Macrophage regulatory mechanisms in atherosclerosis

Neele, A.E.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Chapter 4

Inhibiting epigenetic enzymes to improve atherogenic macrophage functions

Jan Van den Bossche, Annette E. Neele, Marten A. Hoeksema, Femke de Heij, Marieke C.S. Boshuizen, Saskia van der Velden, Vincent C. de Boer, Kris A. Reedquist, Menno P.J. de Winther

Biochemical and Biophysical Research Communications. 2014;455(3-4):396-402.
Abstract

Macrophages determine the outcome of atherosclerosis by propagating inflammatory responses, foam cell formation and eventually necrotic core development. Yet, the pathways that regulate their atherogenic functions remain ill-defined. It is now apparent that chromatin remodeling chromatin modifying enzymes (CME) governs immune responses but it remains unclear to what extent they control atherogenic macrophage functions.

We hypothesized that epigenetic mechanisms regulate atherogenic macrophage functions, thereby determining the outcome of atherosclerosis. Therefore, we designed a quantitative semi-high-throughput screening platform and studied whether the inhibition of CME can be applied to improve atherogenic macrophage activities.

We found that broad spectrum inhibition of histone deacetylases (HDACs) and histone methyltransferases (HMT) has both pro- and anti-inflammatory effects. The inhibition of HDACs increased histone acetylation and gene expression of the cholesterol efflux regulators \textit{ATP-binding cassette transporters} ABCA1 and ABCG1, but left foam cell formation unaffected. HDAC inhibition altered macrophage metabolism towards enhanced glycolysis and oxidative phosphorylation and resulted in protection against apoptosis. Finally, we applied inhibitors against specific HDACs and found that HDAC3 inhibition phenocopies the atheroprotective effects of pan-HDAC inhibitors.

Based on our data, we propose the inhibition of HDACs, and in particular HDAC3, in macrophages as a novel potential target to treat atherosclerosis.
Abstract

Macrophages determine the outcome of atherosclerosis by propagating inflammatory responses, foam cell formation and eventually necrotic core development. Yet, the pathways that regulate their atherogenic functions remain ill-defined. It is now apparent that chromatin remodeling chromatin modifying enzymes (CME) governs immune responses but it remains unclear to what extent they control atherogenic macrophage functions.

We hypothesized that epigenetic mechanisms regulate atherogenic macrophage functions, thereby determining the outcome of atherosclerosis. Therefore, we designed a quantitative semi-high-throughput screening platform and studied whether the inhibition of CME can be applied to improve atherogenic macrophage activities.

We found that broad spectrum inhibition of histone deacetylases (HDACs) and histone methyltransferases (HMT) has both pro- and anti-inflammatory effects. The inhibition of HDACs increased histone acetylation and gene expression of the cholesterol efflux regulators ATP-binding cassette transporters ABCA1 and ABCG1, but left foam cell formation unaffected. HDAC inhibition altered macrophage metabolism towards enhanced glycolysis and oxidative phosphorylation and resulted in protection against apoptosis. Finally, we applied inhibitors against specific HDACs and found that HDAC3 inhibition phenocopies the atheroprotective effects of pan-HDAC inhibitors. Based on our data, we propose the inhibition of HDACs, and in particular HDAC3, in macrophages as a novel potential target to treat atherosclerosis.

Inhibiting epigenetic enzymes to improve atherogenic macrophage functions

Introduction

Current atherosclerosis medication efficiently lowers plasma cholesterol levels, but reduces the risk for cardiovascular disease only partially. Therefore, alternative treatment strategies are needed [1]. During atherosclerosis initiation, accumulation of low-density lipoproteins (LDL) and their modifications (e.g. oxidation to oxLDL) in the arterial wall activate endothelial cells. Attracted monocytes adhere to and migrate into the vessel wall, where they differentiate into macrophages and can become lipid-loaded foam cells. Upon atherosclerosis progression, additional immune cells propagate chronic inflammation and proliferating smooth muscle cells enclose the lesion with a fibrous cap. Apoptotic foam cells can be eliminated by neighboring macrophages through efferocytosis or can form a necrotic core. Additionally, macrophage-derived metalloproteases can induce thinning of the fibrous cap and when so-called ‘vulnerable’ plaques rupture this can cause myocardial infarction and stroke [2].

