Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles

Published in: Nanoscale

DOI: 10.1039/c3nr01916k

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
1 Introduction

In recent years, upconversion (UC) luminescence of lanthanide-doped nanocrystals, especially inherent low phonon energy NaYF₄-based systems, has drawn considerable attention due to their unique optical properties and potential applications in fields such as volumetric displays, temperature sensors, UC lasers, biomedical imaging, DNA detection, and photodynamic therapy. However, the applications of these UC nanocrystals are still constrained because of their low UC efficiency. Various attempts have been devoted to improving this aspect, including both internal adjustments and external approaches, such as varying the crystal phase of the nanoparticles, introducing a co-dopant sensitizer, crystal surface coating, the application of a core–shell structure, and others. Despite these efforts, which provide vast promise for its applications, challenges are even more when short wavelength upconversion emission is required, where more than two photons are needed to generate a UC photon.

It is well established that the upconversion emission of rare-earth ion-doped materials is dependent on their intra 4f transition probabilities, which is significantly affected by the local crystal field symmetry of the rare-earth ions and crystalline perfection. Due to its small ionic radius, Li⁺ ions can be doped easily into the host lattice substitutionally or interstitially, which will break the symmetry of the crystal field around it, leading to the enhancement of the UC luminescence of Er³⁺ ion-doped nanocrystals. For example Zhang’s group reported significant enhancement of the visible UC radiation in Y₂O₃:Yb³⁺, Er³⁺ nanocrystals by co-doping with Li⁺ ions. Despite all this work, the underlying mechanism is not completely distinct. On the other hand, the electronic structure of Tm³⁺ is suitable for generating some specific upconversion emissions which are of significance for activating certain chemical or biological processes. For example, the violet UC light can be used to excite channelrhodopsins, which are a subfamily of opsin proteins that function as light-gated ion channels in neural cells, and to photochemical catalysis; blue UC nanocrystals are vital to realize multicolor fluorescence bio-labels. Blue UC emissions can also excite several FDA approved photosensitizers making it possible for use in cancer diagnosis and UC photodynamic therapy. However, in the NaYF₄ host lattice, the violet and blue UC lights are too weak to use because the UC processes involve three or four photons.

To face the challenge, NaYF₄:Yb³⁺, Tm³⁺ nanocrystals doped with Li⁺ ions of various concentrations were studied in detail in this work. Significant UC luminescence enhancement was observed compared with their Li⁺-free counterpart. Most importantly, the role of Li⁺ in the UC enhancement was determined to be a joint effect of the perfection in the crystallinity and the distortion of the local symmetry of the emitters.

Citing this: Nanoscale, 2013, 5, 8084

DOI: 10.1039/c3nr01916k

www.rsc.org/nanoscale
2 Experimental section

2.1 Synthesis of β-NaYF₄:Yb³⁺, Tm³⁺ nanoparticles

β-NaYF₄ was prepared following a reported procedure with some modifications. Specifically, 1 mmol of the lanthanide chlorides (0.795 mmol YCl₃·6H₂O, 0.20 mmol YbCl₃·6H₂O and 0.005 mmol TmCl₃·6H₂O) were taken in a 100 ml 3-necked flask, where 15 ml of octadecene and 6 ml of oleic acid were also added. The flask was then heated to 160 °C under an argon atmosphere and held at this temperature for 30 min to achieve a homogenous solution. Subsequently, the flask was cooled to room temperature and 10 ml methanol solution containing 4 mmol NH₄F and 2.5 mmol NaOH and LiOH·H₂O was added dropwise. The resulting solution was stirred at room temperature and heated slowly to 70 °C for 30 min until the methanol had evaporated. The reaction vessel was then brought under a gentle flow of argon and heated up to 300 °C for 90 min. The flask was then cooled to room temperature and the nanoparticles were precipitated by adding ethanol, centrifuged and washed with ethanol. The isolated oleate-stabilized nanoparticles were stored as a 1 wt% dispersion in 6 ml of cyclohexane.

