 2.3 ± 0.2 to 6.6 ± 0.8 x 10⁹/L, P < 0.001), while in the saline challenged group no significant rises in neutrophils counts were seen (from 2.0 ± 0.2
Effects of intrabronchial APC after LPS challenge

Bronchoalveolar APC concentrations

Six hours after intrabronchial instillation of rhAPC, APC was measurable in all BAL fluid (BALF) samples obtained from the APC-treated side: APC levels were 0.33 ± 0.14 and 1.60 ± 0.57 ng/mL in LPS-challenged subjects treated with 15 and 75 µg rhAPC, respectively ($P = 0.07$ and < 0.05 for lung subsegments treated with 15 and 75 µg rhAPC versus control lung subsegments; Figure 1A-B). In the saline-challenged group treated with 75 µg rhAPC, BALF APC levels were 3.2 ± 1.0 ng/mL ($P < 0.05$; Figure 1C). APC levels in the 75 µg rhAPC-challenged subsegments were not different between LPS-challenged and saline-challenged subjects. APC could not be detected in any of the control lung subsegments (i.e. not administered with rhAPC).

Intrabronchial rhAPC enhances bronchoalveolar coagulation activation after LPS challenge

The intrabronchial concentrations of TATc have been used to determine the extent of bronchoalveolar coagulation activation in patients with acute lung injury and/or pneumonia. An earlier study showed that intravenously administered rhAPC could reduce LPS-induced elevations in TATc-concentrations in BALF by approximately 30%. The main objective of the current study was to determine whether intrabronchially instilled rhAPC was able to inhibit LPS-induced TATc elevation in BALF and if so whether this anticoagulant effect was accompanied by anti-inflammatory effects. Considering the results of our previous investigation using intravenous rhAPC, we here predefined the primary endpoint of the current study as establishing the intrabronchial rhAPC dose that induced a 30% reduction in LPS-induced TATc concentrations in BALF. We chose to

Figure 1. Activated protein C (APC) concentrations in bronchoalveolar lavage samples. Healthy subjects (N = 4 per group) were challenged bilaterally in a lung subsegment via a bronchoscope with lipopolysaccharide (4 ng/kg body weight, A-B) or saline (C). Directly thereafter subjects received recombinant human (rh) APC 15 µg (A) or 75 µg (B-C) dissolved in 10 mL of saline in one subsegment and 10 mL of saline in the other lung subsegment. Bilateral bronchoalveolar lavage was done 6 hours after challenge. APC levels were undetectable in any of the control lung subsegments not administered with rhAPC. *$P < 0.05$.

Effects of intrabronchial APC after LPS challenge
administer LPS in two contralateral lung subsegments, thereby eliminating inter-individual variation in LPS responsiveness and allowing every subject to serve as his own control with regard to rhAPC effects. Much to our surprise, intrabronchially instilled rhAPC, given at either 15 µg or 75 µg, induced an increase rather than a reduction in BALF TATc concentrations after LPS-challenge when compared with the contralateral side not treated with rhAPC (rhAPC 15 µg: 13.5 ± 5.2 versus 9.8 ± 4.8 µg/L at the contralateral side, \(P < 0.01 \), Figure 2A; rhAPC 75 µg: 19.4 ± 4.2 versus 2.9 ± 0.8 µg/L at the contralateral side, \(P < 0.05 \), Figure 2B). As these results made it highly unlikely that we could reach our predefined endpoint, we decided not to proceed with another 5-fold increase in rhAPC dose, but instead, added an extra study group without LPS challenge, seeking to determine whether intrabronchial rhAPC per se elicited a procoagulant response. Thus, subjects received a bilateral challenge with saline, combined with rhAPC (75 µg) on one side. These studies revealed no procoagulant effect of rhAPC: BALF TATc levels were similar in lung subsegments instilled with rhAPC (1.6 ± 1.4 µg/L) when compared with the contralateral side (2.4 ± 1.2 µg/L, Figure 2C). Protein C activity, total and free protein S, soluble thrombomodulin, protein C inhibitor and von Willebrand factor antigen concentrations were all below detection limits in BALF.

