
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Finalization report: homogeneous PVM/PARIX

Overeinder, B.J.; Sloot, P.M.A.; Petersen, J.

Publication date
1994

Link to publication

Citation for published version (APA):
Overeinder, B. J., Sloot, P. M. A., & Petersen, J. (1994). Finalization report: homogeneous
PVM/PARIX. (CAMAS Technical Report; No. TR 2.3.4). Department of Computer Systems,
University of Amsterdam.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:23 Sep 2021

https://dare.uva.nl/personal/pure/en/publications/finalization-report-homogeneous-pvmparix(66545040-03c0-4b1c-80fe-beb7e45bc961).html

Commission of the European Communities

ESPRIT III

PROJECT NB 6756

CAMAS

COMPUTER AIDED MIGRATION OF
APPLICATIONS SYSTEM

CAMAS-TR-2.3.4
Finalization Report

Homogeneous PVM/PARIX

Date: October 1994

ACE - U. of Amsterdam - ESI SA - ESI GmbH - FEGS - Parsytec GmbH -
U. of Southampton.

Technical Report CAMAS-TR-2.3.4

Finalization Report
Homogeneous PVM/PARIX

B. J. Overeinder and P. M. A. Sloot
University of Amsterdam

J. Petersen
Parsytec GmbH

October 1994

Abstract

This document reports on the design and implementation considerations of PVM/PARIX,
homogeneous version 1.0. This version is for use with PARIX 1.2 only. Further, it contains
information how to use Homogeneous PVM/PARIX and the appendix contains the installation
notes.

1 What Is Homogeneous PVM/PARIX?

The popularity of PVM nowadays, can be partly explained by the inherent portability of PVM
programs over a large number of parallel systems. The spectrum of parallel systems consists from
loosely coupled networks with remote shell capabilities, via parallel clusters, to MPP architectures.

The use of PVM as a parallel programming environment for MPP architectures, raises the
following observation. The heterogeneity which made PVM so popular in the beginning, now
seems a drawback in the application of PVM to MPP architectures due to the large overhead
to handle this heterogeneity. This is especially true for the communication primitives, e.g.,
communication latencies between processes inside the MPP can become quite large. This has
motivated the development of a so-called homogeneous version of PVM for the PARIX parallel
operating system.

This PVM/PARIX version has the additive homogeneous version, which essentially means
that all PVM processes are to be run on the MPP system only. Thus, the parallel virtual machine
can only consist of the nodes in the Parsytec MPP, and PVM inter-process communication with
the front-end system is not supported (of course I/O with the front-end is possible, this is handled
by PARIX). It is therefore not possible to send messages to PVM tasks outside the MPP.

The large advantage however, is that the communication latency and throughput will be
improved drastically, resulting in a communication performance which is almost as fast as the
underlying PARIX layer.

The user interface of this Homogeneous PVM/PARIX version is somehow different than with
the standard PVM. There is no console present, for example to start a virtual machine, and the
Homogenous PVM/PARIX programs are issued as normal PARIX programs, e.g., with the run
or hpvmrun script (see also Section 4).

1

The homogeneous version of PVM for PARIX, is an implementation of PVM 3.2.6 [1] on top
of PARIX 1.2 [2]. All PVM functionality applicable to MPP systems has been incorporated, with
the exception of pvm recvf().

2 Design Considerations

2.1 General Overview of Design

The Homogeneous PVM/PARIX version is designed and implemented on top of an asynchronous
communication layer, called the Communication Kernel. The Communication Kernel on his turn
is implemented on top of PARIX, the operating system for Parsytec’s parallel architectures. See
also Fig. 1.

Homogeneous PVM

Communication Kernel

PARIX 1.2

MPP (GC, Xplorer, ...)

Figure 1: The Homogeneous PVM/PARIX design overview.

The advantage of this layered design is, that the functionality gap between PVM and PARIX is
bridged by the Communication Kernel. The used strategy results in an implementation where the
PVM intrinsics are clearly separated from the MPP’s operating system dependent characteristics.
This improves the maintainability and portability to newer PVM versions.