While macrophages clearly play a central role in different stages of atherogenesis, surprisingly little is known about the molecular mechanisms that regulate their phenotype within the plaque [3]. Macrophages display high heterogeneity and in response to the microenvironment adopt different polarization states [4]. Classically activated (M1) macrophages, activated by Toll-like-receptor (TLR) triggers and Th1 cytokines, are pro-inflammatory and are therefore regarded as pro-atherogenic. Interleukin-4 (IL-4)/IL-13-induced alternatively activated (M2) macrophages are considered anti-atherogenic by counteracting inflammation and by efferocytosis. However, M2 macrophages can also aggravate atherogenesis through oxLDL-uptake [1-3]. Oxidized phospholipids, produced in atherosclerotic plaques, induce Mox macrophages that are characterized by an anti-oxidant response [5]. A strategy that promotes anti-inflammatory M2 features and/or inhibits pro-inflammatory, pro-atherogenic macrophage actions could be envisaged as an atheroprotective treatment [3].

Histone modifications by CME govern multiple aspects of inflammation and immunity [6]. Histone acetylation on lysine (K) residues by histone acetyltransferases (HATs) is associated with transcriptional activation and is counteracted by HDACs. Histone methylation is regulated by histone methyltransferases (HMTs) and histone demethylases (HDMs). Di- or tri-methylation of histone H3K4, H3K36 and H3K79 is associated with activation of transcription, whereas H3K9me2/3 and H3K27me3 constitute repressive marks. In macrophages, the histone demethylase Jmjd3 regulates responses to various stimuli, and HDAC3 promotes inflammatory M1 activation while inhibiting M2 [7]. Pharmaceutical companies are currently pursuing...
CME-inhibitors as a therapy against inflammatory diseases and we consider such approaches to be valuable for atherosclerosis treatment as well.

To study which CME might be favorable to inhibit in macrophages during atherogenesis, we designed a screening that addresses all major atherogenic macrophage features. Based on our data, we propose macrophage-specific inhibition of HDAC3 as a potential therapeutic target in atherosclerosis.

Materials and Methods

Cell culture and reagents
Femurs and tibia from C57Bl/6 mice were flushed with PBS and bone marrow cells were cultured 8 days in RPMI-1640 2mM L-glutamine, 10 % FCS, penicillin (100 U/ml), streptomycin (100 μg/ml) (Gibco) and 15 % L929-conditioned medium. Unless otherwise indicated, the resulting bone marrow-derived macrophages (BMMs) were plated in 150 μl at 10⁶/ml in a confluent monolayer in 96-well microplates (Greiner). Cells were left untreated or were pretreated 30 minutes with the following commonly used [8-11] pan-inhibitors (Sigma): 50 nM trichostatin A (TSA; HDAC inhibitor [HDACi]), 50 μM epigallocatechin-3-gallate (EGCG; HATi), 10 μM pargyline (HDMi), 0.5 mM 5'-methylthioadenosine (MTA, HMTi) or 0.5 % DMSO as a control for HMTi. Inhibitor concentrations were selected based on previous studies [8-11] and a MTT toxicity assay (data not shown). The pan-HDAC inhibitor ITF2357 (250 nM) and small molecule inhibitors with distinct specificities against particular HDACs were synthesized at Italfarmaco (Milan, Italy) [12]. The HDAC8i retains high selectivity for HDAC8 up to 10 μM and all information about the specificity of the other inhibitors is provided in supplementary table 1. BMMs were activated with 10 ng/ml LPS or 2 µg/ml LTA (lipoteichoic acid, Sigma) for 6 or 24 h, or were stimulated 24 h with 10 U/ml interferon-γ (IFNγ, Peprotech) + 10 ng/ml LPS, 100 U/ml IL-4 (Peprotech) or 50 µg/ml oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (oxPAPC,Invivogen) to elicit M1, M2 or Mox macrophages, respectively.

Gene expression analysis
RNA was isolated with High Pure RNA Isolation kits (Roche), cDNA was synthesized from RNA with iScript (Bio-rad) and real-time PCR was performed using Sybr Green Fast mix (Applied Biosytems) on a ViiA7 apparatus (Applied Biosystems). Gene expression was normalized to the mean expression of housekeeping genes *Rplp0* (Arbp) and *Ppia* (CypA). Primer sequences are available on request.
Foam cell formation
After overnight inhibitor pretreatment and Dil-oxLDL (Biotrend) treatment (3h, 10 μg/ml), oxLDL-uptake was measured by flow cytometry (BD CantoII). For lipid staining, BMMs were pretreated with the inhibitors for 30 min, stimulated with 50 μg/ml oxLDL (BTI) and stained with LipidTOX Red (Invitrogen) according to the manufacturer’s protocol. The median fluorescence intensities (MFI) were calculated with FlowJo. Alternatively, cells were lysed in water with 1% Triton and free and total cholesterol was determined using an established enzymatic fluorometric assay [13]. Protein concentrations in the cell lysates were measured with a Pierce BCA assay and used to normalize cholesterol concentrations.

