Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles

Published in:
Nanoscale

DOI:
10.1039/c3nr01916k

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Li⁺ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF₄:Yb³⁺, Tm³⁺ nanoparticles†

Chengzhou Zhao,³a Xianggui Kong,*a Xiaomin Liu,a Langping Tu,ab Fei Wu,ab Youlin Zhang,a Kai Liu,abc Qinghui Zenga and Hong Zhang*c

The application of upconversion nanoparticles (UCNPs), especially in vivo, has so far been hampered by their relatively low upconversion efficiency. In this work, a strategy of Li⁺ doping was revisited with the aim of enhancing UV to blue UC luminescence of NaYF₄:Yb³⁺, Tm³⁺ nanocrystals. We have demonstrated that the short wavelength UC emission bands were indeed significantly enhanced. Compared to lithium-free NaYF₄:Yb³⁺, Tm³⁺, the UC emission intensities of 452 nm and 479 nm of the NPs co-doped with 7 mol% Li⁺ ions were increased by 8 and 5 times, respectively. The mechanism of the enhancement was discussed and the improvement of the nanoparticles’ crystallinity and the distortion of the local symmetry around the Tm³⁺ ions, when the Li⁺ ions were introduced, were confirmed to be the origin of the improvement.

1 Introduction

In recent years, upconversion (UC) luminescence of lanthanide-doped nanocrystals, especially inherent low phonon energy NaYF₄-based systems, has drawn considerable attention due to their unique optical properties and potential applications in fields such as volumetric displays,¹ temperature sensors,² UC lasers,³ biomedical imaging,⁴ DNA detection,⁵ and photodynamic therapy.⁶ However, the applications of these UC nanocrystals are still constrained because of their low UC efficiency. Various attempts have been devoted to improving this aspect, including both internal adjustments and external approaches, such as varying the crystal phase of the nanoparticles,⁷ introducing a co-dopant sensitizer,⁸ crystal surface coating,⁹ the application of a core–shell structure,¹⁰ and others.¹¹ Despite these efforts, which provide vast promise for its applications,¹² challenges are even more when short wavelength upconversion emission is required, where more than two photons are needed to generate a UC photon.

It is well established that the upconversion emission of rare-earth ion-doped materials is dependent on their intra 4f transition probabilities, which is significantly affected by the local crystal field symmetry of the rare-earth ions¹³ and crystalline perfection. Due to its small ionic radius, Li⁺ ions can be doped easily into the host lattice substitutionally or interstitially, which will break the symmetry of the crystal field around it, leading to the enhancement of the UC luminescence of Er³⁺ ion-doped nanocrystals.¹⁶ For example Zhang’s group reported significant enhancement of the visible UC radiation in Y₂O₃:Yb³⁺, Er³⁺ nanocrystals by co-doping with Li⁺ ions.¹⁷ Cai et al. reported more than a 30-fold increase in NaGdF₄:Yb³⁺, Er³⁺.¹⁸ Despite all this work, the underlying mechanism is not completely distinct. On the other hand, the electronic structure of Tm³⁺ is suitable for generating some specific upconversion emissions which are of significance for activating certain chemical or biological processes. For example, the violet UC light can be used to excite channelrhodopsins, which are a subfamily of opsin proteins that function as light-gated ion channels in neural cells, and to photochemical catalysis; blue UC nanocrystals are vital to realize multicolor fluorescence bio-labels.¹⁹ Blue UC emissions can also excite several FDA approved photosensitizers making it possible for use in cancer diagnosis and UC photodynamic therapy.²⁰ However, in the NaYF₄ host lattice, the violet and blue UC lights are too weak to use because the UC processes involve three or four photons.

To face the challenge, NaYF₄:Yb³⁺, Tm³⁺ nanocrystals doped with Li⁺ ions of various concentrations were studied in detail in this work. Significant UC luminescence enhancement was observed compared with their Li⁺-free counterpart. Most importantly, the role of Li⁺ in the UC enhancement was determined to be a joint effect of the perfection in the crystallinity and the distortion of the local symmetry of the emitters.
2 Experimental section

2.1 Synthesis of β-NaYF₄:Yb³⁺, Tm³⁺ nanoparticles

β-NaYF₄ was prepared following a reported procedure with some modifications. Specifically, 1 mmol of the lanthanide chlorides (0.795 mmol YCl₃·6H₂O, 0.20 mmol YbCl₃·6H₂O and 0.005 mmol TmCl₃·6H₂O) were taken in a 100 ml 3-necked flask, where 15 ml of octadecene and 6 ml of oleic acid were also added. The flask was then heated to 160 °C under an argon atmosphere and held at this temperature for 30 min to achieve a homogenous solution. Subsequently, the flask was cooled to room temperature and 10 ml methanol solution containing 4 mmol NH₄F and 2.5 mmol NaOH and LiOH·H₂O was added dropwise. The resulting solution was stirred at room temperature and heated slowly to 70 °C for 30 min until the methanol had evaporated. The reaction vessel was then brought under a gentle flow of argon and heated up to 300 °C for 90 min. The flask was then cooled to room temperature and the nanoparticles were precipitated by adding ethanol, centrifuged and washed with ethanol. The isolated oleate-stabilized nanoparticles were stored as a 1 wt% dispersion in 6 ml of cyclohexane.