Effect of intrabronchial rhAPC on fibrinolysis after LPS challenge

Evidence derived from *in vitro* investigations indicates that APC may stimulate fibrinolysis by inhibiting PAI-1. We measured levels of PAI-1, tissue-type plasminogen activator (tPA) and plasmin-α2-antiplasmin complexes. While intrabronchial rhAPC given at a dose of 15 µg did not influence LPS-induced PAI-1 release in BALF (\(P = 0.57 \), Figure 3A), rhAPC administered at 75 µg increased LPS-induced PAI-1 BALF levels in 3 of 4 subjects (192.5 ± 42.1 versus 55.0 ± 17.1 pg/mL at the contralateral side, \(P = 0.07 \), Figure 3B). Notably, intrabronchial rhAPC also tended to increase PAI-1 levels in BALF from subjects who did not receive LPS (70.0 ± 45.3 versus 7.5 ± 7.5 pg/mL at the contralateral side, \(P = 0.26 \), Figure 3C). Neither LPS nor rhAPC influenced

![Figure 2. Intrabronchial instillation of recombinant human activated protein C (rhAPC) augments lipopolysaccharide-induced coagulation in the bronchoalveolar space.](image-url) Healthy subjects (N = 4 per group) were challenged bilaterally in a lung subsegment via a bronchoscope with lipopolysaccharide (4 ng/kg body weight, A-B) or saline (C). Directly thereafter subjects received recombinant human (rh) APC 15 µg (A) or 75 µg (B-C) dissolved in 10 mL of saline in one subsegment and 10 mL of saline in the other lung subsegment. Thrombin-antithrombin complex (TATc) levels were measured in bronchoalveolar lavage samples obtained 6 hours after challenge. *\(P < 0.05 \), **\(P < 0.01 \).
Effects of intrabronchial APC after LPS challenge

BALF concentrations of plasmin-α2-antiplasmin complexes, whereas tPA levels were below detection limit in all BALF samples (data not shown).

Intrabronchial rhAPC is associated with enhanced concentrations of tissue-factor pathway inhibitor (TFPI) after LPS challenge

Recent data suggest that APC can have a procoagulant effect by virtue of its proteolytic activity. APC was reported to shed the Kunitz-1 domain from TFPI, resulting in increased tissue factor activity and consequently, coagulation activation. We measured levels of TFPI in BALF. While intrabronchial rhAPC given at a dose of 15 µg did not influence LPS-induced TFPI release in BALF (Figure 4A), rhAPC administered at 75 µg increased LPS-induced TFPI BALF levels in all 4 subjects (48.1 ± 9.9 versus 87.9 ± 14.8 pg/mL at the contralateral side, \(P < 0.05 \), Figure 4B). Intrabronchial rhAPC did not change levels of TFPI in BALF from subjects who did not receive LPS (Figure 4C).