Apoptosis
After 30 min inhibitor pretreatment, BMMs were left untreated or were stimulated overnight with 20 μg/ml 7-ketocholesterol (7KC; Sigma), 50 μg/ml oxLDL or 10 μg/ml 25-hydroxycholesterol (25OHC; Sigma) and stained with propidium iodide (PI)/Annexin-V-Alexa-Fluor647 (Invitrogen) according the the manufacturer’s protocol. The percentage living (Annexin-V-/PI-), early apoptotic (Annexin-V+/PI-), late apoptotic (Annexin-V+/PI+) and necrotic (Annexin-V-/PI+) macrophages was measured in a FACS Canto II.

Metabolic assay
BMMs were plated in XF-96 cell culture plates and either left untreated or pretreated with the CME-inhibitors, followed by M1 or M2 polarization. Metabolic fluxes were analyzed in an XF-96 Flux Analyzer (Seahorse Biosciences) three times with 5 minutes intervals per the manufacturer’s protocol.

Statistical analysis
Data represent the mean ± SEM of one representative experiment. Data were evaluated with GraphPad Prism 4 using one-way ANOVA and values represent the mean ± SEM of 3 replicates; *P <0.05; **P <0.01; ***P <0.001.

Chapter 4

Results

Study design: a phenotypic in vitro screening platform to identify compounds that improve atherogenic macrophage functions

To identify CME-inhibitors that affect atherogenic macrophage activities, we designed a phenotypic screening that addresses major atherogenic macrophage features, including adhesion to endothelial cells, activation and inflammatory cytokine production, foam cell formation, apoptosis and efferocytosis. All assays were designed in a quantitative 96-well-plate-based semi-high-throughput format, providing a new tool to screen large numbers of modulators for their involvement in atherogenic macrophage functions in a fast manner and requiring minimal amounts of materials. First we performed a cell adhesion assay and found that macrophage/endothelial cell-adhesion was not affected by pre-treatment of BMMs with CME-inhibitors (Figure S.1).

HDAC and HMT inhibitors dampen inflammatory macrophage responses in M1 and regulate M2 and Mox macrophage polarization

To test the involvement of epigenetic enzymes in macrophage activation, we pretreated BMMs with the different CME-inhibitors and challenged them with LPS for 6 or 24 hours. Blocking HDACs and HMTs profoundly impaired LPS-induced production of most inflammatory cytokines (except for tumor necrosis factor [TNF] at 24 h) and nitric oxide (NO, Figure S.2.A-B). HAT and HDM inhibition had only minor effects on the secretion of pro-inflammatory cytokines. Similar results were observed for LTA-induced TLR2/6-responses (Figure S.2.C).

In accordance with their inhibitory effect on TLR-responses, HDACi also reduced IFNγ+LPS-induced Tnf, Il6 and Nos2 expression in M1 macrophages (Figure 1.A) and the resulting secretion of IL-6 and NO (Figure S.2.D). On the other hand, HDAC inhibition profoundly enhanced the expression of the M1 transcription factor Stat1 (Figure 1.A). While the HATi and HDMi did not affect IFNγ+LPS-induced activation, the HMTi impaired Tnf expression and resulted in a drop in IL-6 and TNF secretion (Figure 1.A and S.2.D). In contrast, HMT inhibition enhanced IFNγ+LPS-induced Il1b expression (Figure 1.A).

Overall, these data show that HDAC and HMT inhibition partly impair inflammatory macrophage responses, but at the same time promote the expression of other M1 marker genes. In addition to inflammatory activation, macrophages can be alternatively activated by IL-4 or can be polarized towards Mox macrophages by oxPAPC [5] but the effect of CME-inhibition on these modes of macrophage activation remains unexplored. Here, we found that HDAC inhibition impaired the IL-4-induced expression of the M2 markers [4] Arg1, Retnla and Chi3l3 (Figure 1.B). Conversely, the
gene encoding the M2 marker E-cadherin (Cdh1) [15] was more efficiently induced by IL-4 after HDAC inhibition. Additionally, the HDACi and HMTi potentiated the expression of some Mox-associated genes [5] (Figure 1.C). Together these observations show that both HDACs and HMTs regulate M1, M2 and Mox polarization.