2.2 Characterization

XRD studies were performed on powders using a Bruker D8 Focus X-ray diffractometer system with monochromatized Cu-Kα radiation (λ = 1.5418 Å). Upconversion emission spectra were acquired using a Jobin Yvon LabRam Raman spectrometer system equipped with holographic gratings of 1800 and 600 grooves per mm resolution, respectively, and a Peltier air-cooled CCD detector. A 980 nm laser diode was used as the excitation source and the beam was focused (about 8 cm focal length) to a spot size of approximately 0.2 mm in diameter to reach high excitation density. Upconversion luminescence kinetics was recorded with a 500 MHz Tektronix digital oscilloscope and the excitation was realized by a nanosecond pulse train at 980 nm from an optical parametric oscillator. Precise control of the sample temperature (0.1 °C) was achieved by means of a Linkam THMS600 temperature-programmable heating/cooling microscope stage. The THMS stage was used in conjunction with a Linkam LNP cooling system when cooling. In the excitation power-dependent upconversion luminescence experiments, the power density increased step by step to guarantee that the thermal equilibrium was reached, and the collection time was about 30 s.

3 Results and discussion

The crystal structures and the phase purity of the as-prepared products were examined by XRD. The typical XRD patterns of them as-prepared products are presented in Fig. 1. All diffraction peaks of the samples matched very well with the 100, 110, 101, 200, 111, 201, 210, 002, 300, 211, 102, 112, 220, 202, and 310 reflection peaks of hexagonal NaYF₄ (JCPDS 16-0344). No other impurity peaks were detected, which revealed that pure β-NaYF₄ had been fabricated. Interestingly, when zooming in on the pattern, the positions of the diffraction peaks were found to shift slightly with the Li⁺ doping concentration. An example is given in Fig. 2, where the main diffraction peak at 17.1° is shifted towards a larger angle as the Li⁺ ion concentration is increased up to 7 mol%, then moved backwards when the Li⁺ ion concentration continued to increase to 15 mol%. A similar behaviour was also observed for the other peaks. It is known that a larger lattice constant is related to a smaller diffraction angle, and vice versa. Therefore, the structure of the

![Fig. 1 X-ray diffraction patterns of NaYF₄:Yb³⁺, Tm³⁺ nanocrystals doped with Li⁺ ions (0, 5, 7, 10, 15 mol%) in doping concentration, contrasted with the standard pattern of JCPDS no. 16-0334.](image)

![Fig. 2 (a) The main diffraction peaks of the NaYF₄:Yb³⁺, Tm³⁺ nanocrystals with different concentrations of Li⁺ ions; (b) FWHM of 17.1° peak vs. concentrations of Li⁺ ions.](image)
lattice of the NaYF₄ corresponded non-monotonously to the Li⁺ ion concentration: at low doping concentrations the crystal lattice is shrinking, but at high concentrations the lattice is expanding. As far as the doping method of the Li⁺ ions is concerned, this non-monotonic behaviour should correspond to the substitution and interstitial sites of the Li⁺ ions, which can be determined using Bragg’s law \(2d\sin \theta = n\lambda\), where \(d\) is the interplanar distance, \(\theta\) is the diffraction angle, and \(\lambda\) is the diffraction wavelength. When Li⁺ ions substitute Na⁺ ions the lattice shrinks, as the interplanar distance is reduced, resulting in the \(\theta\) becoming larger; when Li⁺ ions were at interstitial sites, the interplanar distance increased and \(\theta\) became smaller. The effective ionic radius of Na⁺ and Li⁺ are 0.97 Å and 0.68 Å, respectively. So Li⁺ ions are small enough to substitute Na⁺ or to occupy interstitial sites. Similar results were also observed in the system of NaGdF₄:Yb³⁺, Er³⁺ co-doped with Li⁺ ions.

