Coagulation and fibrinolysis in tuberculosis, melioidosis and beyond
Kager, L.M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
A new murine model to study musculoskeletal tuberculosis

Liesbeth M. Kager
Jurgen H. Runge
Aart J. Nederveen
Joris J. T. H. Roelofs
Jaap Stoker
Mario Maas
Tom van der Poll

Submitted
ABSTRACT

Musculoskeletal tuberculosis (TB) is a severe extrapulmonary manifestation of chronic *Mycobacterium (M.) tuberculosis* infection. Considering increasing incidence, multi-drug resistance and associated treatment difficulties, more preclinical research is needed. In this study we developed a murine model for musculoskeletal TB. Mice, intranasally infected with *M. tuberculosis*, were sacrificed after ten months. Mycobacterial growth was detected in lung and femur homogenates. Ziehl-Neelsen staining of paraffin-embedded femurs showed acid-fast rods in the myelum and Magnetic Resonance Imaging demonstrated osteomyelitis and macronodular tuberculomas. This new murine model of musculoskeletal TB might be of value to further investigate immunologic and radiologic responses.
INTRODUCTION

Tuberculosis (TB) is one of the most devastating infectious diseases worldwide, with one-third of the world population being infected with the causative agent *Mycobacterium* (*M.*) *tuberculosis*. In 2012, 8.7 million new TB cases and 1.4 million deaths were registered. TB is characterized by well-known caseating lung lesions but might have extrapulmonary disease manifestations upon either lymphogenous or hematogenous dissemination of bacteria, which are present with a rising incidence in 20%-40% of all TB patients. Musculoskeletal TB, representing approximately 11% of all extrapulmonary TB cases, most frequently affects the spine, hip and knee resulting in osteomyelitis, paraspinal abscesses, TB arthritis and granulomas in the bone. Spinal TB in particular, also referred to as Pott’s disease, represents approximately half of all cases of musculoskeletal TB. Spinal TB is indolent, slow-growing and, if left untreated, may cause complications such as abscesses, spinal cord compression, spine deformations and neurological deficits, including radicular pain and even severe paraplegia. Thus far, Magnetic Resonance Imaging (MRI) is the best modality to diagnose musculoskeletal involvement of TB, with a 100% sensitivity and 88% specificity. Due to the increasing incidence of HIV-associated and multi-drug resistant TB, the incidence of musculoskeletal TB is also increasing. Evidently, more research is needed to study the clinical and immunological features of this disease and mouse models of TB have proven to be of great value. No murine models of musculoskeletal TB have been described so far. Therefore, in this study we aimed to develop a mouse model suitable for investigation of immunologic and radiologic responses during musculoskeletal TB.

MATERIALS AND METHODS

Experimental infection and lung histology

Fourteen 8-week old female wild-type (WT) C57BL/6 mice (Charles River, Maastricht, The Netherlands) were inoculated intranasally with 150 colony forming units (CFU) of *M. tuberculosis* (Erdman strain) in 50 µl NaCl0.9%, as previously described. Five control mice were inoculated with 50 µl NaCl0.9% only. Mice were maintained at the animal care facility of the Academic Medical Center (University of Amsterdam), according to national guidelines with free access to food and water. The Committee on Use and Care of Animals of the University of Amsterdam approved all experiments. Ten months after instillation of *M. tuberculosis* or saline, 10 mice were sacrificed under intraperitoneal anesthesia containing ketamin (Eurovet Animal Health, Bladel, The Netherlands) and medetomidin (Pfizer Animal Health Care, Capelle aan den IJssel, The Netherlands). From these mice organs were processed as previously described. Briefly, left lungs, liver, spleen and left femurs were removed aseptically and homogenized at 4°C in 4 volumes of sterile saline using a tissue homogenizer (Biospec Products, Bartlesville, OK). CFU were determined from serial dilutions of organ homogenates that were plated in tenfold dilutions on Middlebrook 7H11 plates and incubated at 37°C 5% CO₂ for 21 days before colonies were counted. Additionally, from these 10
infected and from 3 control mice right femurs and lumbar spines were removed and fixed in 4% formalin for 24 hours before embedding them in paraffin. Four μm-sections were stained for H&E and Ziehl-Neelsen (ZN) to detect acid-fast rods. Slides were scored by a well-qualified pathologist.