2.2 Characterization

XRD studies were performed on powders using a Bruker D8 Focus X-ray diffractometer system with monochromatized Cu-Kα radiation (λ = 1.5418 Å). Upconversion emission spectra were acquired using a Jobin Yvon LabRam Raman spectrometer system equipped with holographic gratings of 1800 and 600 grooves per mm resolution, respectively, and a Peltier air-cooled CCD detector. A 980 nm laser diode was used as the excitation source and the beam was focused (about 8 cm focal length) to a spot size of approximately 0.2 mm in diameter to reach high excitation density. Upconversion luminescence kinetics was recorded with a 500 MHz Tektronix digital oscilloscope and the excitation was realized by a nanosecond pulse train at 980 nm from an optical parametric oscillator. Precise control of the sample temperature (0.1 °C) was achieved by means of a Linkam THMS600 temperature-programmable heating/cooling microscope stage. The THMS stage was used in conjunction with a Linkam LNP cooling system when cooling. In the excitation power-dependent upconversion luminescence experiments, the power density increased step by step to guarantee that the thermal equilibrium was reached, and the collection time was about 30 s.

3 Results and discussion

The crystal structures and the phase purity of the as-prepared products were examined by XRD. The typical XRD patterns of them the as-prepared products are presented in Fig. 1. All diffraction peaks of the samples matched very well with the 100, 110, 101, 200, 111, 201, 210, 002, 300, 211, 102, 112, 220, 202, and 310 reflection peaks of hexagonal NaYF₄ (JCPDS 16-0344). No other impurity peaks were detected, which revealed that pure β-NaYF₄ had been fabricated. Interestingly, when zooming in on the pattern, the positions of the diffraction peaks were found to shift slightly with the Li⁺ doping concentration. An example is given in Fig. 2, where the main diffraction peak at 17.1° is shifted towards a larger angle as the Li⁺ ion concentration is increased up to 7 mol%, then moved backwards when the Li⁺ ion concentration continued to increase to 15 mol%. A similar behaviour was also observed for the other peaks. It is known that a larger lattice constant is related to a smaller diffraction angle, and vice versa. Therefore, the structure of the
lattice of the NaYF₄ corresponded non-monotonously to the Li⁺ ion concentration: at low doping concentrations the crystal lattice is shrinking, but at high concentrations the lattice is expanding. As far as the doping method of the Li⁺ ions is concerned, this non-monotonous behaviour should correspond to the substitution and interstitial sites of the Li⁺ ions, which can be determined using Bragg’s law 2d sin θ = nλ, where d is the interplanar distance, θ is the diffraction angle, and λ is the diffraction wavelength. When Li⁺ ions substitute Na⁺ ions the lattice shrinks, as the interplanar distance is reduced, resulting in the θ becoming larger; when Li⁺ ions were at interstitial sites, the interplanar distance increased and θ became smaller. The effective ionic radius of Na⁺ and Li⁺ are 0.97 Å and 0.68 Å, respectively. So Li⁺ ions are small enough to substitute Na⁺ to or to occupy interstitial sites. Similar results were also observed in the system of NaGdF₄:Yb³⁺, Er³⁺ co-doped with Li⁺ ions.

Information on the size and crystallinity of the nanocrystals can be obtained from the width of the diffraction peaks. As shown in Fig. 2b, the full width at half maximum (FWHM) was gradually narrowed as the Li⁺ ion concentration increased up to 7 mol%, and then broadened as the concentration further increased. Combining these results with the morphology information shown in Fig. 3, where Li⁺ ion-doping caused little change in the size and shape, leads to the conclusion that the crystallinity of the nanoparticles was improved when the Li⁺ ion concentration was lower than 7 mol%, and reduced when the Li⁺ ion concentration was greater than 7 mol%, and then broadened as the concentration further increased. A somewhat mild enhancement of the UC emissions of NaYF₄:Yb³⁺, Tm³⁺ nanocrystals with a doping of 7 mol% Li⁺ ions shows distinct lattice fringes with a d-spacing of 0.37 nm, ascribed to the (110) plane, which shows that the NPs have a single crystalline feature.