Information on the size and crystallinity of the nanocrystals can be obtained from the width of the diffraction peaks. As shown in Fig. 2b, the full width at half maximum (FWHM) was gradually narrowed as the Li⁺ ion concentration increased up to 7 mol%, and then broadened as the concentration further increased. Combining these results with the morphology information shown in Fig. 3, where Li⁺ ion-doping caused little change in the size and shape, leads to the conclusion that the crystallinity of the nanoparticles was improved when the Li⁺ ion concentration was lower than 7 mol%, and reduced when the Li⁺ ion concentration was greater than 7 mol%, and then broadened as the concentration further increased. The average crystalline sizes can be estimated from Scherrer’s equation:

\[
D = \frac{0.89\lambda}{\beta\cos\theta}
\]

where \(D\) represents the crystallite size, \(\lambda\) stands for the wavelength of the X-ray, \(\beta\) is the corrected half width of the diffraction peak, and \(\theta\) denotes the diffraction angle. The factor 0.89 is characteristic of a spherical particle.

The sizes of the NaYF₄:Yb³⁺, Tm³⁺ nanocrystals doped with Li⁺ concentrations of 0, 5, 7, 10 and 15% were calculated to be about 45, 48, 53, 50 and 46 nm, respectively. To confirm the result, the TEM images of the NaYF₄:Yb³⁺, Tm³⁺ nanocrystals co-doped with different concentrations of Li⁺ ions are given in Fig. 3. The diameters of the nanoparticles in Fig. 3 were about 50 nm, which are consistent with results drawn from the X-ray diffraction (XRD) study. Thus, the introduction of Li⁺ ions resulted in only a little change in the size of the NaYF₄ nanocrystals. The HRTEM image (Fig. 3f) of a NaYF₄ nanoparticle with a doping of 7 mol% Li⁺ ions shows distinct lattice fringes with a \(d\)-spacing of 0.37 nm, ascribed to the (110) plane, which shows that the NPs have a single crystalline feature.

Fig. 3 TEM images of NaYF₄:Yb³⁺, Tm³⁺ nanocrystals doped with different concentrations of Li⁺ ions: (a) 0 mol% Li⁺, (b) 5 mol% Li⁺, (c) 7 mol% Li⁺, (d) 10 mol% Li⁺, (e) 15 mol% Li⁺, (f) HRTEM image of nanoparticle doping with 7 mol% Li⁺ (the inset is the zoomed part of the HRTEM image).

Fig. 4 UC luminescence spectra of NaYF₄:Yb³⁺, Tm³⁺ nanocrystals doped with different concentrations of Li⁺ ions (0–15 mol%) under 980 nm excitation at room temperature (the concentration of Tm³⁺ was the same in all samples). The inset shows the integral intensity of the 452 nm and 479 nm emissions as a function of Li⁺ ion concentration.
intensity reached its maximum, then the intensity was weakened with the further increase of Li⁺ ion concentration, especially when the Li⁺ ion concentration was over 10 mol%.

To visualize the improvement of the UC emission, the photographs of the upconversion luminescence of the NaYF₄:Yb³⁺, Tm³⁺ nanocrystal solutions with different Li⁺ ion concentrations in hexane (1 wt%) excited with a 980 nm laser diode (taken by a digital camera without any additional filter) are provided in Fig. 5. As shown in this figure, the fluorescent strength is significantly increased by introduction of Li⁺ ions and the changes in fluorescent strength are clearly observed with the naked-eye. The luminescence intensity of the NaYF₄:Yb³⁺, Tm³⁺ nanocrystals with 7 mol% Li⁺ ions is the strongest, which was ascribed to the most asymmetric environment of Tm³⁺ in the sample, according to the results from Fig. 2.

In order to study the UC mechanism, the excitation power density dependencies of the UC luminescence were measured, as shown in Fig. 6. For the unsaturated upconversion process, the number of photons required to populate the upper emitting state can be described by the following relation:\(^{21}\)

\[
I_{\text{up}} \propto P^n
\]