2.2 Design Considerations of the Communication Kernel

The Communication Kernel’s primary raison d’être was the need for typed asynchronous buffered
communication, which is PVM’s basic message passing model. The implementation of the typed
asynchronous buffered communication in a separate layer is motivated by the generic characteristics
of this message passing model.

Along the design and implementation, other functionality needed for a PVM implementation
was thought to be generic enough to be added to the Communication Kernel. As an extension to
the point-to-point communication, a multicast communication primitive has been integrated in the
Communication Kernel.

2

Other functionality added to the Communication Kernel is dynamic remote context creation and
a run server capable of load balancing according to the round-robin strategy. This two components
together efficiently supports the pvm spawn call.

2.3 Design Considerations of Homogeneous PVM/PARIX

With the effective support of the Communication Kernel, the PVM implementation has become
quite straightforward. Many of the PVM/PARIX calls are implemented without complications on
top of the Communication Kernel. Most prominent implementation efforts to PVM/PARIX were
the multiple message buffering scheme and the group server.

The implementation of the PVM multiple message buffering scheme is as flexible as can be.
There is no restriction on the number of message buffers, and for each buffer there does not exist
a limit on the size.

Group communication and synchronization (pvm bcast respectively pvm barrier) is
administered and coordinated by the group server. The group server is a independent thread/context
running on processor number 0, but could be placed on any other processor (processor number 0
is always present).

In standard PVM, the group server is build on top of the PVM routines. In our design, the group
server is implemented on top of the Communication Kernel, thus resides in the same layer as PVM.
This not only improves performance by circumventing an extra layer, but has also the advantage
that the group server can make direct use of the multicast provided by the Communication Kernel.

Worth to mention is, that the Homogeneous PVM/PARIX implementation supports multiple
(dynamic) PVM tasks per MPP node. Many other MPP specific PVM implementations only
supports one task per node.

3 Programming with PVM/PARIX

The Homogeneous PVM/PARIX version is software compatible with other implementations of
PVM 3.2.6 as described in [1], with the exceptions discussed in Section 5.

Common Programming Practices
With the Homogeneous PVM/PARIX version, PVM programs become normal PARIX executables,
just like any PARIX program you would write yourself. However, the programming practice of
writing PVM programs has not changed.

Each PVM program has to include pvm3.h (C) or fpvm3.h (FORTRAN) found in the
include directory of the distribution. The first PVM call in any program has to bepvm mytid()
(or pvmfmytid in FORTRAN programs). This routines initializes the PVM layer and enrolls the
task to PVM.

In order to terminate the PVM program, pvm exit() has to be called. Without calling this
function, each node will hang forever, waiting for the other nodes to call pvm exit().

Compiling PVM Programs
Compiling PVM programs is like compiling PARIX programs, with the exception of the library
that is to be linked with the application. Depending on whether you are compiling a program for

3

Transputer or PowerPC systems, you prefix the compiler call with px for Transputer architectures,
and ppx for PowerPC architectures. The command-line to compile a program for a Transputer
system would look like:
$ px cc.px -Ipvmdir/include file.c -o file -Lpvmdir/lib -lpvm3,
or using FORTRAN
$ px f77.px -Ipvmdir/include file.f -o file \

-Lpvmdir/lib -lfpvm3 -lpvm3
When you want to compile a program that came with a Makefile, the simplest way to build

the executable is:
$ aimk <target>

Group Communication Library
The group communication code has been integrated into the standard PVM library. It is therefore
not necessary to link with a separate group library in contrast to the standard PVM implementation.

To prevent “old” makefiles from generating all sorts of errors because of a missing group
communication library, PVM/PARIX comes with a dummy group library that contains nothing,
but keeps the linker happy.

4 Running Programs with PVM/PARIX

Starting Programs
Since PVM/PARIX programs are regular PARIX programs, they can be run using the standard
PARIX run utility. However, since many PVM makefiles automatically install executables in
$HOME/pvm3/bin/<ARCH>, using runmay be inconvenient. Therefore, PVM/PARIX comes
with a simple front-end to run, called hpvmrun, that looks in different places for the binary to
execute. The flags and arguments needed to run PARIX jobs should still be given to either run or
hpvmrun (note: hpvmrun accepts the same arguments as run).

