Understanding the role of aqueous solution in chemical reactions: A computational study
Pavlova, A.

Citation for published version (APA):
Pavlova, A. (2013). Understanding the role of aqueous solution in chemical reactions: A computational study

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Background and Methods 3
 1-1 Chemistry in Aqueous Solution 4
 1-2 Silica Oligomerization and the Role of Sodium 5
 1-3 Ruthenium Catalyzed Transfer Hydrogenation of Ketones in Water 8
 1-4 Methods
 1-4.1 Electronic Structure 10
 1-4.2 Transition State Theory 14
 1-4.3 Molecular Dynamics 15
 1-4.4 Rare Event Methods 17
 1-5 Previous Studies of Chemistry in Explicit Water Solution 22
 1-6 The Scope of This Thesis 24
 1-7 References 25

2 Silica Oligomerization in Presence of Sodium 31
 2-1 Introduction 32
 2-2 Methods 33
 2-3 Results and Discussion
 2-3.1 Validation 35
 2-3.2 Free Energy Calculations 35
 2-3.3 Analysis of Sodium’s Behavior 37
 2-4 Conclusions 42
 2-5 References 43

3 Ruthenium Catalyzed Transfer Hydrogenation 47
 3-1 Introduction 48
 3-2 Methods 49
 3-3 Results and Discussion
 3-3.1 Transfer Hydrogenation 50
 3-3.2 Catalyst Deprotonation 55
 3-4 Conclusions 57
 3-5 References 59
4 Reactive Path Sampling of Transfer Hydrogenation.

- **4-1 Introduction** ... 62
- **4-2 Methods** ... 65
- **4-3 Results and Discussion** 68
 - 4-3.1 Transition Path Sampling Simulations 68
 - 4-3.2 Analysis of the Reaction Coordinates 72
- **4-4 Summary and Conclusions** 77
- **4-5 References** .. 78

5 Regeneration of RuTsDPEN in Transfer Hydrogenation

- **5-1 Introduction** ... 82
- **5-2 Methods** ... 85
- **5-3 Results and Discussion** 87
 - 5-3.1 Dissociation of the Ruthenium-Formato Complex 87
 - 5-3.2 Hydride Transfer to the Protonated Catalyst 90
 - 5-3.3 Hydride Transfer to the Deprotonated Catalyst 92
- **5-4 Discussion and Conclusions** 95
- **5-5 References** .. 96

Summary

- **Samenvatting** ... 105

Acknowledgments

- **Acknowledgments** .. 111