Fig. 3 shows the UC luminescence spectra of NaYF₄:Yb³⁺, Tm³⁺ nanocrystals doped with different concentrations of Li⁺ ions at room temperature under 980 nm laser excitation. Four distinct peaks in the range of 300–700 nm were observed. The dominant violet and blue emissions at 450 nm and 479 nm were assigned to the 1D₂ → 3F₄ and 1G₄ → 3H₆ transitions, respectively, the red emission at 646 nm was attributed to the 1G₄ → 3F₄ transition, and the ultraviolet emission at 360 nm was attributed to the 1D₂ → 3H₄ transition. In addition, the violet and blue UC luminescence were distinctly enhanced when the concentration of the Li⁺ ions changed from 5 to 7 mol%, while the enhancing magnitude differed for the red emissions. The strongest UC emission was observed in the sample with a Li⁺ concentration of 7 mol% and the violet and blue emissions were about 8 and 5 times stronger than the Li⁺-free sample. The somewhat mild enhancement of the UC emissions of NaYF₄:Yb³⁺, Tm³⁺ nanocrystals by Li⁺ ions compared with the report of the NaGdF₄:Yb³⁺, Er³⁺ nanocrystals could have something to do with to the matching of the energy levels between Tm³⁺ and Yb³⁺ being not as good as that between Er³⁺ and Yb³⁺.

The inset of Fig. 4 shows the Li⁺ concentration dependence of the integral intensity of 452 nm and 479 nm. The similar trend suggests that they have the same UC pathway. As shown in the inset of Fig. 4, the violet and blue UC emissions were enhanced dramatically with the increase of Li⁺ ion concentration. When the Li⁺ ion concentration reached 7 mol%, the UC luminescence

![Fig. 3 TEM images of NaYF₄:Yb³⁺, Tm³⁺ nanocrystals doped with different concentrations of Li⁺ ions: (a) 0 mol% Li⁺, (b) 5 mol% Li⁺, (c) 7 mol% Li⁺, (d) 10 mol% Li⁺, (e) 15 mol% Li⁺, (f) HRTEM image of nanoparticle doping with 7 mol% Li⁺ (the inset is the zoomed part of the HRTEM image).](image)

![Fig. 4 UC luminescence spectra of NaYF₄:Yb³⁺, Tm³⁺ nanocrystals doped with different concentrations of Li⁺ ions (0–15 mol%) under 980 nm excitation at room temperature (the concentration of Tm³⁺ was the same in all samples). The inset shows the integral intensity of the 452 nm and 479 nm emissions as a function of Li⁺ ion concentration.](image)
intensity reached its maximum, then the intensity was weakened with the further increase of Li\(^+\) ion concentration, especially when the Li\(^+\) ion concentration was over 10 mol%.

To visualize the improvement of the UC emission, the photographs of the upconversion luminescence of the NaYF\(_4\):Yb\(^{3+}\), Tm\(^{3+}\) nanocrystal solutions with different Li\(^+\) ion concentrations in hexane (1 wt%) excited with a 980 nm laser diode (taken by a digital camera without any additional filter) are provided in Fig. 5. As shown in this figure, the fluorescent strength is significantly increased by introduction of Li\(^+\) ions and the changes in fluorescence strength are clearly observed with the naked-eye. The luminescence intensity of the NaYF\(_4\):Yb\(^{3+}\), Tm\(^{3+}\) nanocrystals with 7 mol% Li\(^+\) ions is the strongest, which was ascribed to the most asymmetric environment of Tm\(^{3+}\) in the sample, according to the results from Fig. 2.

In order to study the UC mechanism, the excitation power density dependencies of the UC luminescence were measured, as shown in Fig. 6. For the unsaturated upconversion process, the number of photons required to populate the upper emitting state can be described by the following relation:\(^{21}\)

\[
I_{up} \propto P^n
\]

where \(I_{up}\) is the upconversion emission intensity, \(P\) is the pump laser intensity, and \(n\) is the number of pump photons required. As shown in Fig. 6, the slopes (\(n\) values) obtained were 2.22 and 2.57 for the 452 and 479 nm emissions in the NaYF\(_4\):Yb\(^{3+}\), Tm\(^{3+}\) sample when introducing 7 mol% Li\(^+\), which are slightly smaller than the \(n\) values (3.77 and 2.76 for 452 and 479 nm, respectively) for the NaYF\(_4\):Yb\(^{3+}\), Tm\(^{3+}\) nanocrystals (Fig. 6a), indicating that the violet and blue emissions are four- and three-photon processes for the samples with and without Li\(^+\) ions. The same behavior was observed in other samples (see the ESI, Fig. S1†). The Li\(^+\) ions cannot absorb 980 nm photons and cannot transfer its energy to Tm\(^{3+}\), which indicates that the mechanisms for UC radiation have not been affected by the introduction of Li\(^+\) ions. However, the \(n\) values change slightly with the change of Li\(^+\) ion concentration and are smaller than that of the NaYF\(_4\):Yb\(^{3+}\), Tm\(^{3+}\) nanocrystals without Li\(^+\) ions. It was reported that a realistic upconversion system that produces detectable upconversion luminescence will exhibit an intensity-\(P^n\)-power dependence, which is less than the assumed \(P^n\). Competition between the upconversion process and linear decay by luminescence to the ground state or relaxation into the next lower-lying state for the depletion of the intermediate excited states result in a significantly reduced slope.\(^{21}\) A larger upconversion rate means a smaller slope. Introducing Li\(^+\) ions can increase the upconversion transition rate leading to the enhancement of upconversion luminescence.