Figure 1: HDAC and HMT inhibition partly impair M1 macrophage activation, and affect M2 and Mox polarization. BMMs were pretreated with CME-inhibitors or were left untreated for 30 min, followed by 24 h (A) LPS+IFNγ (M1), (B) IL-4 (M2) or (C) oxPAPC (Mox) stimulation. Fold inductions were determined relative to the expression in untreated cells. HDACi-, HATi- and HDMi-pretreated conditions were compared to a control without pretreatment (N) and DMSO-pretreated cells served as control for HMTi (dotted lines).

HDAC inhibition enhances histone acetylation and expression of Abca1 and Abcg1, but does not affect foam cell formation

Since foam cell formation is a crucial hallmark of atherosclerosis, we set out to analyze the effect of the CME-inhibitors on oxLDL-uptake and the resulting foam cell formation. Hereto, we first pretreated BMMs with the CME-inhibitors before adding fluorescent Dil-oxLDL. All compounds reduced Dil-oxLDL uptake after 3 h incubation (Figure 2.A). Yet, only the HATi EGCG effectively reduced foam cell formation after 24 h (Figure 2.B). While EGCG is an established HATi and could affect foam cell formation by regulating the expression of scavenger receptors and efflux proteins, EGCG also influences micellar cholesterol solubility [16] and could in this way also alter foam cell formation. In an attempt to explain the observed effects on oxLDL uptake, we measured the expression of Cd36 and Msr1 as oxLDL uptake mediators and Abca1 and
Abcg1 as cholesterol efflux regulators. While the expression of Cd36 and Msr1 was not altered by any compound tested, Abca1 and Abcg1 expression were increased upon HDAC inhibition (Figure 2.C) and these levels correlated with increased histone acetylation at both promoters (data not shown). Yet, increased Abca1 and Abcg1 expression and histone acetylation did not affect foam cell formation. EGCG did not modulate the expression of oxLDL uptake receptors or efflux proteins and thus probably exerts its effect on foam cell formation through the modulation of cholesterol solubility.

Figure 2: HDAC inhibition reduces foam cell formation, promotes Abca1 and Abcg1 expression and increases histone acetylation in the promoter regions of both cholesterol efflux regulators. (A) BMMs were pretreated overnight with different CME-inhibitors or were left untreated, followed by 3 h incubation with Dil-labeled oxLDL. (B) To analyze longer-term foam cell formation, pretreated (30 min) BMMs were stimulated for 24 h with oxLDL followed by the measurement of free and total cholesterol. (C) For gene expression analysis, BMMs were pretreated for 30 min with different CME-inhibitors or were left untreated, followed by 24 h oxLDL stimulation. Fold inductions were determined relative to the expression in untreated cells. HDACi-, HATi- and HDMi-pretreated conditions were compared to a control without pretreatment (N) and DMSO-pretreated cells served as control for HMTi (dotted lines).

Apoptosis of macrophages and foam cells is reduced by HDAC inhibition
Since macrophage apoptosis and impaired efferocytosis impair plaque stability, we tested whether CME-inhibitors could be applied to decrease apoptosis and to improve efferocytosis. BMMs were pretreated with the different CME-inhibitors and were next left untreated or were stimulated with 7KC, oxLDL or 25OHC. HDACi and HDMi treatment reduced basal macrophage apoptosis (Figure 3.A). Inhibition of HDACs reduced apoptosis induced by the mild stressors 7KC and oxLDL, but could not overcome the strong 25OHC-induced necrosis. In contrast, HMT inhibition rather
increased oxLDL- and 25OHC-induced apoptosis. Efferocytosis was not affected by the distinct CME-inhibitors (Figure S.3). These experiments indicate that HDAC inhibition could be applied to prevent stress-induced macrophage apoptosis in an atherosclerosis setting.

Figure 3: HDACi reduces macrophage apoptosis and affects the cellular metabolism in M1 macrophages.
(A) BMMs were pretreated 30 min with CME-inhibitors or were left untreated (N), followed by 24 h naïve culture (inhibitor-induced), or 7KC, oxLDL, or 25OHC stimulation. Annexin-V/PI-staining was performed, followed by flow cytometry. For metabolic characterisation, BMMs were pretreated or not with TSA and differentiated towards M1 or M2, or remained untreated (M0). (B) ECAR (glycolysis) and (C) OCR (OXPHOS) were measured and (D) corresponding OCR/ECAR ratios were plotted.