Executing a PVM/PARIX job on a four processors partition becomes
$ hpvmrun -a p4 file
where nrm allocates the four nodes; or with a pre-allocated partition
$ hpvmrun -f0 2 2 file

Since there exist a number of different run scripts, it is impossible to give detailed information
on how to run PARIX jobs on your particular system. Please refer torun(1) for more information.

NOTE: Do not forget to increase the maximum number of virtual links, if one of the following
errors is reported: PX AllocLLink error or PX AllocVLink error for PowerPC; and
AllocLLink error or AllocVLink error for Transputer. See also the “Release Notes
PARIX 1.2-PPC”, Section “Frequently Asked Questions”.

PVM Console
There is no pvmconsole for the Homogeneous PVM/PARIX implementation, since all tasks can
be managed from the command-line. As a result, the output of each of the parallel tasks is sent to
the terminal where the run or hpvmrun was issued.

4

5 Notes on the Implementation

Unimplemented Calls
This PVM implementation adheres to the definitions in the PVM 3.2.6 manual, with a few ex-
ceptions (see also the manual pages [3]). Most notably, the functionality that is not applicable to
a homogeneous MPP implementation is not supported (e.g., pvm addhost). Apart from this,
several functions not suitable for MPP systems in general are not implemented, such as the signal
capabilities. This affects the functions in Table 1.

pvm addhost pvm delhost pvm kill
pvm notify pvm recvf+ pvm sendsig
pvm start pvmd pvm tickle

Table 1: The functions indicated with a ‘+’ will be implemented in a future release of PVM/PARIX,
the other functions are not applicable to a MPP system and will therefore not be implemented.

All non-implemented functions return PvmNotImpl.

Process Grids
Since PVM/PARIX is built on top of PARIX, it has also the same limitations with respect to the
grid that can be built, which implies that one can only run PVM programs on a m� n-grid.

Different Libraries
The Homogeneous PVM/PARIX distribution comes with a standard PVM3 library, and one com-
piled with debug information (libpvm3g.a). The last might be useful when you encounter a
bug in PVM/PARIX and want to fill in a bug-report form.

6 Performance Results

A ping-pong experiment was performed to measure the communication performance of the Ho-
mogeneous PVM implementation. The typical ping-pong experiment used on Parsytec parallel
architectures is the SendLink/RecvLink benchmark, which sends packages of size 1, 4, 16, 64,
256, 1K, 4K, 16K, and 64K bytes. Each measurement for a package size is repeated thirty-two
times, resulting in a mean value.

The time measurements in the ping-pong experiment are performed in the following way:

t1 = time();
send();
receive();
t2 = time();
elapsed_time = (t2 - t1) / 2;

5

The latency measured in Table 2, is the time to send and receive one byte to and from the
nearest neighbor in the process grid. The throughput is measured by sending a message of 64K
bytes to and from, and divide the number of bytes by the elapsed time.

10

100

1000

10000

100000

1 10 100 1000 10000 100000

us
ec

number of bytes

Parsytec GCel

PARIX
Homogeneous PVM/PARIX

Figure 2: Communication performance of PVM versus PARIX on Parsytec GCel.

Machine/OS Latency Throughput�sec (Kb/sec)
GCel/PARIX 46 1088

PVM 315 1082
Xplorer/PARIX 89 1032

PVM 152 1027

Table 2: Communication latency and throughput

A Installing Homogeneous PVM/PARIX

Where to Put PVM
PVM can be installed either in a users home-directory, or in a system-wide accessible directory
to ease sharing between different users. In any case, there must be a directory named pvm3
somewhere on the filesystem. The complete path to this directory, including pvm3will be denoted
by pvmdir in this manual.

6

10

100

1000

10000

100000

1 10 100 1000 10000 100000

us
ec

number of bytes

Parsytec Power Xplorer

PARIX
Homogeneous PVM/PARIX

Figure 3: Communication performance of PVM versus PARIX on Parsytec Power Xplorer.