Moreover, we measured the time behaviour of the \(^1\)D\(_2\) \(\rightarrow\) \(^3\)F\(_4\) (452 nm) and \(^1\)G\(_4\) \(\rightarrow\) \(^3\)H\(_6\) (479 nm) transitions for the NaYF\(_4\):Yb\(^{3+}\), Tm\(^{3+}\) nanocrystals with 0–15 mol% Li\(^+\) ions. Fig. 7 shows the normalized decay profiles of the \(^1\)D\(_2\) \(\rightarrow\) \(^3\)F\(_4\) transition at 452 nm and \(^1\)G\(_4\) \(\rightarrow\) \(^3\)H\(_6\) transition at 479 nm in the samples. All the decay curves of the samples could be well fitted to a double exponential function (see ESI, Fig. S2 and S3†):

\[
I(t) = I_0 - A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)
\]

where \(I_0\) and \(I(t)\) are the luminescence intensities at time \(t\) and 0. \(A_1\) and \(A_2\) are constants, \(t\) is time, \(\tau_1\) and \(\tau_2\) represent the rise and decay times of the transient for the exponential components.

When analyzing the curves, one has to realize that the luminescence decay does not always represent the depopulation of the emissive state, and a luminescence rise does not always represent the population of the emissive state as well. This is due to the fact that when a rise and decay component coexist in the luminescence kinetics, the decay is always the longer one,
even if the population is slower than the depopulation. Upconversion luminescence of rare earth ions is just one of such examples. Because the intermediate states mediate the upconversion process, for example, the intermediate states, that is \(^3\)H\(_4\) and \(^3\)F\(_4\) states, determine the decay components of the upconversion luminescence kinetics. Therefore, \(\tau_1\) mainly reflects the nature of the \(^1\)D\(_2\) and \(^1\)G\(_4\) states, and \(\tau_2\) represents the lifetime of the \(^3\)H\(_4\) and \(^3\)F\(_4\) states. The fitted lifetimes of the \(^1\)D\(_2\) and \(^1\)G\(_4\) states of the Tm\(^{3+}\) ions for the NaYF\(_4\):Yb\(^{3+}\), Tm\(^{3+}\) nanocrystals with 0–15 mol% Li\(^+\) ions are listed in Table 1.

All the decay lifetimes of the \(^1\)D\(_2\) state and \(^1\)G\(_4\) state of NaYF\(_4\):Yb\(^{3+}\), Tm\(^{3+}\), with different concentrations of Li\(^+\) ions, were longer than that of the NaYF\(_4\):Yb\(^{3+}\), Tm\(^{3+}\) nanocrystals without Li\(^+\) ions, indicating that the doping of Li\(^+\) does improve the luminescence. Furthermore, the lifetimes \(\tau_1\) and \(\tau_2\) of the \(^1\)D\(_2\) and \(^1\)G\(_4\) states in the sample with 7 mol% Li\(^+\) ions were the longest among the samples, illustrating that at this doping concentration, the lifetime of the intermediate states \(\tau_2\) was the longest, which facilitates the population of the emission state, resulting in the longest lifetime of \(\tau_1\).

From the steady-state and dynamic upconversion spectroscopy analysis we can visualize the internal structure evolution of the NaYF\(_4\) nanocrystals when Li\(^+\) ions are added increasingly. At beginning, with a low Li\(^+\) concentration, Na\(^+\) is replaced and in this period the shrinking of the lattice results in lattice perfection and the UC emission is consequently enhanced, until a concentration of 7 mol% Li\(^+\) is reached, when most of the Na\(^+\) ions are substituted. Continuously adding Li\(^+\) into the crystal causes more and more Li\(^+\) ions to occupy interstitial sites, which will cause defect centers and the UC emission is thus reduced.