HDAC inhibition alters cellular metabolism upon inflammatory macrophage activation
Recent data demonstrate that inflammatory macrophages display a glycolytic metabolism while M2 macrophages show high mitochondrial oxidative phosphorylation (OXPHOS) [17]. Inhibition of glycolysis or OXPHOS hamper M1 or M2 activation, respectively [18;19]. To assess whether inhibition of CME affects cellular metabolism, we performed a metabolic flux analysis and determined the oxygen consumption rate (OCR) as a measure of OXPHOS, and extra-cellular acidification rate (ECAR) as a measure of glycolysis. While the HATi, HDMi and HMTi had no noteworthy metabolic effects (data not shown), HDAC inhibition resulted in remarkable alterations in cellular metabolism in M1 macrophages. We found that inflammatory macrophage activation by IFNγ+LPS induces glycolysis and impairs OXPHOS (Figure 3.B-C). Conversely, IL-4-induced M2 polarization enhanced OXPHOS (Figure 3.C). The HDACi had no significant effect on ECAR and OCR in naïve and M2 macrophages. Upon M1
polarization however, the HDACi strongly induced ECAR (Figure 3.C) and prevented the IFNγ+LPS-induced drop in OCR which is normally observed during classical macrophage activation (Figure 3.D). Hence, while inflammatory macrophage activation increased the ECAR/OCR ratio as described earlier [17], HDACi-pretreated M1 macrophages display a shift towards both high ECAR and OCR (Figure 3.D).

Figure 4: Inhibition of HDAC3 is anti-inflammatory and anti-apoptotic. BMMs were pretreated with decreasing inhibitor concentrations (1/3 dilution series, starting at 1µM for the Italfarmaco compounds and 0.1 µM for TSA), followed by LPS+IFNγ stimulation and (A) IL-6 and (B) NO measurement. For the apoptosis experiment, BMMs were pretreated with indicated inhibitors, followed by (C) 7KC or (D) oxLDL treatment and Annexin-V-staining.

Macrophage HDAC3 inhibition results in an athero-protective macrophage phenotype
While broad spectrum HDAC inhibitors clearly have beneficial athero-protective effects, they also have contraindications that prevent their use in atherosclerosis therapy [20] and inhibiting specific HDACs might be more ideal. To investigate which particular HDAC enzymes should be targeted, we applied small molecule inhibitors which preferentially inhibit specific HDACs (Supplementary Table 1). Compounds HDAC3/6i(a) and (b) that preferentially inhibit HDAC3 and HDAC6 phenocopied the inhibitory effects of the pan-HDACi TSA and ITF2357 on IL-6 and NO secretion by M1 (Figure 4.A-B). The HDAC1/2i, HDAC6i and HDAC8i had no effect on IL-6 and NO secretion. Moreover, HDAC1/2 and HDAC3/6 inhibition, but not HDAC6 or HDAC8 inhibition, blunted oxLDL- and 7KC-induced apoptosis (Figure 4.C-D). Importantly, none of the tested specific HDACi had an adverse effect on foam cell formation (Figure S.4). Overall, HDAC3 inhibition appears to be sufficient to obtain the athero-protective effects of pan-HDAC inhibition.
Inhibiting epigenetic enzymes to improve atherogenic macrophage functions

Discussion

In this paper, we applied a new platform and demonstrate that chromatin modifying enzymes regulate atherogenic macrophage activities and polarization. Since broad-spectrum HMT-inhibition and especially HDAC inhibition have beneficial anti-atherogenic effects, targeting specific HDACs and HMTs in macrophages in atherosclerosis will be of particular interest in future studies.