Intrabronchial rhAPC increases leukocyte recruitment after LPS administration

Intravenous rhAPC has been reported to reduce neutrophil recruitment into the bronchoalveolar space upon intrabronchial instillation of LPS in healthy humans. In contrast, intrabronchial rhAPC treatment increased the total number of white blood cells in BALF 6 hours after bilateral LPS-challenge, although the differences with the contralateral control side did not reach statistical significance (APC 15 µg: 33.6 ± 14.6x10⁴ versus 18.6 ± 4.1x10⁴ cells/mL at the contralateral side, \(P = 0.25 \), Figure 5A; APC 75 µg: 52.0 ± 22.4x10⁴ versus 11.1 ± 1.5x10⁴ cells/mL at the contralateral side, \(P = 0.13 \), Figure 5B). The rhAPC induced increase in total cell number in lung subsegments challenged with LPS was due to a rise in the number of neutrophils (APC 15 µg: 16.8 ± 9.0 x 10⁴ versus 7.5±2.7 x 10⁴ neutrophils/mL, \(P = 0.25 \), Figure 5D; APC 75 µg: 34.1 ± 15.8x10⁴ versus 1.5 ± 0.6x10⁴ neutrophils/mL, \(P = 0.13 \), Figure 5E). Intrabronchial rhAPC did not impact cell counts in lung subsegments not challenged with LPS (Figure 5C,F).
Figure 4. Impact of intrabronchial recombinant human activated protein C (rhAPC) on lipopolysaccharide-induced release of tissue-factor pathway inhibitor in the bronchoalveolar space. Healthy subjects (N = 4 per group) were challenged bilaterally in a lung subsegment via a bronchoscope with lipopolysaccharide (4 ng/kg body weight, A-B) or saline (C). Directly thereafter subjects received recombinant human (rh)APC 15 µg (A) or 75 µg (B-C) dissolved in 10 mL of saline in one subsegment and 10 mL of saline in the other lung subsegment. Tissue-factor pathway inhibitor (TFPI) levels were measured in bronchoalveolar lavage samples obtained 6 hours after challenge. *P < 0.05.

Figure 5. Impact of intrabronchial recombinant human activated protein C (rhAPC) on the lipopolysaccharide-induced increase in total leukocyte and neutrophil counts in the bronchoalveolar space. Healthy subjects (N = 4 per group) were challenged bilaterally in a lung subsegment via a bronchoscope with lipopolysaccharide (4 ng/kg body weight, A-B) or saline (C). Directly thereafter subjects received recombinant human (rh)APC 15 µg (A) or 75 µg (B-C) dissolved in 10 mL of saline in one subsegment and 10 mL of saline in the other lung subsegment. White blood cell counts (WBCs) and neutrophil counts were determined in bronchoalveolar lavage samples obtained 6 hours after challenge.

Intrabronchial rhAPC enhances the local release of several cytokines and chemokines after LPS instillation

To investigate the effect of local rhAPC administration on LPS-induced inflammatory mediator release we measured BALF concentrations of 48 cytokines, chemokines and growth factors. The re-
Effects of intrabronchial APC after LPS challenge

Results of these analyses are shown in Supplementary Table 1 in the on-line data supplement. In the lower rhAPC dose cohort (15 µg), rhAPC significantly enhanced LPS-induced release of IL-6, CCL8 and CXCL6 while not influencing the levels of other mediators (Supplementary Table 1). In the rhAPC 75 µg cohort, rhAPC significantly enhanced LPS-induced TNF-α, CCL4, CCL8 and TNF-related apoptosis-inducing ligand (TRAIL) concentrations (Supplementary Table 1, Figure 5). In addition, IL-1β, CCL14a, CCL20, CXCL7, CXCL9 and CXCL11 showed a strong trend toward higher levels in this higher rhAPC dose cohort (P = 0.052, 0.081, 0.078, 0.075, 0.092 and 0.074 respectively; Supplementary Table 1, Figure 6). RhAPC given at 75 µg without LPS did not induce the release of inflammatory mediators in the lung with the exception of a modest rise in CCL15 concentrations (Supplementary Table 1). Taken together these results show that intrabronchial instillation of rhAPC in LPS-challenged lung subsegments enhanced the release of multiple proinflammatory mediators.

Figure 6. Intrabronchial instillation of recombinant human activated protein C (rhAPC) augments lipopolysaccharide-induced release of inflammatory mediators in the bronchoalveolar space. Healthy subjects (N = 4 per group) were challenged bilaterally in a lung subsegment via a bronchoscope with lipopolysaccharide (4 ng/kg body weight). Directly thereafter subjects received recombinant human (rh) APC 75 µg dissolved in 10 mL of saline in one subsegment and 10 mL of saline in the other lung subsegment. Mediator levels were measured in bronchoalveolar lavage samples obtained 6 hours after challenge. *P < 0.05, **P < 0.01.
DISCUSSION

