Hidden structures of knot invariants
Sleptsov, A.

Citation for published version (APA):
Sleptsov, A. (2014). Hidden structures of knot invariants

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction ... 3
 1.1 Knots ... 3
 1.1.1 How to distinguish knots 3
 1.1.2 The problem of classification 6
 1.1.3 Knot invariants 9
 1.1.4 Relation with Quantum Field Theory 12
 1.2 Main results 14
 1.3 Acknowledgments 16

2 Relation between HOMFLY polynomials and Hurwitz numbers 17
 2.1 Hurwitz theory 17
 2.1.1 Hurwitz partition function 19
 2.1.2 Cut-and-join operators 20
 2.2 Shifted symmetric functions 20
 2.2.1 From Hurwitz to KP partition functions and renormalization group 22
 2.3 HOMFLY polynomials 23
 2.3.1 Chern-Simons approach 23
 2.4 Large N expansion 25
 2.4.1 HOMFLY polynomial as a W-transform of the character 27
 2.4.2 Ooguri-Vafa partition function as a Hurwitz tau-function 29
 2.4.3 Linear vs non-linear evolution 32
 2.4.4 Hurwitz tau-function via Casimir operators 32
 2.4.5 Large N expansion via Casimir operators 33
 2.4.6 Large-R behavior 33
 2.4.7 Large N expansion for knot polynomials vs Takasaki-Takebe expansion 34

3 Kontsevich integral 36
 3.1 Knot invariants from Chern-Simons theory 36
 3.1.1 Physical interpretation 38
 3.2 Localization of Kontsevich Integral 41
 3.2.1 Multiplicativity and braid representation 41
 3.2.2 Choice of associators placement 44
 3.2.3 Formulas for R-Matrices and associators 46
 3.2.4 Caps .. 47