where \(I_{\text{up}}\) is the upconversion emission intensity, \(P\) is the pump laser intensity, and \(n\) is the number of pump photons required. As shown in Fig. 6, the slopes (\(n\) values) obtained were 2.22 and 2.57 for the 452 and 479 nm emissions in the NaYF₄:Yb³⁺, Tm³⁺ sample when introducing 7 mol% Li⁺, which are slightly smaller than the \(n\) values (3.77 and 2.76 for 452 and 479 nm, respectively) for the NaYF₄:Yb³⁺, Tm³⁺ nanocrystals (Fig. 6a), indicating that the violet and blue emissions are four- and three-photon processes for the samples with and without Li⁺ ions. The same behavior was observed in other samples (see the ESI, Fig. S1†). The Li⁺ ions cannot absorb 980 nm photons and cannot transfer its energy to Tm³⁺, which indicates that the mechanisms for UC radiation have not been affected by the introduction of Li⁺ ions. However, the \(n\) values change slightly with the change of Li⁺ ion concentration and are smaller than that of the NaYF₄:Yb³⁺, Tm³⁺ nanocrystals without Li⁺ ions. It was reported that a realistic upconversion system that produces detectable upconversion luminescence will exhibit an intensity-versus-power dependence, which is less than the assumed \(P^n\). Competition between the upconversion process and linear decay by luminescence to the ground state or relaxation into the next lower-lying state for the depletion of the intermediate excited states result in a significantly reduced slope.\(^{22}\) A larger upconversion rate means a smaller slope. Introducing Li⁺ ions can increase the upconversion transition rate leading to the enhancement of upconversion luminescence.

Moreover, we measured the time behaviour of the \(^{1}D_2 \rightarrow \ ^{3}F_4\) (452 nm) and \(^{1}G_4 \rightarrow \ ^{3}H_6\) (479 nm) transitions for the NaYF₄:Yb³⁺, Tm³⁺ nanocrystals with 0–15 mol% Li⁺ ions. Fig. 7 shows the normalized decay profiles of the \(^{1}D_2 \rightarrow \ ^{3}F_4\) transition at 452 nm and \(^{1}G_4 \rightarrow \ ^{3}H_6\) transition at 479 nm in the samples. All the decay curves of the samples could be well fitted to a double exponential function (see ESI, Fig. S2 and S3†):\(^{23}\)

\[
I(t) = I_0 - A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)
\]

where \(I_0\) and \(I_0\) are the luminescence intensities at time \(t\) and 0. \(A_1\) and \(A_2\) are constants, \(t\) is time, \(\tau_1\) and \(\tau_2\) represent the rise and decay times of the transient for the exponential components.

When analyzing the curves, one has to realize that the luminescence decay does not always represent the depopulation of the emissive state, and a luminescence rise does not always represent the population of the emissive state as well. This is due to the fact that when a rise and decay component coexist in the luminescence kinetics, the decay is always the longer one,
even if the population is slower than the depopulation. Upconversion luminescence of rare earth ions is just one of such examples. Because the intermediate states mediate the upconversion process, for example, 3H_4 and 3F_4 have much longer lifetimes relative to the final upconversion emission state, and for example the 1D_2 and 1G_4 states, the rise components in our measurements are determined by the lifetimes of the latter states, whereas the intermediate states, that is 3H_4 and 3F_4 states, determine the decay components of the upconversion luminescence kinetics. Therefore, τ_1 mainly reflects the nature of the 1D_2 and 1G_4 states, and τ_2 represents the lifetime of the 3H_4 and 3F_4 states. The fitted lifetimes of the 1D_2 and 1G_4 states of the Tm$^{3+}$ ions for the NaYF$_4$:Yb$^{3+}$, Tm$^{3+}$ nanocrystals with 0–15 mol% Li$^+$ ions are listed in Table 1.

All the decay lifetimes of the 1D_2 state and 1G_4 state of NaYF$_4$:Yb$^{3+}$, Tm$^{3+}$, with different concentrations of Li$^+$ ions, were longer than that of the NaYF$_4$:Yb$^{3+}$, Tm$^{3+}$ nanocrystals without Li$^+$ ions, indicating that the doping of Li$^+$ does improve the luminescence. Furthermore, the lifetimes τ_1 and τ_2 of the 1D_2 and 1G_4 states in the sample with 7 mol% Li$^+$ ions were the longest among the samples, illustrating that at this doping concentration, the lifetime of the intermediate states τ_2 was the longest, which facilitates the population of the emission state, resulting in the longest lifetime of τ_1.

From the steady-state and dynamic upconversion spectroscopy analysis we can visualize the internal structure evolution of the NaYF$_4$ nanocrystals when Li$^+$ ions are added increasingly. At beginning, with a low Li$^+$ concentration, Na$^+$ is replaced and in this period the shrinking of the lattice results in lattice perfection and the UC emission is consequently enhanced, until a concentration of 7 mol% Li$^+$ is reached, when most of the Na$^+$ ions are substituted. Continuously adding Li$^+$ into the crystal causes more and more Li$^+$ ions to occupy interstitial sites, which will cause defect centers and the UC emission is thus reduced.