Apart from this distribution tree, each PVM user has to create a pvm3 directory in his home
directory. This directory will contain his own PVM-executables.

The Distribution
The Homogeneous PVM/PARIX distribution contains two files:� install;� HPvmParix-1.0.tar.Z.

The tar-file is organized as follows:

pvm3/bin Directory containing several example programs
pvm3/doc Some documentation on this PVM implementa-

tion
pvm3/examples Sources of standard PVM example programs
pvm3/include Include files for C and FORTRAN programs
pvm3/lib Libraries for PVM/PARIX, together with suppor-

ting tools
pvm3/man Manual pages for Homogeneous PVM/PARIX

One megabyte of disk space is required for the complete Homogeneous PVM/PARIX installation.

The Installation
First, place the install script and the Homogeneous PVM/PARIX distribution somewhere on your

7

system. The install script with its arguments takes care for the installation in the proper directory.
To actually install the Homogeneous PVM/PARIX distribution, execute the install script:

$./install <pvmdir-path>

where <pvmdir-path> is the path where the pvmdir should be created. For example, if you
want PVM to be installed in /usr/local, you should run

$./install /usr/local

which creates /usr/local/pvm3 and unpacks the distribution into it.
If a different PVM version is already present, the install script will rename some of the existing

tools in order to retain compatibility with the other version. You will not notice any difference
when using either PVM version: every change is made completely transparent.

NOTE: If you plan to (re-)install a PVM version other than the heterogeneous PVM/PARIX in the
same directory where Homogeneous PVM/PARIX resides, take care of the following.� Before (re-)installation, make sure that you save the files pvmgetarch and aimk from

pvmdir/lib before you install the new version.� After (re-)installation of the new PVM version, rename the files pvmgetarch and aimk
that come with the new distribution to pvmgetarch.org and aimk.org.� Finally, restore the saved (Homogeneous PVM/PARIX) version of these programs.

This is necessary because the Homogeneous PVM/PARIX version of these tools are wrappers
around the original tools and thus rely on the originals being present, renamed to <name>.org

Per User Installation
In order for a user to use PVM, he must create a pvm3 directory in his home directory to contain
his own PVM-binaries. To create this directory, execute the following commands:

$ mkdir $HOME/pvm3
$ mkdir $HOME/pvm3/bin
$ mkdir $HOME/pvm3/bin/<ARCHITECTURE>

where <ARCHITECTURE> is either PARIXPPC H for the Homogeneous PVM/PARIX for Power
PC systems, or PARIXT8 H for the Homogeneous PVM/PARIX for Transputer T800 systems.

Last, but not least, the path containing the PVM tools (pvmdir/lib) should be added to
the user’s PATH (command path) environment variable and the environment variable PVM ROOT
should be set to pvmdir.

Different PVM Versions
As with standard PVM, pvmgetarch is supplied to determine on what system PVM/PARIX is
running. This script is a wrapper around the original pvmgetarch, which, if present, is renamed
to pvmgetarch.org for this version.

If a particular computer system (front-end) has shared file systems with other front-end compu-
ters, the problem can arise that it is impossible to determine which PVM version has to be chosen.

8

Should it be Homogeneous PVM/PARIX on a PPC based system, Homogeneous PVM/PARIX on
a T800 based system, or the heterogeneous version?

To solve this problem, you can set the environment variable PVMPARIX to PARIXPPC H,
PARIXT8 H or to NO. If PVMPARIX is set to PARIXPPC H or PARIXT8 H, the pvmgetarch
script determines the appropriate PVM version for PPC systems or T800 systems. If PVMPARIX
equals NO, the control is immediately given to the original pvmgetarch script to determine
which PVM version you need.

References

[1] Al Geist et al. PVM 3 user’s guide and reference manual. Technical Report ORNL/TM-12187,
Oak Ridge National Laboratory, Oak Ridge, Tennessee, May 1993.

[2] Parsytec GmbH. PARIX 1.2 Documentation.

[3] University of Amsterdam and Parsytec GmbH. Homogeneous PVM/PARIX Manual Pages,
October 1994.

9

