Encounters with oxygen: Aerobic physiology and HO production of Lactobacillus johnsonii
Hertzberger, R.Y.

Citation for published version (APA):
Hertzberger, R. Y. (2014). Encounters with oxygen: Aerobic physiology and HO production of Lactobacillus johnsonii

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Propositions belonging to the thesis: “Encounters with oxygen. Aerobic physiology and H$_2$O$_2$ production of Lactobacillus johnsonii”

1. In Lactobacillus johnsonii, the activities of NADH flavin reductase and NADH oxidase are both the main cause of oxidative stress and the main requirement for aerotolerance. chapter 2 and 3 of this thesis

2. The main purpose of hydrogen peroxide production by L. johnsonii is oxygen scavenging, which prevents damage by other reactive oxygen species, such as superoxide, while reducing NADH expenditure compared to the water producing alternative. chapter 6 of this thesis

3. Bacterially produced hydrogen peroxide in mammalian host organisms reaches its highest levels shortly after birth, when oxygen levels are high and H$_2$O$_2$-producing lactobacilli are plentiful. chapter 6 of this thesis, Espey MG (2013)

4. Pyrimidine production is the main CO$_2$ requiring pathway in L. johnsonii; emptying pyrimidine pools are the main cause of cell death after CO$_2$ depletion, comparable to thymineless death. chapter 5 of this thesis

5. Species belonging to the Lactobacillus acidophilus group are the ultimate freeloaders: they require their neighbors and hosts to provide all cellular building blocks and to express catalase to clean up after them.

6. The fact that species with so many metabolically incapactities as the ones belonging to the L. acidophilus group, manage to be the most prevalent constituents of the vaginal microbiota, shows that we are only starting to understand what traits render bacteria resilient in host-associated environments.

7. If L. johnsonii would organize an International Panel on Climate Change, it would applaud the rising CO$_2$ levels and acidification of the earth’s water supplies; it would regret the everlasting high-oxygen levels in the atmosphere.

8. Even in case bifidobacteria and lactobacilli sold as probiotics do not convincingly impact the health of already healthy consumers, they have played a decisive role in raising public awareness of the current scientific paradigm shift of anti- to probiotic.

9. Most columns in newspapers raise more questions than they provide answers. This also holds true for the vast majority of PhD theses.

10. No person can call himself a true intellectual without basic knowledge on the chemistry of life.

Rosanne Hertzberger, Amsterdam May 2014.