Fig. 8 shows the possible upconversion luminescence mechanism diagram of the NaYF$_4$:Yb$^{3+}$, Tm$^{3+}$. One energy transfer step from the Yb$^{3+}$ ion to Tm$^{3+}$ ion populates the 3H_5 level of Tm$^{3+}$ from 3H_6. The 3H_5 decays rapidly to the 3F_4 level. The second energy transfer step raises the Tm$^{3+}$ ion from 3F_4 to 3F_2, which quickly decays to 3H_4. Subsequently, the third transfer step raises the Tm$^{3+}$ ion from 3H_4 to 1G_4, which can yield a blue emission upon radiative relaxation back to 3H_6. A fourth energy transfer step from the Yb$^{3+}$ ion to Tm$^{3+}$ ion may also take place to populate the Tm$^{3+}$ ion from the 1G_4 level to 1D_2, which is, however, usually less efficient due to the relatively large energy mismatch. It is well known that the electronic transitions of rare earth ions between different energy levels come from a 4fN configuration. According to the selection rule: $|\Delta J|=2$, $|\Delta L|=0$, ±1 and $\Delta S=0$, the electric dipole transitions are forbidden in the same parity state. However, this prohibition could be broken if the crystal field is changed and the inversion symmetry is relieved, which results in the increasing of the electric dipole transitions probability.

![Fig. 7][1] Decay profiles of $^1D_2 \rightarrow ^3F_4$ transition (a) and $^1G_4 \rightarrow ^3H_6$ transition (b) under 980 nm excitation.

![Fig. 8][2] Schematic illustration of the energy levels involved in the upconversion process of Tm$^{3+}$ with Yb$^{3+}$ as the promoter for NaYF$_4$:Yb$^{3+}$, Tm$^{3+}$ NCs.

Table 1

<table>
<thead>
<tr>
<th>Li$^+$ concentration (mol%)</th>
<th>1D_2</th>
<th>1G_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>τ_1/μs</td>
<td>τ_2/μs</td>
</tr>
<tr>
<td>192</td>
<td>256</td>
<td>224</td>
</tr>
<tr>
<td>261</td>
<td>283</td>
<td>233</td>
</tr>
<tr>
<td>264</td>
<td>378</td>
<td>304</td>
</tr>
<tr>
<td>188</td>
<td>308</td>
<td>262</td>
</tr>
<tr>
<td>173</td>
<td>298</td>
<td>229</td>
</tr>
</tbody>
</table>

Fig. 9 Decay profiles of $^1D_2 \rightarrow ^3F_4$ transition (a) and $^1G_4 \rightarrow ^3H_6$ transition (b) under 980 nm excitation.
Therefore, in the case of the upconversion scenario, a less symmetric crystal symmetry is generally favorable for higher UC efficiency, since intermixing of the lanthanide ion's f states with higher electronic configurations can be more pronounced.24,25

The crystal structure of NaYF₄ is hexagonal with the P6₃mc space group. The primitive unit cell of NaYF₄ has three cationic sites, one for rare earth ions, one for both rare earth and sodium ions, and the third for sodium ions. With the introduction of Li⁺ ions, the Li⁺ ions are substitutional or interstitial in behavior or coexist in the two ways; either way would change the surrounding environment of Tm³⁺ ions and the crystal field. At the same time, introducing Li⁺ ions could lead to a change in the electron distribution density. The change in the environment of the rare earth could lead to hypersensitive electron transition.26 Both types of Li⁺ occupancies lower the local crystal field symmetry around the Tm³⁺ and Yb³⁺ ions, which is in favor of breaking the forbidden transition of the rare earth ions so that the luminescence intensity of Tm³⁺ was enhanced.

4 Conclusions

In conclusion, β-NaYF₄:Yb³⁺, Tm³⁺ nanocrystals doped with different concentrations of Li⁺ ions were first synthesized in search of a novel approach of enhancing UC luminescence. The significant enhancement of the UC emission in NaYF₄:Yb³⁺, Tm³⁺ nanocrystals as a result of the introduction of Li⁺ ions without changes in phase and morphology were observed. In contrast to the lithium-free NaYF₄:Yb³⁻, Tm³⁺, the UC emission intensities of 452 nm and 479 nm of the NPs co-doped with 7 mol% Li⁺ ions were increased by about 8 and 5 times, respectively. The mechanisms for the enhancement of the upconversion emission were also discussed, which can be attributed to the improvement of the crystallinity and the reduced local crystal field symmetry around the Tm³⁺ ions. This work facilitates the use of a Li⁺ doping strategy to enhance the luminescence intensity of lanthanide-doped nanoparticles.

Acknowledgements

This work was financially supported by the NSF of China (11004189, 11174277, 61275202 and 61275197), a joint research program between the CAS of China and KNAW of the Netherlands, the IOP program of the Netherlands, and the John van Genus foundation.

Notes and references