Exploring jet properties in magnetohydrodynamics with gravity
Polko, P.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction 1
 1.1 Active galactic nuclei 1
 1.1.1 Effect of AGN on galaxy evolution 3
 1.1.2 AGN classes 3
 1.1.3 Unification through orientation 4
 1.1.4 Intrinsic differences 5
 1.2 Black hole X-ray binaries 5
 1.2.1 Accretion states 5
 1.3 Mapping of AGN classes onto BHXRB accretion states 7
 1.4 Accretion discs 10
 1.5 Jets 13
 1.5.1 Observations of jets 13
 1.5.2 Theoretical models of jets 16
 1.6 Spectral fitting 18
 1.7 This thesis 20

2 Background and Methodology 23
 2.1 History 23
 2.1.1 Non-relativistic spherically symmetric HD wind 24
 2.1.2 Non-relativistic cold cylindrically symmetric MHD wind 26
 2.1.3 Relativistic cold cylindrically symmetric MHD wind 30
 2.1.4 Non-relativistic warm cylindrically symmetric MHD wind 31
 2.1.5 Relativistic warm cylindrically symmetric MHD wind 32
2.2 Extending the model ... 33
2.2.1 Non-relativistic wind model with gravity 34
2.2.2 Relativistic wind model without gravity 37
2.2.3 The Alfvén Regularity Condition 43
2.2.4 The kinetic gravity term 45
2.2.5 The full gravity term 46
2.3 Numerical method for finding solutions 52
2.3.1 Initial setup ... 53
2.3.2 Integration step .. 53
2.3.3 Iteration towards a solution 54

3 Determining the optimal locations for shock acceleration in magnetohydrodynamical jets 57
3.1 Introduction .. 57
3.2 Method .. 59
3.2.1 Background .. 59
3.2.2 Model Parameters 61
3.2.3 Numerical Method 64
3.2.4 Approach ... 64
3.3 Results .. 66
3.3.1 Solution a: A Cold, Slow Jet 66
3.3.2 Solution b: A Cold, Fast Jet 68
3.3.3 Solution c: A Warm, Very Fast Jet 68
3.3.4 Location of the MFP 68
3.4 Discussion ... 69
3.5 Conclusion ... 70
3.A Equations .. 70

4 Linking accretion flow and particle acceleration in jets. I. New relativistic magnetohydrodynamical jet solutions including gravity 73
4.1 Introduction .. 74
4.2 Method .. 77
4.2.1 A physical description of the flow 78
4.2.2 A new solution technique: the C∞-continuous bridging method 78
4.2.3 The basic C∞-continuous method 79
4.2.4 The effects of including gravity on the solutions 81
4.2.5 Model parameters 82
4.3 Results .. 83
4.3.1 First solution ... 83
4.3.2 An initial exploration of parameter space 85