Abstract. This year’s contribution of the UvA Rescue Team is twofold. On one hand a theoretical contribution is made by describing the planning and coordination problem formally as an POMDP problem, which will allow to apply POMDP-solution methods in this application area. On the other hand the impact of the introduction of flying agents will be studied. Flying agents, when applied correctly, have the potential to reduce the uncertainty in the planning process considerably.

1 Introduction

The UvA Rescue Team has a long history. The first participation in the Rescue Simulation League was by Stef Post and Maurits Fassaert, who competed in the 2003 competition in Padova [10]. In 2006 the first Virtual Robot competition was held. Max Pfingsthorn and Bayu Slamet participated in this competition and won the Best Mapping award [8]. The team from Amsterdam started a cooperation with Oxford University in 2008, which continued for 4 years [16, 14, 15, 1]. In 2012 the team operated again under its original name; the UvA Rescue Team [2], which resulted in the Infrastructure award.

During those years the team published several journal articles, book chapters and theses. The team described their approach every year in a Team Description Paper and published their source code\(^1\) with a public license. Finally, the details and rational behind the code used in the Virtual Robot competition is described in a Technical Report [13], which also contains a complete overview of our publications (up to 2012).

At the moment our team is considering funding options in order to cover the travel expenses and our participation will be conditioned on the success of this endeavor.

\(^1\) http://www.jointrescueforces.eu/wiki/tiki-index.php?page=Downloads
2 Approach

The intention of our team is to formulate the coordination problem of the Agent competition in such a way that solution methods of the MultiAgent decision process toolbox [11] can be used. In earlier contributions [9] it was demonstrated that the coordination problem is too large for an optimal solution, yet in recent years much progress is made in approximate solutions [7]. For instance, the online Bayesian Game Approximation (Forward-Sweep Policy Computation) algorithm [3] has been demonstrated to be effective for large multi-agent problems [5], and has been reimplemented into the MADP Toolbox.

In a first attempt, the coordination problem of the Agent competition is described as a DEC-POMDP, following the description in Oliehoek et al [7]. A second attempt is made to formulate the problem in a hierarchical manner, inspired by Oliehoek et al [6].

2.1 General approach

State Description The state space for the task of fire fighting in RoboCup Rescue is limited to dynamic factors in the RoboCup Rescue world. Static factors, i.e. factors that do not change throughout the simulation, will not have to be explicitly incorporated in the state space, although they are implicitly present via the transition model.

The earthquake that takes place at the beginning of the simulation has a large effect on the state: buildings collapse and catch fire, these collapses can cause roads to get blocked (in either direction) and civilians to get trapped in debris. Starting from this initial state, fires will spread if left unattended. The fire simulator is based on heat energy as primary concept. Fire propagation’s main component is heat radiation, which is simulated by dividing the open (non-building) area of the map in cells for which the air temperature is computed. Other factors that determine the spread of fire are properties of buildings. The dynamic factors are the heat of a building, whether it is burning, how much fuel is left and how much water is put in by extinguish actions. Static properties like the size and composition of a particular building (wood, steel or reinforced concrete) and how close it is to surrounding buildings also influence the spreading of fire. However, because these properties are static, they do not need to be incorporated in the state description. Instead the probability of a particular building i catching fire given that a neighboring building j is on fire is modeled through the transition model. Training sessions with RoboCup Rescue simulator will be used to estimate the probabilities used in the POMDP transition function P_T.

As described in Section 2.2 the state space is divided in a macro level and a micro level. At the macro level the state space is continuous, at the micro level the state space can be made discrete. In particular, $S = \times_i S_i$ is the set of joint states, where S_i is the set of states available to each agent. The different type of agents (fire-fighters, ambulances, police) have different set of states, but the number of states relevant for the planning can be currently limited to six.
Actions The actions for an agent i in RoboCup Rescue can be divided in domain level actions A^d_i and communication actions A^c_i. A mobile agent can perform both a domain level action as communication within one time-step (e.g. a fire-brigade agent can move/extinguish and communicate). This means that the set of actions A_i for a mobile agent i is the Cartesian product of all domain level and communication actions $A_i = A^d_i \times A^c_i$. In this section we will discuss the domain level actions A^d_i. The subsection at the end of this page will deal with communication actions A^c_i.

All mobile agents can perform the move action. The argument of this move action is a path along which the agent should move. Clearly the move actions are dependent on the current position of the agent. Also, there is a maximum distance that an agent can travel in one time-step (333m). This means that two paths that deviate only after this point lead to the same action. Fire-brigades have 2 specialized actions: extinguish and refill. The extinguish action specifies a building and the amount of water (in liters) to direct to that building. The refill action restores the water supply of the brigade and can only be performed at 'refuges' or 'hydrants'.