Assays
For cytokine measurements, organ homogenates were diluted 1:2 in lysis buffer containing 300 mM NaCl, 30 mM Tris, 2 mM MgCl₂, 2 mM CaCl₂, 1% Triton X-100 and protease inhibitor cocktail (Roche, Indianapolis, IN). Homogenates were centrifuged at 1500g at 4°C for 15 min, supernatants were sterilized using a 0.22 μm pore-size filter (Corning Inc., Corning, NY) and stored at -20°C until analysis. Levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-6, IL-10, keratinocyte-derived chemokine (KC) and macrophage inflammatory protein (MIP)-2 were measured by ELISA according to the manufacturer’s instructions (all from R&D Systems, Minneapolis, MO).

MRI scanning
Ten months after instillation of *M. tuberculosis* (n = 4) or saline (n = 2) separate sets of mice were euthanized by CO₂ inhalation, placed in an airtight plastic bag to prevent contamination and immediately thereafter scanned on a clinical, whole body 3 Tesla MRI-scanner (Intera, Philips Medical Systems, Best, the Netherlands) using a circular receive-only surface radiofrequency-coil (ø 5 cm) for signal reception. MRI consisted of localizers followed by a T₂* -weighted sagittal fast gradient echo (TR/TE/ΔTE 1500/2.8/4 ms, FA 36°, slice thickness 1.6mm, voxel size 0.39x0.39mm) and a 3D T₂-weighted sagittal turbo spin echo (TR/TE 2000/332ms, FA 90°, isotropic voxels of 0.45x0.45x0.45mm) with coronal reconstructions. Mice were placed prone in the scanner, perpendicular to the bore axis. Total acquisition time including positioning per mouse was 20 minutes. For each mouse a standardized set of items was evaluated including: presence of granuloma, infiltration and osteomyelitis for both femur and spinal column. With respect to the spinal column, collapse of vertebral bodies, paraspinal abscesses, herniation of intervertebral discs, erosions and angular kyphosis were assessed. Presence of abscesses in the supraclavicular, gluteal, groin and psoas regions was noted. Additionally, the lungs were compared. The primary read was performed independently by 2 research trainees. After a consensus reading, the combined results were (re-)evaluated by an experienced musculoskeletal radiologist and a MR physicist. Based on this meeting, a new set of coronal slices were reconstructed to improve evaluation of the spleen. In a second and final consensus meeting, the abovementioned items as well as lung and spleen were (re-)evaluated. Besides this qualitative assessment, T₂* times of femoral and spinal bone marrow and the spleen were assessed using a mono-exponential signal decay function. Regions-of-Interest (ROIs) were drawn on the first echo of the T₂*-weighted dataset and copied to later echoes. Mean signal intensities inside the ROIs at each echo time (TE) were fit against the TE to obtain the T₂* times in ms.
Statistical analysis
Data are expressed as dots plots with medians. Comparisons between groups were conducted using the Mann-Whitney U test. For differences between T2*-times an unpaired t-test was used. All analyses were done using GraphPad Prism® version 5.01 (San Diego, CA). P-values <0.05 were considered statistically significant.

RESULTS

Mycobacterial growth, dissemination and cytokine responses
Ten months after infection M. $tuberculosis$ could be cultured from lungs, spleen, liver and femur, indicating dissemination from the primary site of infection (Figure 1A). There was no significant correlation between bacterial loads in the lungs and femur, although a trend was seen ($r = 0.512$, $P = 0.133$; Figure 1B). Both in lung and femur homogenates, significantly increased IFN-γ and KC levels were measured after infection with M. $tuberculosis$ when compared with uninfected controls.