Inhibition of HDACs and HMTs affects macrophage activation

Suppressing inflammatory responses is probably the best-described feature of HDAC inhibition in macrophages [8;21;22]. In agreement we observed reduced Nos2, Il12b, Il6 and Tnf expression upon HDAC inhibition. While we observed that the HDACi increased the gene expression of Stat1, IFNγ-induced STAT1 signaling itself requires HDAC activity and is known to be suppressed upon HDAC inhibition [23]. We found that inhibition of HMT activity enhances LPS+IFNγ-induced Il1b expression. Moreover, Il1b expression was potentiated early during the LPS response and is not efficiently repressed later on (data not shown). These data, together with the observation that H3K9 methyltransferase G9a establishes an epigenetically silenced state during LPS tolerance [24], reflects the need for methyltransferase activity (probably G9a) to silence the pro-inflammatory gene Il1b. Conversely, we found that the activity of other HMTs that deposit activating H3K4me2/3 or H3K36me2/3 histone marks is needed for TNF, IL-12, IL-6 and NO production. Members of the mixed lineage leukemia (MLL) family of HMT plausibly account for this, as they have been associated with inflammatory macrophage responses [25]. Thus, to effectively block inflammatory responses through HMT modulation the pro- and anti-inflammatory effects of the pan-HMT inhibitors need to be disconnected and specific compounds may be more relevant.

In contrast to the fast-growing amount of studies on the epigenetic regulation of inflammatory responses, the involvement of CME in other modes of macrophage polarization remains ill-defined. We therefore investigated the effect of CME-inhibitors on M2 polarization and found that some M2 marker genes [4;26] like Arg1, Chi3l3 (Ym1) and Retnla (Fizz) rely on HDAC activity for their induction by IL-4 and that others (Mrc1 and Clec10a) are unaffected or induced (Cdhd1) by HDAC inhibition. In agreement with our results, Serrat et al. recently showed that HDAC inhibition acetylates and inhibits the M2-regulating transcription factor C/EBPβ, thereby impairing the IL-4-induced expression of some M2 marker genes [27]. Thus, HDAC activity appears to be required to establish a complete M2 activation program. Since
Chapter 4

M2 macrophages are anti-inflammatory, a pan-HDACi might not be optimal to maximally dampen inflammatory responses within the plaque. Although epigenetic enzymes have never been studied in Mox macrophages, our observation that a HDACi increase the expression of some Mox-associated marker genes is not entirely unexpected. Indeed, the Mox-regulating transcription factor Nrf2 is activated by HDAC inhibition in neuronal cells and microglia [28;29].

Inhibition of chromatin modifying enzymes does not improve foam cell formation

TSA was previously shown to increase CD36 expression and oxLDL-uptake in Raw264.7 macrophages [20]. In our setting, the expression of oxLDL-receptors CD36 and SRA was not affected by the different CME-inhibitors. This discrepancy could be explained by differences in experimental protocols. We used primary macrophages (instead of Raw264.7 cells) and investigated foam cell formation not only by assessing short-term oxLDL-uptake (like Choi did [20]), but also measured the longer-term accumulation of cholesterol after 24 h oxLDL-treatment. Actually, we observed an HDACi-induced increase of histone acetylation and gene expression of *Abca1* and *Abcg1*. In agreement with our data, two independent studies showed that HDACi enhances the ABC transporter expression and thereby stimulates cellular cholesterol efflux [30;31]. In contrast to previous observations in cell lines [20], HDAC inhibition appears to have no detrimental effects on foam cell formation in primary macrophages.

HDAC inhibition dampens apoptosis in macrophages

Excessive macrophages apoptosis, combined with impaired efferocytosis elicits plaque instability. We showed that HDAC inhibition beneficially reduced macrophage apoptosis. Possibly, our own metabolic flux data could at least partly explain why HDACi-pretreated cells display a survival benefit. Unlike normal M1 macrophages, M1 generated in the presence of TSA did not show a drop in OXPHOS and displayed efficient glycolysis. Since, an efficient cellular metabolism with increased OXPHOS could provide a bio-energetic survival advantage [17], it is tempting to speculate that this switch in cellular metabolism might at least partly explain the apoptosis-inhibiting effect of HDAC inhibition.

HDAC3 inhibition in macrophages is a highly attractive new target for atherosclerosis therapy

We demonstrated that pan-HDACi have beneficial anti-atherogenic effects as they partly inhibit M1 activation and blunt apoptosis, without augmenting foam cell formation in primary macrophages. Yet, HDAC inhibitors have contra-indications that prevent their usage in atherosclerosis therapy [20]. Anti- and pro-inflammatory effects...
of distinct inhibitors are separable over a concentration range, suggesting that individual HDACs have differential effects on macrophage activation [22]. For example, HDAC9 deletion in macrophages during atherosclerosis promotes cholesterol efflux and M2 polarization and impairs inflammatory responses [32]. Moreover, deletion of HDAC3 boosts M2 polarization and at the same time dampens pro-inflammatory activation of M1 macrophages [7], two features which are considered highly advantageous as atherosclerosis treatment. Here, we inhibited specific HDAC enzymes in macrophages and found that inhibiting HDAC3 elicits an athero-protective macrophage phenotype. These data support our very recent in vivo study in which we demonstrated that macrophage-specific deletion of HDAC3 stabilizes atherosclerotic lesions through enhanced collagen deposition and improved lipid handling [14].