Observations As with actions we specify the set of observations for agent i as the Cartesian product of domain and communication observations $O_i = O^d_i \times O^c_i$. Here we treat the domain observations $O_i = O^d_i$, communication observations O^c_i are treated in the next subsection.

At each time-step, only objects within a range of 10m are seen, except for fiercely burning buildings, which can be observed from a larger distance. When an agent executed a move action, only observations of the new position are received (i.e. no observations are made 'en route'). On average 4-6 static objects (building and roads) can be visually observed during a time-step [9].

Observing an object means that the agent receives the object ID, its type and properties. For a road this property is whether or not it is blocked (in both ways), for a building, the so-called ‘fieriness’, is observed. This fieriness factor is a direct function of the amount of fuel and water left in the building and determines the part of the area counted as damaged.

Communication Communication is a transaction consisting of both an action (by the sender) α^c and an observation (for the receiver) α^d. In RoboCup Rescue there are two forms of communication, voice messages and radio messages, with two corresponding specific actions, speak and tell respectively. Both types of communication are broadcast: voice messages can be picked up by all agents within a certain range from the emitter, while radio messages are received by all agents subscribed to the emitter’s radio channel, regardless of the distance. The restrictions that are posed on communication vary per competition. The number of voice messages emitted per time step is limited, as well as the maximum length of such a message. The restrictions of the radio messages concern the number of channels available and the maximum bandwidth of each channel (i.e. the maximum total capacity of the channel per time step). Furthermore, messages
of both types can be dropped out by the kernel, simulating faulty communication systems.

In a Dec-POMDP, we can model communication by introducing communication actions and observations. The basic idea is that for each joint communication action \(a_c \) one joint communication observation \(o_c \) can be introduced that for each agent contains the messages sent by the other agents. Restrictions with respect to communication distance can be modeled by making communication dependent on the (next) state \(s' \). That is, it is possible to specify a communication model of the form \(\Pr(o_c|a_c, s') \).

The complete observation model is then given as the product of this communication model and the regular, domain observation model:

\[
\Pr((o^d, o^c)|(a^d, a^c), s') = \Pr(o^c|a^c, s') \cdot \Pr(o^d|a^d, s').
\]

In a pure planning framework, messages have no a-priori semantics. Instead the planning process should embed the ‘optimal meaning’ in each communication action.

Transition, observation and reward model The transition model of a factored Dec-POMDP can be compactly described by a two-stage dynamic Bayesian network (DBN). Because the state description is the same as used by the simulator components, these structure and probabilities for this DBN can be found by analyzing the code of the simulation system. For the (domain) observation model we can make a similar argument.

The reward function is easily derived from the scoring function. A typical scoring function is

\[
Score(s) = (P + S/S_0) \cdot \sqrt{B/B_0},
\]

where \(P \) is the number of living agents, \(S_0 \) is the total sum of health points (HPs) at start of the simulation, \(S \) is the remaining sum of HPs, \(B_0 \) is the total area of houses, \(B \) is the area of houses that remained undamaged.

This gives us the reward function of the Dec-POMDP in the following way:

\[
R(s, a, s') = R(s, s') = Score(s') - Score(s).
\]

The horizon is finite in the RoboCup Rescue competition (100-1000 timesteps)\(^2\). However in the real-life setting we will typically want to plan for a varying horizon (until all fire is extinguished and all trapped people are either rescued or dead). This can be accomplished by treating the problem as one of infinite horizon.

2.2 Hierarchical approach

As mentioned in subsection 2.1, the state description depends on a large number of factors. Unless an efficient encoding of these elements is devised, the state

space becomes prohibitively large, as shown in [7]. One way to address this issue is to consider an hierarchical approach, such as the one described in [6], under which the general problem is subdivided into multiple, simpler problems, organized hierarchically. For each of these problems, the state space and associated action space are greatly reduced, thus allowing efficient reasoning.

For our hierarchical approach we will consider only two levels of abstraction, with a less conventional method for the macro level and a Dec-POMDP model for the micro-level. The goal of reasoning at the macro level is to efficiently distribute the agents along the map in order to address the existent threats (i.e. rescue victims, extinguish fires and clear roads). Consequently, the role of the agents at the micro level is to effectively address the threats in the area assigned at the macro level.

Macro level To illustrate the macro-level approach, let us first consider just the problem of rescuing buried and/or injured civilians. Each discovered civilian can be viewed as a sample drawn from a hidden "threat" distribution over the 2D space of the map (a hidden distribution which could be discovered by the flying agents described in section 3). The ambulance agents can then be considered to "generate" a "help" distribution around their position (for example a Gaussian, albeit better choices may be possible). Thus, the goal at a macro level would be to fit the "help" distributions such that they approximate as well as possible the "threat" distribution, which can be done using Expectation Maximization or a similar algorithm.