Figure 1. Bacterial loads, interferon-γ levels and histopathology. Mycobacterial loads in femur, lung, spleen and liver 10 months after infection with M. $tuberculosis$ via the airways (A). No significant correlation could be detected between bacterial loads in femur and lungs, although a trend was seen (B). Interferon-γ was significantly increased in both lung (C) and femur (D) homogenates. Data are expressed as dot plots with medians (Mann-Whitney U test) of $n = 3$ (control) and 10 (TB-infected) mice per group. $^*P < 0.05$. H&E stained 4 µm tissue sections of control (E, G) and TB-infected (F, H) femurs and lumbar vertebrae respectively (original magnification x100). Ziehl-Neelsen (ZN) stained tissue sections of control (I) and TB-infected (J) femurs (original magnification x100). Enlargement of ZN-stained TB-infected femurs (K, L) shows acid fast rods in the bone marrow (arrows; original magnification x 800).
Figure 2. MRI of *M. tuberculosis*-infected mice. Spinal columns and femora (encircled) of control (A & C) and TB mice (B & D) show increased signal intensity (SI) in the bone marrow of the TB mice on T2*-weighted images, fitting TB osteomyelitis.
Murine musculoskeletal tuberculosis (Figure 1 C-D, Online Table 1; both \(P < 0.05 \)). TB-infection was also associated with increased levels of IL-4, IL-6 and MIP-2 in lung homogenates when compared to uninfected controls. These significant differences could not be detected in femur homogenates (Supplementary Table 1).

Lung and bone histology

Cross-sections of right femurs and lumbar spines of TB-infected mice did not show an overt tissue reaction to infection with *M. tuberculosis*, as no granuloma, no osteomyelitis and no paraspinal abscesses could be detected (Figure 1E-J). Nonetheless, ZN-staining of these tissues showed acid-fast rods in the myelum of femurs of TB-infected mice, fitting with mycobacterial infiltration of the bone (Figure 1K-L).

MR features of osteomyelitis

MR features of TB-associated osteomyelitis, reflected as an increased signal intensity (SI)\(^9\), were seen in the vertebral bodies of all TB-infected mice and were absent in control mice (Figure 2A-B). Femurs showed increased SI in all TB-infected mice when compared to uninfected mice (Figure 2C-D). Additionally, focal areas of increased spleen SI were seen on coronal reconstructions in all 4 TB-infected mice. These were absent in the uninfected mice, whereas liver SI was comparable between both groups (data not shown). No other items of the evaluation set were noted in any of the mice. In addition, a clear SI difference between lung tissue of TB-infected and control mice was seen (not shown). Mean T2*-times of the spinal column and femur but not of spleen were lower in TB-infected compared with uninfected mice (Supplementary Table 2). This may reflect the replacement of fatty bone marrow (with longer T2*) by osteomyelitis-related water content, hence lowering T2*-times in the spine and femur. This explanation is consistent with the increase of the signal value for the first echo in the femur, since this reflects the increased tissue density in TB-osteomyelitis. MRI also showed the emaciated state of the TB-infected mice, with very little subcutaneous and intra-abdominal fat (data not shown).

DISCUSSION

In this report we describe a new murine model to study the immunologic and radiologic features associated with musculoskeletal TB. Musculoskeletal TB results from hematogenous spread of *M. tuberculosis* from other sites, most often the lungs. Once mycobacteria have infected the bone marrow, granulomatous lesions are formed that attract multiple inflammatory cells, including foamy macrophages and T-cells\(^5,10\). As the lesion grows caseation occurs, with destruction of the bone trabeculae and, in a later stadium, the bone cortex\(^7,10\). The predilection of mycobacteria for the spine and large joints may be explained by the rich vascular supply of vertebra and growth plates of the long bones\(^5,7\). In spinal TB the infection is thought to spread from two adjacent vertebrae into the adjoining intervertebral space. When two vertebrae are affected, the disc, which is avascular
in adults, cannot receive nutrients and becomes necrotic which leads to vertebral narrowing and eventually to vertebral collapse and spinal damage. In combination with bone infection, soft tissue infection might occur with formation of paravertebral tuberculous abscesses and/or epidural involvement7,10.

Limited data exist about the exact mechanisms behind activation of the host immune response after bone infiltration with mycobacteria. However, it is known that musculoskeletal TB is more common in immunocompromised patients such as during infection with HIV, use of corticosteroids or organ transplantation and in patients with diabetes mellitus or chronic renal failure5. Additionally, chaperonin 10, one of the M. tuberculosis heat shock proteins, was show to be involved in bone TB pathogenesis, because of its osteoclastic activity, resulting in M. tuberculosis-induced bone resorption and bone matrix degradation11. Our model may be used to further expand this knowledge.