Several preclinical studies have shown that APC may protect the lung from injury caused by inflammation28. Moreover, intravenous administration of rhAPC was reported to exert anticoagulant and anti-inflammatory effects in the bronchoalveolar space of healthy humans challenged with LPS in a lung subsegment by bronchoscope15, 16. Animal studies demonstrated that intrabronchially instilled APC exerts local anticoagulant and anti-inflammatory effects21-24, 29-32. Considering the bleeding risk associated with intravenous APC, we here for the first time investigated the potential of intrabronchial rhAPC administration to inhibit coagulation and inflammation in the human lung, arguing that this route of delivery would circumvent serious side effects17-20. For this we used the established human model of lung inflammation induced by intrabronchial instillation of LPS via a bronchoscope14-16, 25. The main finding of our study was remarkable: intrabronchially administered rhAPC induced a procoagulant and proinflammatory response in lung subsegments challenged with LPS rather than the expected inhibitory effects on coagulation and inflammation. Our results from subjects not challenged with LPS via the airways further suggest that rhAPC augments LPS effects in the human lung, while not eliciting detectable inflammation or coagulation per se.

Our study had a small sample-size. As a consequence, although rhAPC clearly enhanced the LPS-induced release of biomarkers of coagulation and inflammation, the differences with the placebo control side often did not reach statistical significance. Of note, however, the current study was designed to demonstrate an inhibitory effect of rhAPC on bronchoalveolar coagulation and inflammation. After completion of the rhAPC 75 µg cohort, we considered it unlikely that the predefined endpoint (i.e. a 30% reduction in BALF TAT\textsubscript{c} levels) could be reached. Therefore, we decided to prematurely terminate the study. In addition, we considered it not ethical to enlarge the sample size of our cohorts in order to strengthen the statistical power of our study, arguing that procoagulant and proinflammatory effects of locally administered rhAPC would not be of clinical value for patient groups and not wishing to expose additional healthy subjects to invasive procedures.

In the earlier study, in which intravenous rhAPC was found to inhibit coagulation and neutrophil influx in the same human LPS-induced lung inflammation model15, 16, APC concentrations in BALF were approximately 15 ng/mL as measured 2 hours after discontinuation of the rhAPC infusion (24 µg/kg/hour)15. Although BALF APC levels detected after intravenous rhAPC infusion cannot be readily translated to a feasible rhAPC dose to be administered in the bronchoalveolar space, we conservatively started the dose-escalation study with 15 µg of intrabronchial rhAPC, taking into account the dilution caused by the BAL procedure and an estimated recovery of 50-60%. BALF APC levels measured in the current study, 6 hours after instillation, were considerably lower than in the previous study using intravenous APC administration15 (mean levels of 0.33 ng/mL and 1.60 ng/mL in the rhAPC 15 µg and 75 µg cohorts respectively). Arguably, BALF APC concentrations were higher directly after rhAPC administration. Clearance of APC from the bronchoalveolar space is difficult to investigate in humans in light of the invasive procedure needed; nonetheless,
Effects of intrabronchial APC after LPS challenge

evidence suggests that APC is slowly cleared from the alveolar compartment. Indeed, while the majority of patients with sepsis who are treated with intravenous rhAPC, do not have detectable APC in plasma 2 hours after discontinuation of the infusion33, APC could still be recovered from BALF of healthy humans in whom a similar rhAPC infusion was stopped 2 hours earlier15. Hence, although BALF APC concentrations measured in the present (intrabronchial rhAPC) and previous (intravenous rhAPC)15 investigation cannot be compared easily, these combined data suggest that the APC levels achieved in BALF here were likely within the same or lower range of those attained after intravenous rhAPC infusion.