For this approach to yield satisfactory results, additional constraints must be taken into consideration, such as restricting the values of the covariances of "help" distributions, such that they reflect reasonably small areas which can be dealt with efficiently by an agent at the micro-level. Also, in order to be able to deal with the undiscovered victims, a total number of citizens can be assumed (e.g. a function of the total number of buildings). Subtracting the observed ones from this total number, gives an estimative number of unknown victims, which can then be distributed uniformly over the unexplored space. As more victims get observed, these randomly distributed points decrease in number and the estimation of the "threat" distribution becomes more accurate. After fitting, the means of the "help" distributions would indicate towards which points of the map should the ambulances focus.

Similar methods can be employed for the police and firefighting agents as well. In particular to the firefighting case, the burning buildings can be considered as samples weighted by their fieriness.

Micro level In order to enable an efficient behavior of the agents at a tactical level, regardless of the actual position on the map where they get assigned by the macro level reasoning, a new state space must be devised. This state space must be general enough so as not to depend on the particularities of the map, yet informative enough to enable meaningful reasoning. However, balancing between
these two characteristics, as well as choosing relevant "sufficient statistics" to include in the state description is not straightforward.

Taking into account the fact that each agent type has different specific goals as well as specific actions, it seems reasonable to have specific state and action definitions for each agent type.

In our Team Description Paper for the Iran Open [12], a micro-level model for each of the agents is proposed.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Observations</th>
<th>Actions</th>
<th>Transmissions</th>
<th>Remote observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambulance</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Fire</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Police</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Based on our experience (e.g. at the Iran Open), the micro-level model could be adjusted with new actions, observations or communications. Yet, care has to be taken on the size of the action and observation sets to be able to learn a policy with a DEC-POMDP solver.

Since we have defined a new set of more general actions and observations, the corresponding transition model needs to be learned, as it cannot be directly inferred from the simulator, which could be plausible in the case of a more straight-forward definition of the Dec-POMDP. Obviously, the proposed model for the micro-level achieves the reduced number of actions and observations by abstracting and ignoring certain observed details. These may be related to particularities of the map, as well as specific situations arising from the random nature of the events. However, these omitted details can have a significant effect on the transition model and a sufficient learning time must be considered in order to achieve a general enough transition model. This would require a number of simulation runs within which a transition probability table would be constantly updated with respect to the specific circumstances an agent finds itself in. Should these details prove to have a too great of an influence on the transition model, additional observations, actions and/or communications may be required in order to ensure an efficient generalization of the problem.

Boundary Micro/Macro level One thing we like to experiment with is the sensitivity of the planning for the boundary between the Micro and Macro level. When the Micro level is defined by the maximum distance of perception, the partial observability assumption no longer holds and problem reduces to a MDP. In addition, the number of agents which should be included in the decision process also is reduced. The coordination between teammates is handled in that case on a Macro level; distributing the agents over the map.
3 New challenges

Our team is interested in the new challenge of flying agents, which can be used as explorers, as introduced in the Infrastructure competition [4]. This challenge will force to explicitly reason about information gathering about the dynamics of the fire front.

The flying agents proposed in [4] can move freely over any area of the map. In order to accommodate this feature realistically, a new movement model is considered, taking into account the agent’s position on the vertical axis. Thus, a flying agent’s movement is only restricted by the height of the buildings and the maximum achievable altitude (specified as a parameter). Furthermore, the agent’s mobility is restricted by the available energy, which is consumed during flight and can be recharged at refuges. Information gathering is achieved through various sensors, of which raw and infra-red imaging is presented in [4]. The latter is particularly relevant for the tracking of the fire front, as not only burning buildings are observed, but also the temperature of nearby non-burning buildings.

As described in subsection 2.2, a good coordination of the agents at the macro level can be achieved if there are sufficient reported threats to be addressed. This derives from the fact that threats are considered to be samples drawn from a ”threat distribution”. Naturally, the more samples exist, the better the estimation of the real ”threat distribution” is, and thus an efficient distribution of the agents is possible. Given the superior mobility of the flying agents, their threat reporting capabilities are significantly better than that of the other agents.

Given the dynamic nature of the spreading of fires, a constant observation of all areas of the map is crucial. Thus, a reasonable approach for the flying agents’ behavior is to stimulate the re-exploration of least recently explored areas first. Thus, the more time passes since an area was explored, the less accurate the information about its current state is, and therefore the sooner it should be explored. Because of the limited energy, exploration has to be combined with recharge visits of the refuges, making it a Multi-Objective Shortest Path problem.

4 Conclusion

The UvA Rescue Team looks forward to be active again in the Agent competition of the Rescue Simulation. The UvA Rescue Team will attempt to make state-of-the-art decision making algorithms applicable to this domain by finding the appropriate boundary between planning on a micro and a macro level.

References