MRI is the imaging modality of choice for musculoskeletal TB. Typical TB-associated lesions are characterized by a low signal of the bone marrow of affected bones and/or vertebral bodies in T1-weighed images and a bright signal on T2-weighed images. Furthermore, bone destruction with a relative preservation of the intervertebral disc and presence of septated paravertebral or intraosseous abscesses may be detected6,9,10. In the current study, MRI features of TB-associated bone infiltration were seen in femurs of all TB-infected mice, while the vertebral bodies showed diffuse increased SI in all TB-infected mice when compared to uninfected mice. In addition, T2*-times were lower in the femur and spinal column of TB-infected mice, indicating increased water content. An alternative explanation for this pattern might be bone marrow hyperplasia in the axial skeleton in response to anemia, a condition also commonly seen in TB patients1. To assess this possibility, we evaluated spleen SI and morphologic appearance on coronal reconstructions. In all 4 TB-infected mice, focal areas of increased SI were seen in spleen that were absent in the uninfected mice. This finding - in combination with normal SI and appearance of the liver - fits splenic TB involvement with macronodular tuberculomas rather than anemia12,13.

Our study has limitations. Despite the broad use of mouse models to study infectious diseases including TB, it is known that some host immune factors differ between humans and mice, such as well-formed granulomas that are absent in mice models of M. tuberculosis infection14. This might explain the absence of overt disease activity on histopathological examination, while we could show acid-fast rods in tissue sections of TB-infected bones. The severity of bone TB apparently is limited in mice at least in this model, yet severe enough to cause characteristic MRI changes. Further research is warranted to establish whether more extended bone TB can be induced in more susceptible mouse strains, for example mice deficient for CD4+ T-cells15. In conclusion, we here report a new murine model for musculoskeletal TB after infection with M. tuberculosis via the airways. This model might be of value to further investigate immunologic and radiologic responses during musculoskeletal TB.
ACKNOWLEDGEMENTS
The authors would like to thank Marieke ten Brink and Joost Daalhuisen for their expert technical assistance during the animal experiments and Regina de Beer for her assistance in performing histopathological stainings.
REFERENCES

SUPPLEMENTARY MATERIAL

Supplementary Table 1. Cytokines in lung and femur homogenates 10 months after infection with *M. tuberculosis* via the airways.

<table>
<thead>
<tr>
<th></th>
<th>LUNG</th>
<th>FEMUR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uninfected</td>
<td>TB-infected</td>
</tr>
<tr>
<td>IL-4</td>
<td>62 (29-75)</td>
<td>81 (75-88)*</td>
</tr>
<tr>
<td>IL-6</td>
<td>84 (69-91)</td>
<td>359 (233-497)*</td>
</tr>
<tr>
<td>IL-10</td>
<td>50 (8-82)</td>
<td>93 (68-113)</td>
</tr>
<tr>
<td>KC</td>
<td>147 (134-177)</td>
<td>2271 (1155-2488)*</td>
</tr>
<tr>
<td>MIP-2</td>
<td>227 (181-239)</td>
<td>1339 (536-2196)*</td>
</tr>
<tr>
<td>TNF-α</td>
<td>420 (391-487)</td>
<td>843 (727-873)</td>
</tr>
</tbody>
</table>

BD below detection limits; IL interleukin; KC keratinocyte-derived cytokine; MIP-2 macrophage inflammatory protein-2; TNF-α tumor necrosis factor-α. *P < 0.05 for uninfected versus TB-infected mice (Mann-Whitney *U* test). Data are expressed as median (interquartile ranges) of *n* = 3 (uninfected) and 10 (TB-infected) mice per group.

Supplementary Table 2. MRI: T2*-times of various organs 10 months after infection with *M. tuberculosis* via the airways.

<table>
<thead>
<tr>
<th></th>
<th>Uninfected</th>
<th>TB-infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal column</td>
<td>8.8 (1.0)</td>
<td>6.0 (0.8)*</td>
</tr>
<tr>
<td>Femur</td>
<td>11.5 (1.5)</td>
<td>7.4 (1.3)*</td>
</tr>
<tr>
<td>Spleen</td>
<td>3.2 (0.4)</td>
<td>4.1 (1.4)</td>
</tr>
</tbody>
</table>

T2*-times in milliseconds as measured after MRI-analysis of spinal column, femur and spleen. *P < 0.05 for uninfected versus TB-infected mice (unpaired *t*-test). Data are expressed as mean (SD) of *n* = 2 (uninfected) and 4 (TB-infected) mice per group.