Molecular orientation at biological interfaces: Water and lipids studied through surface-specific vibrational spectroscopy
Pool, R.E.

Citation for published version (APA):
BIBLIOGRAPHY


13. G. T. Boyd, Y. R. Shen, and T. W. Hansch. Continuous-wave second-
harmonic generation as a surface microprobe. *Optics Letters*, 11(2):97,
1986.

14. Y. R. Shen. Surface-properties probed by 2nd-harmonic and sum-

15. Q. Hu, J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg. High-
resolution mid-ir spectrometer based on frequency upconversion. *Optics

spectroscopy of a silane monolayer at air solid and liquid solid interfaces

17. R. Superfine, J. Y. Huang, and Y. R. Shen. Nonlinear optical studies of
the pure liquid vapor interface - vibrational-spectra and polar ordering.

18. R. A. Walker, J. A. Gruetzmacher, and G. L. Richmond. Phosphatidyl-
choline monolayer structure at a liquid-liquid interface. *Journal of the

19. Mikhail Vinaykin and Alexander V. Benderskii. Vibrational sum-frequency
spectrum of the water bend at the air/water interface. *Journal of Physical

20. Ran-ran Feng, Yuan Guo, Rong Lue, Luis Velarde, and Hong-fei Wang.
Consistency in the sum frequency generation intensity and phase vibrational
spectra of the air/neat water interface. *Journal of Physical Chemistry A*,

molecular understanding of sum frequency generation at air-water inter-

motion of water molecules at air/water interface. *Chinese Journal of Chemical

23. Satoshi Nihonyanagi, Tatsuya Ishiyama, Touk-kwan Lee, Shoichi Yam-
aguchi, Mischa Bonn, Akihiro Morita, and Tahei Tahara. Unified molecu-
lar view of the air/water interface based on experimental and theoretical
chi2 spectra of an isotopically diluted water surface. *Journal of the Amer-

24. M. Sovago, R. K. Campen, G. W. H. Wurpel, M. Muller, H. J. Bakker,
and M. Bonn. Vibrational response of hydrogen-bonded interfacial water
is dominated by intramolecular coupling. *Physical Review Letters*, 100(17),
2008.