How can the apparently differential effects of intravenous rhAPC15 and intrabronchial rhAPC in LPS-induced human lung inflammation be explained? APC can exert anti-inflammatory, anti-apoptotic and barrier protective signals in endothelial cells via protease activated receptor (PAR)-1 by a mechanism that requires binding of APC to the endothelial cell protein C receptor (EPCR)34. Cytoprotective anti-inflammatory APC-PAR-1 signaling has also been demonstrated in other cell types, in particular dendritic cells (EPCR dependent35) and macrophages (CD11/CD18 dependent35,36). Furthermore, APC directly binds to activated α3β1, α5β1, and αvβ3 integrins and this interaction was essential for APC-induced inhibition of neutrophil extravasation into the bronchoalveolar space of mice37. These “cytoprotective” and/or anti-inflammatory APC effects \textit{in vivo} likely depend on which cell types are affected and thereby on the route of rhAPC administration. Furthermore, the distribution of receptors involved in these APC effects may vary in different body compartments. In addition, recent data suggest that APC can have a procoagulant effect by virtue of its proteolytic activity: APC was reported to shed the Kunitz-1 domain from TFPI, resulting in increased tissue factor activity and consequently, coagulation activation27. In this study we measured TFPI levels in BALF and showed that administration of rhAPC in the 75 µg cohort was associated with significantly enhanced TFPI levels. We hypothesize that increased levels of TFPI may have been a result of the pro-inflammatory state due to hAPC administration. Of note, the TFPI assay used detects both full-length and cleaved TFPI. Hence, it is possible that the elevated TFPI levels were the result of cleavage of the intact protein by rhAPC, thereby contributing to a procoagulant effect. We do not have a clear explanation for the discrepancy between our current findings and earlier reports on the effect of intrapulmonary delivery of APC in mice21-24, although differences in the exact way of administration, the dose and species studied may be involved.

Our study does not provide a clear mechanism underlying the unexpected proinflammatory and procoagulant effect of rhAPC in the human lung. We tried to reproduce the effects of APC using a mixed cell culture system using respiratory epithelial cells (A549) and either primary human alveolar macrophages or macrophage-like THP-1 cells but were unsuccessful (data not shown). In conclusion, this is the first study on the effects of intrabronchially administered rhAPC in a controlled lung inflammation model in humans. Our data show that locally administered rhAPC has procoagulant and proinflammatory effects in lung segments exposed to LPS. These data argue against a role for intrapulmonary delivery of rhAPC as a treatment strategy for lung inflammatory disorders in humans.
ACKNOWLEDGEMENTS

The authors thank A. F. de Vos, D. Kruijswijk and D. C. Blok for their assistance during the study days, G. van Mierlo, W. F. Kopatz, M. A. Weijne, L. M. Leverink and J. A. Marquart for assistance in performing the coagulation measurements and E. M. Kemper, in-hospital pharmacist, for assistance in preparation of the study medication.

SUPPLEMENTARY MATERIAL

METHODS

Assays

Cell differentials were determined in BAL fluid (BALF) on cytospins stained with a modified Giemsa stain (Diff-Quick; Siemens Healthcare Diagnostics, Marburg, Germany). For immune assays, BALF was centrifuged at 300 g for 10 minutes. Blood was centrifuged at 1500 g for 10 minutes. Supernatants were stored at -80°C until analysis. RhAPC concentrations in BALF samples containing 90 mM (final concentration) benzamidine were measured using a chromogenic assay as described. TATc (TAT Enzygnost, Siemens Healthcare Diagnostics, Marburg, Germany), soluble thrombomodulin (Diaclone, Gen-Probe, San Diego, CA), tissue-type plasminogen activator (tPA antigen; Hyphen BioMed, Andrézy, France) and plasmin-antiplasmin complexes (DRG Diagnostics, Marburg, Germany) were measured using commercial available enzyme-linked immunosorbent (ELISA) kits according to the manufacturers’ instructions. Protein C activity was measured by a kinetic assay (Coamatic Protein C, Chromogenix, Mölndal, Sweden). Total protein S and von Willebrand factor antigen levels were determined with ELISAs developed in our laboratory using antibodies from Dako (Glostrup, Denmark). Free protein S was measured by precipitating the C4b-binding protein-bound fraction with polyethylene glycol 8000 and measuring the concentration of free protein S in the supernatant. Antigen levels of protein C inhibitor and plasmin activator inhibitor type-1 (PAI-1) antigen were measured by ELISA as described earlier. Rh-TFPI concentration was measured by an enzyme-linked immunosorbent assay (ELISA), using a mouse monoclonal antibody directed against the human TFPI Kunitz-2 domain (amino acids 88–160; Sanquin, Amsterdam, the Netherlands) as capture antibody, polyclonal rabbit anti-rh-TFPI (kind gift of Dr Walter Kisiel, University of New Mexico, NM) as detection antibody and rh-TFPI as standard. This assay detects both full-length and cleaved TFPI. Levels of the following cytokines, chemokines and other inflammatory markers were measured by a multiplex assay (Luminex, Austin, TX): chemokine (C-C motif) ligand (CCL) 1, 2, 3, 4, 8, 13, 14a, 15, 17, 19, 20, 21, 24, 26, 27; chemokine (C-X-C motif) ligand (CXCL) 1, 5, 6, 7, 9, 10, 11, 12a+b, 13; chemokine (C-motif) ligand (XCL) 1; interleukin (IL)-11, -12p40, -16, -17, -20, -21, -23, -28A, -29, -33; leukemia inhibitory factor (LIF); granulocyte colony-stimulating factor (G-CSF); macrophage colony-stimulating factor (M-CSF); stem cell factor (SCF); thrombopoietin (TPO); thymic stromal lymphopoietin (TSLP) and TNF-related apoptosis-inducing ligand (TRAIL). Tumor necrosis factor (TNF)-α, CXCL8, IL-1β, -6, -10 and -12p70 were measured using a cytometric bead array (CBA; BD Biosciences, San Jose, CA) in accordance with the manufacturers’ instructions. For the in vitro experiments human CXCL8 and TNF-α were measured with a commercially available ELISA kit (R&D systems, Minneapolis, MN) according to the manufacturers’ instructions.
REFERENCES