Altogether, our data strongly suggest that inhibiting macrophage HDAC3 is a highly attractive new therapeutic target in cardiovascular disease. In addition, unraveling the involvement of particular HMTs (especially MLLs) in atherogenic macrophage functions should also support the development of specific compounds for anti-atherogenic remedy. Overall, our study provides a screening method to identify compounds that ameliorate atherogenic macrophage functions and using this platform, we illuminated the role of epigenetic enzymes in macrophage activation.

Acknowledgements

Jan Van den Bossche received a Junior Postdoc grant from the Netherlands Heart Foundation (2013T003) and a VENI grant from ZonMW (91615052). Menno de Winther is an Established Investigator of the Netherlands Heart Foundation (2007T067), is supported by a Netherlands Heart Foundation grant (2010B022) and holds an AMC-fellowship. We also acknowledge the support from the Netherlands CardioVascular Research Initiative, Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Sciences for the GENIUS project “Generating the best evidence-based pharmaceutical targets for atherosclerosis” (CVON2011-19). We acknowledge Dr. Barbara Vergani of Italfarmaco for the synthesis of the ITF molecules.
Chapter 4

References

Supplemental material and methods

Macrophage/endothelial cell interaction
BMMs were pretreated overnight with the inhibitors and next triplicate wells were incubated for 1 h with 10^5 Dil-labeled (Molecular Probes) bEND5 endothelial cells (activated for 4 h with 40ng/ml TNF). Subsequently, the cells were washed three times with PBS, detached and the percentage of Dil-positive adherent bEND5 cells was measured with a BD FACS Canto II with High-Throughput-Sampler (HTS) and analyzed with FlowJo (TreeStar).

Secretion of inflammatory factors
IL-6, IL-12p40 and TNF concentrations were determined by ELISA (Invitrogen) and nitric oxide (NO) production was assayed with Griess reagent (Sigma) as per the manufacturer’s instructions.

Efferocytosis of apoptotic cells
As a source of apoptotic macrophages, RAW264.7 cells were labeled with Dil (Molecular probes) according to the manufacturer’s protocol. Labeled RAW264.7 cells were incubated overnight in the presence of 10 mM H_2O_2 to induce apoptosis. The next day, apoptotic RAW264.7 cells were collected and 50,000 cells were added to the 96-well plates with inhibitor-pretreated BMMs. After 1 h co-incubation, wells were washed with PBS, lifted and analyzed on BD FACS Canto II + HTS. FlowJo was used to determine efferocytosis as the percentage Dil-positive cells within each well.
Supplemental data

Figure S.1: Inhibiting epigenetic enzymes does not affect macrophage/endothelial cell adhesion. Differentially treated BMM monolayers were co-cultured with Dil-labeled bEND5 endothelial cells. After 1 h, non-adherent cells were washed away, and the percentage of remaining Dil+ bEND5 cells within the pool of macrophages was determined by flow cytometry. HDACi-, HATi- and HDMi-pretreated conditions were compared to a control without pretreatment (N) and DMSO served as control for HMTi (dotted lines). The mean ± SEM of 6 wells is shown for one representative experiment.
Figure S.2: TLR signaling is impaired by HDACi and HMTi.
C57Bl/6 BMMs were pretreated with different CME-inhibitors or were left untreated overnight, followed by 6 h (A) or 24 h (B) LPS stimulation. Alternatively, cells were pretreated for 30 min and next stimulated with (C) lipoteichoic acid (LTA) or (D) LPS plus IFNγ for 24 h. IL-6, IL-12, TNFα concentrations (pg/ml) in the supernatant were measured with ELISA and NO secretion (measured as [NO₂⁻]) in µM) was assessed by Griess reaction. HDACi-, HATi- and HDMi-pretreated conditions were compared to a control without pretreatment (N) and DMSO pretreated cells served as control for HMTi (dotted lines). Values represent the mean ± SEM of 3 replicates; *P<.05; **P<.01; ***P<.001 by ANOVA.

