Spectral analysis of blood stains at the crime scene

Edelman, G.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
10 - REFERENCES


8. Evans MD, Thai CN, Grant JC Development of a spectral imaging system based on a liquid crystal tunable filter. Transactions of the Asae 1998; 41: 1845-1852


17. van der Meer F The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation 2006; 8: 3-17


33. Bhargava R, Perlman RS, Fernandez DC, Levin IW, Bartick EG Non-invasive detection of superimposed latent fingerprints and inter-ridge
trace evidence by infrared spectroscopic imaging. Anal Bioanal Chem 2009; 394: 2069-2075


Ref Type: Conference Proceeding


67. Li B, Beveridge P, O'Hare WT, Islam M The estimation of the age of a blood stain using reflectance spectroscopy with a microspectrophotometer, spectral pre-processing and linear discriminant analysis. Forensic Science International 2011; 212: 198-204

68. Li B, Beveridge P, O'Hare WT, Islam M The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis. Science and Justice 2013; 53: 270-277


Ref Type: Conference Proceeding

74. Virkler K, Lednev IK. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 2009; 188: 1-17

75. Lomholt B, Keiding N. Tetrabase, an alternative to benzidine and orthotolidine for detection of hemoglobin in urine. The Lancet 1977; 1: 608-609


78. Saferstein R. Criminalistics - an introduction to forensic science. Prentice hall, 2004

79. James SH, Nordby JJ. Forensic Science: An Introduction to Scientific and Investigative Techniques. Taylor & Francis, 2005
80. Zubakov D, Hanekamp E, Kokshoorn M, van Ijcken W, Kayser M
Stable RNA markers for identification of blood and saliva stains
revealed from whole enome expression analysis of time-wise degraded

81. De Wael K, Lepot L, Gason F, Gilbert B In search of blood -
Detection of minute particles using spectroscopic methods. Forensic
Science International 2008; 180: 37-42

82. Zijlstra WG, Buursma A, Meeuwen-Vanderroest WP Absorption
spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin,
carboxyhemoglobin, and methemoglobin. Clinical Chemistry 1991; 37:
1633-1638

83. Nagababu E, Rifkind JM Formation of fluorescent heme degradation
products during the oxidation of hemoglobin by hydrogen peroxide.
Biomedical and Biophysical Research Communications 1998; 247: 592-
596

84. Virkler K, Lednev IK Raman spectroscopic signature of blood and its
potential application to forensic body fluid identification. Analytical
and Bioanalytical Chemistry 2010; 396: 525-534

85. Kotowski TM, Grieve MC The use of microspectrophotometry to
characterize microscopic amounts of blood. J Forensic Sci 1986; 31:
1079-1085

86. Gemert MJC, Welch AJ, Star WM One-dimensional transport theory.
In: Optical-thermal response of laser-irradiated tissue. Welch AJ,
Gemert M.J.C. (eds). New York: Springer science+business media,
LLC, 1995, 47-72

87. Cheong W, Prahl S, Welch A A review of the optical properties of
biological tissues. IEEE Journal of quantum electronics 1990; 26: 2166-
2185

88. Inoue H, Takabe F, Iwasa M, Maeno Y, Seko Y A New Marker for
Estimation of Bloodstain Age by High-Performance Liquid-


102. Sears DA, Udden MM, Thomas IJ Carboxyhemoglobin levels in patients with sickle-cell anemia: Relationship to hemolytic and vasoocclusive severity. American Journal of the Medical Sciences 2001; 322: 345-348


determination using reflectance spectroscopy. Forensic Sci Int 2011; 206: 166-171


110. Tina Young A Photographic Comparison of Luminol, Fluorescein, and Bluestar. Journal of Forensic Identification 2006; 56: 906-912


123. Virkler K, Lednev IK Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Science International 2009; 188: 1-17


130. Wood MFG, Cote D, Vitkin IA Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media. Journal of Biomedical Optics 2008; 13


Ref Type: Conference Proceeding

Ref Type: Conference Proceeding

166. Wickenheiser RA Trace DNA: A review, discussion of theory, and application of the transfer of trace quantities of DNA through skin contact. Journal of Forensic Sciences 2002; 47: 442-450


- 187 -


174. Hanson EK, Ballantyne J A blue spectral shift of the hemoglobin soret band correlates with the age (time since deposition) of dried bloodstains. PLoS One 2010; 5: e12830


177. Rosineide C.Simas, Gustavo B.Sanvido, Wanderson Romão, Priscila M.Lalli, Mario Benassi, Ildenize B.S.Cunha, Marcos N.Eberlin Ambient mass spectrometry: bringing MS into the "real world". Anal Bioanal Chem 2010; 398: 265-294
