Light trapping in solar cells using resonant nanostructures
Spinelli, P.

Citation for published version (APA):
Spinelli, P. (2013). Light trapping in solar cells using resonant nanostructures

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
List of publications

This thesis is based on the following publications:

- *Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate*, P. Spinelli, M. van Lare, E. Verhagen and A. Polman, Optics Express 19, A303-A311 (2011). *(Chapter 3)*

- *Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles*, P. Spinelli and A. Polman, Optics Express 20, A641-A654 (2012). *(Chapter 5)*

- *Experimental demonstration of light trapping beyond the 4n^2 limit in thin Si slabs using resonant surface Si Mie scatterers*, P. Spinelli, C. Teplin, M. A. Verschuuren and A. Polman, in preparation. *(Chapter 8)*

- *Effect of EVA encapsulation on light trapping in thin-film c-Si solar cells by using plasmonic and Mie nanoscaters*, P. Spinelli, B. Newman and A. Polman, in preparation. *(Chapter 10)*
Other publications by the author:

