Distributed multiscale computing

Borgdorff, J.

Publication date
2014

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
## Contents

1 Introduction ................................. 1
   1.1 Multiscale applications .................. 3
   1.2 Theory of multiscale modelling and computing .......... 7
   1.3 Multiscale computing ..................... 12
   1.4 Distributed multiscale computing .......... 16
   1.5 Outline of this thesis ................... 17

2 Theory of distributed multiscale computing ...... 19
   2.1 Introduction ................................ 20
      2.1.1 Related work ......................... 22
   2.2 Multiscale modelling formalisation ............ 23
      2.2.1 Process ................................ 25
      2.2.2 Scale separation ...................... 28
      2.2.3 Multiscale model and single scale models ........ 30
      2.2.4 Scale separation map .................. 32
      2.2.5 Submodel Execution Loop ................ 33
      2.2.6 Coupling templates .................... 37
      2.2.7 Coupling topology ..................... 39
   2.3 Specifying a multiscale model ............... 41
      2.3.1 Computational elements in MML ............ 42
      2.3.2 Graphical MML ......................... 44
      2.3.3 XML format of MML ...................... 46
   2.4 Multiscale model analysis .................. 49
      2.4.1 Coupling topology: deduction and implications .... 50
      2.4.2 Predicting runtime behaviour with a task graph .... 50
      2.4.3 Task graph reduction ................... 57
   2.5 Distributed multiscale execution ............. 60
3 Distributed multiscale runtime environment

3.1 Introduction

3.2 Design

3.2.1 Conceptual background

3.2.2 Library

3.2.3 Configuration

3.2.4 Runtime environment

3.2.5 Cross-cluster computing

3.3 Performance

3.3.1 Overhead

3.3.2 Message speed

3.4 Use cases

3.4.1 Hydrology application

3.5 Conclusions

4 Applying distributed multiscale computing to in-stent restenosis

4.1 Introduction

4.2 Multiscale modelling language (MML)

4.3 Software

4.3.1 High level composition and execution tools

4.3.2 MUSCLE

4.3.3 Cross-cluster execution with QosCosGrid

4.4 A three-dimensional model of in-stent restenosis

4.5 Results

4.6 Conclusions and discussion

5 Performance of distributed multiscale computing

5.1 Introduction

5.2 Multiscale Modelling and Simulation Framework

5.3 Performance context

5.4 Results

5.4.1 Tied multiscale computing

5.4.2 Scalable multiscale computing

5.4.3 Skewed multiscale computing