RESULTS

Supplemental Table 1.
Cytokines and chemokines in bronchoalveolar lavage fluid*

<table>
<thead>
<tr>
<th>Treatment</th>
<th>LPS bilateral P</th>
<th>saline rhAPC 15 µg</th>
<th>LPS bilateral P</th>
<th>saline rhAPC 75 µg</th>
<th>saline rhAPC 75 µg</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-α**</td>
<td>0.260</td>
<td>0.05†</td>
<td>0.260</td>
<td>0.05†</td>
<td>0.260</td>
</tr>
<tr>
<td>IL-1α</td>
<td>0.385</td>
<td>0.05†</td>
<td>0.385</td>
<td>0.05†</td>
<td>0.385</td>
</tr>
<tr>
<td>IL-6</td>
<td>0.068</td>
<td>0.05†</td>
<td>0.068</td>
<td>0.05†</td>
<td>0.068</td>
</tr>
<tr>
<td>IL-10</td>
<td>0.186</td>
<td>0.05†</td>
<td>0.186</td>
<td>0.05†</td>
<td>0.186</td>
</tr>
<tr>
<td>IL-17</td>
<td>0.270</td>
<td>0.05†</td>
<td>0.270</td>
<td>0.05†</td>
<td>0.270</td>
</tr>
<tr>
<td>IL-21</td>
<td>0.718</td>
<td>0.05†</td>
<td>0.718</td>
<td>0.05†</td>
<td>0.718</td>
</tr>
<tr>
<td>IL-29</td>
<td>0.771</td>
<td>0.05†</td>
<td>0.771</td>
<td>0.05†</td>
<td>0.771</td>
</tr>
<tr>
<td>CCL2</td>
<td>0.250</td>
<td>0.05†</td>
<td>0.250</td>
<td>0.05†</td>
<td>0.250</td>
</tr>
<tr>
<td>CCL3</td>
<td>0.259</td>
<td>0.05†</td>
<td>0.259</td>
<td>0.05†</td>
<td>0.259</td>
</tr>
<tr>
<td>CCL4</td>
<td>0.422</td>
<td>0.05†</td>
<td>0.422</td>
<td>0.05†</td>
<td>0.422</td>
</tr>
<tr>
<td>CCL8</td>
<td>0.05†</td>
<td>0.05†</td>
<td>0.05†</td>
<td>0.05†</td>
<td>0.05†</td>
</tr>
<tr>
<td>CCL14a</td>
<td>0.541</td>
<td>0.05†</td>
<td>0.541</td>
<td>0.05†</td>
<td>0.541</td>
</tr>
<tr>
<td>CCL15</td>
<td>0.978</td>
<td>0.05†</td>
<td>0.978</td>
<td>0.05†</td>
<td>0.978</td>
</tr>
<tr>
<td>CCL17</td>
<td>0.454</td>
<td>0.05†</td>
<td>0.454</td>
<td>0.05†</td>
<td>0.454</td>
</tr>
<tr>
<td>CCL19</td>
<td>0.838</td>
<td>0.05†</td>
<td>0.838</td>
<td>0.05†</td>
<td>0.838</td>
</tr>
<tr>
<td>CCL20</td>
<td>0.409</td>
<td>0.05†</td>
<td>0.409</td>
<td>0.05†</td>
<td>0.409</td>
</tr>
<tr>
<td>CCL21</td>
<td>0.064</td>
<td>0.05†</td>
<td>0.064</td>
<td>0.05†</td>
<td>0.064</td>
</tr>
<tr>
<td>CCL22</td>
<td>0.215</td>
<td>0.05†</td>
<td>0.215</td>
<td>0.05†</td>
<td>0.215</td>
</tr>
<tr>
<td>CXCL1</td>
<td>0.622</td>
<td>0.05†</td>
<td>0.622</td>
<td>0.05†</td>
<td>0.622</td>
</tr>
<tr>
<td>CXCL3</td>
<td>0.762</td>
<td>0.05†</td>
<td>0.762</td>
<td>0.05†</td>
<td>0.762</td>
</tr>
<tr>
<td>CXCL6</td>
<td>0.426</td>
<td>0.05†</td>
<td>0.426</td>
<td>0.05†</td>
<td>0.426</td>
</tr>
<tr>
<td>CXCL7</td>
<td>0.345</td>
<td>0.05†</td>
<td>0.345</td>
<td>0.05†</td>
<td>0.345</td>
</tr>
<tr>
<td>CXCL8</td>
<td>0.287</td>
<td>0.05†</td>
<td>0.287</td>
<td>0.05†</td>
<td>0.287</td>
</tr>
<tr>
<td>CXCL9</td>
<td>0.360</td>
<td>0.05†</td>
<td>0.360</td>
<td>0.05†</td>
<td>0.360</td>
</tr>
<tr>
<td>CXCL10</td>
<td>0.262</td>
<td>0.05†</td>
<td>0.262</td>
<td>0.05†</td>
<td>0.262</td>
</tr>
<tr>
<td>CXCL11</td>
<td>0.412</td>
<td>0.05†</td>
<td>0.412</td>
<td>0.05†</td>
<td>0.412</td>
</tr>
<tr>
<td>CXCL12b</td>
<td>0.359</td>
<td>0.05†</td>
<td>0.359</td>
<td>0.05†</td>
<td>0.359</td>
</tr>
<tr>
<td>M-CSF</td>
<td>0.264</td>
<td>0.05†</td>
<td>0.264</td>
<td>0.05†</td>
<td>0.264</td>
</tr>
<tr>
<td>G-CSF</td>
<td>0.157</td>
<td>0.05†</td>
<td>0.157</td>
<td>0.05†</td>
<td>0.157</td>
</tr>
<tr>
<td>TRAIL</td>
<td>0.027</td>
<td>0.05†</td>
<td>0.027</td>
<td>0.05†</td>
<td>0.027</td>
</tr>
</tbody>
</table>

*IL-10, IL-11, IL-20, IL-23, IL-26A, IL-33, CCL1, CCL13, CCL26, CCL27, CXCL13, XCL1, LIF, TPO, TSLP and SCF were below detection limits in all BALF samples. **All values are in pg/mL.