Table 1: Lifetimes of the \(^1\)D\(_2\) and \(^1\)G\(_4\) states of Tm\(^{3+}\) ions in the NaYF\(_4\):Yb\(^{3+}\), Tm\(^{3+}\) nanocrystals with 0–15 mol% Li\(^+\) ions

<table>
<thead>
<tr>
<th>Li(^+) concentration (mol%)</th>
<th>(^1)D(_2)</th>
<th>(^1)G(_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>192 (\mu s)</td>
<td>256 (\mu s)</td>
</tr>
<tr>
<td>5</td>
<td>261 (\mu s)</td>
<td>283 (\mu s)</td>
</tr>
<tr>
<td>7</td>
<td>264 (\mu s)</td>
<td>378 (\mu s)</td>
</tr>
<tr>
<td>10</td>
<td>188 (\mu s)</td>
<td>308 (\mu s)</td>
</tr>
<tr>
<td>15</td>
<td>173 (\mu s)</td>
<td>298 (\mu s)</td>
</tr>
</tbody>
</table>

Fig. 7 Decay profiles of \(^1\)D\(_2\) \(\rightarrow\) \(^3\)F\(_4\) transition (a) and \(^1\)G\(_4\) \(\rightarrow\) \(^3\)H\(_6\) transition (b) under 980 nm excitation.

Fig. 8 Schematic illustration of the energy levels involved in the upconversion process of Tm\(^{3+}\) with Yb\(^{3+}\) as the promoter for NaYF\(_4\):Yb\(^{3+}\), Tm\(^{3+}\) NCs.
Therefore, in the case of the upconversion scenario, a less symmetric crystal symmetry is generally favorable for higher UC efficiency, since intermixing of the lanthanide ion’s f states with higher electronic configurations can be more pronounced.\(^4,^{25}\)

The crystal structure of NaYF\(_4\) is hexagonal with the \(P6_3m\) space group. The primitive unit cell of NaYF\(_4\) has three cationic sites, one for rare earth ions, one for both rare earth and sodium ions, and the third for sodium ions. With the introduction of Li\(^+\) ions, the Li\(^+\) ions are substitutional or interstitial in behavior or coexist in the two ways; either way would change the surrounding environment of Tm\(^{3+}\) ions and the crystal field. At the same time, introducing Li\(^+\) ions could lead to a change in the electron distribution density. The change in the environment of the rare earth could lead to hypersensitive electron transition.\(^{26}\) Both types of Li\(^+\) occupancies lower the local crystal field symmetry around the Tm\(^{3+}\) and Yb\(^{3+}\) ions, which is in favor of breaking the forbidden transition of the rare earth ions so that the luminescence intensity of Tm\(^{3+}\) was enhanced.

4 Conclusions

In conclusion, \(\beta\)-NaYF\(_4\):Yb\(^{3+}\), Tm\(^{3+}\) nanocrystals doped with different concentrations of Li\(^+\) ions were first synthesized in search of a novel approach of enhancing UC luminescence. The significant enhancement of the UC emission in NaYF\(_4\):Yb\(^{3+}\), Tm\(^{3+}\) nanocrystals as a result of the introduction of Li\(^+\) ions without changes in phase and morphology were observed. In contrast to the lithium-free NaYF\(_4\):Yb\(^{3+}\), Tm\(^{3+}\), the UC emission intensities of 452 nm and 479 nm of the NPs co-doped with 7 mol\% Li\(^+\) ions were increased by about 8 and 5 times, respectively. The mechanisms for the enhancement of the upconversion emission were also discussed, which can be attributed to the improvement of the crystallinity and the reduced local crystal field symmetry around the Tm\(^{3+}\) ions. This work facilitates the use of a Li\(^+\) doping strategy to enhance the luminescence intensity of lanthanide-doped nanoparticles.

Acknowledgements

This work was financially supported by the NSF of China (11004189, 11174277, 10904412, 61275202 and 61275197), a joint research program between the CAS of China and KNAW of the Netherlands, the IOP program of the Netherlands, and the John von Guesn foundation.

Notes and references