Figure S.3: Inhibiting epigenetic enzymes does not affect efferocytosis.
Differentially treated BMM monolayers were co-cultured with DiI-labeled apoptotic RAW264.7 cells. After 1 h, apoptotic cells that were not taken up by phagocytosis were washed away, and the percentage of remaining DiI+ RAW264.7 cells within the pool of macrophages was determined by flow cytometry. HDACi-, HATi- and HDMi-pretreated conditions were compared to a control without pretreatment (N) and DMSO served as control for HMTi (dotted lines). The mean ± SEM of 6 wells is shown for one representative experiment.
Figure S.2: TLR signaling is impaired by HDACi and HMTi. C57Bl/6 BMMs were pretreated with different CME-inhibitors or were left untreated overnight, followed by 6 h (A) or 24 h (B) LPS stimulation. Alternatively, cells were pretreated for 30 min and next stimulated with (C) lipoteichoic acid (LTA) or (D) LPS plus IFNγ for 24 h. IL-6, IL-12, TNFα concentrations (pg/ml) in the supernatant were measured with ELISA and NO secretion (measured as [NO2−] in µM) was assessed by Griess reaction. HDACi-, HATi- and HDMi-pretreated conditions were compared to a control without pretreatment (N) and DMSO served as control for HMTi (dotted lines). Values represent the mean ± SEM of 3 replicates; *P <.05; **P <.01; ***P <.001 by ANOVA.

Figure S.3: Inhibiting epigenetic enzymes does not affect efferocytosis. Differentially treated BMM monolayers were co-cultured with DiI-labeled apoptotic RAW264.7 cells. After 1 h, apoptotic cells that were not taken up by phagocytosis were washed away, and the percentage of remaining DiI RAW264.7 cells within the pool of macrophages was determined by flow cytometry. HDACi-, HATi- and HDMi-pretreated conditions were compared to a control without pretreatment (N) and DMSO served as control for HMTi (dotted lines). The mean ± SEM of 6 wells is shown for one representative experiment.
Figure S.4: Specific HDAC inhibitors have no adverse effect on foam cell formation.

(A) BM-Ms were pretreated overnight with different HDAC inhibitors or were left untreated, followed by 3 h incubation with Dil-labeled oxLDL and MFI analysis by flow cytometry. To analyze longer-term foam cell formation, pretreated (30 min) BM-Ms were stimulated for 24 h with oxLDL followed by (B) LipidTOX staining and the measurement of (C) free and (D) total cholesterol. Values represent the mean ± SEM of 3 replicates; *P<0.05 by ANOVA.

Supplemental Table 1: Specificity of particular HDAC inhibitors

<table>
<thead>
<tr>
<th></th>
<th>HDAC1</th>
<th>HDAC2</th>
<th>HDAC3</th>
<th>HDAC4</th>
<th>HDAC5</th>
<th>HDAC6</th>
<th>HDAC7</th>
<th>HDAC8</th>
<th>HDAC9</th>
<th>HDAC10</th>
<th>HDAC11</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDAC1/2i</td>
<td>41</td>
<td>358</td>
<td>11176</td>
<td>>30000</td>
<td>>30000</td>
<td>>30000</td>
<td>nd</td>
<td>46176</td>
<td>nd</td>
<td>4941</td>
<td>>30000</td>
</tr>
<tr>
<td>HDAC3/6i(a)</td>
<td>76</td>
<td>473</td>
<td>7</td>
<td>15015</td>
<td>23017</td>
<td>19</td>
<td>4385</td>
<td>169</td>
<td>8892</td>
<td>148</td>
<td>280</td>
</tr>
<tr>
<td>HDAC3/6i(b)</td>
<td>3291</td>
<td>38956</td>
<td>144</td>
<td>225161</td>
<td>nd</td>
<td>49</td>
<td>nd</td>
<td>22855</td>
<td>240832</td>
<td>2167</td>
<td>5907</td>
</tr>
<tr>
<td>HDAC6i</td>
<td>547</td>
<td>2736</td>
<td>262</td>
<td>4752</td>
<td>3505</td>
<td>2</td>
<td>nd</td>
<td>216</td>
<td>2529</td>
<td>590</td>
<td>949</td>
</tr>
<tr>
<td>ITF2357</td>
<td>100</td>
<td>400</td>
<td>40</td>
<td>1000</td>
<td>1000</td>
<td>35</td>
<td>1000</td>
<td>150</td>
<td>500</td>
<td>150</td>
<td>200</td>
</tr>
</tbody>
</table>

nd = not detected