
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Essays in nonlinear dynamics in economics and econometrics with applications to monetary
policy and banking
Wolski, M.

Link to publication

Citation for published version (APA):
Wolski, M. (2014). Essays in nonlinear dynamics in economics and econometrics with applications to monetary
policy and banking

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.

Download date: 22 Feb 2019

http://dare.uva.nl/personal/pure/en/publications/essays-in-nonlinear-dynamics-in-economics-and-econometrics-with-applications-to-monetary-policy-and-banking(7dda692f-9a76-4703-a7f3-013403300aac).html


U n i v e r s i t y  o f  A m s t e r d a m  D i s s e r t a t i o n

Marcin Wolski

Essays in Nonlinear Dynamics in 
Economics and Econometrics

with Applications to Monetary Policy 
and Banking

9 789056 297534

U n i v e r s i t y  o f  A m s t e r d a m  D i s s e r t a t i o n

M
arcin W

olski
Essays in N

onlinear D
ynam

ics in Econom
ics and Econom

etrics

This thesis explores the highly nonlinear prof ile of the modern f inancial 
world and assesses its relevance in monetary policy conduct and macropru-
dential supervision. It focuses on three possible different origins of nonlinear 
structures. Firstly, we study the role of the heterogeneous and boundedly 
rational expectations in driving the aggregate economic dynamics. Second-
ly, we investigate the irregularities of probability distributions and their 
consequences for quantitative inference. Thirdly, we assess the behavior 
of the global asset network through a prism of complex systems. Because 
of its extraordinary relevance in the real world, a lot of attention is being 
paid to the banking side of the economy. The practical goal of this thesis is 
to provide the tools and general directions on how to incorporate possible 
nonlinear dependencies into existing economic modeling techniques. In 
times of very non-standard policy actions, these tools might prove to be 
of great importance as they offer more robust and flexible approaches to 
f inancial modeling and forecasting.

Marcin Wolski (1988) holds a B.A. in Economics and a B.A. in Quantitative 
Methods in Economics and Information Systems from the Warsaw School 
of Economics, Poland (2010), and an M.Sc. in Economics from the Tilburg 
University, the Netherlands (2011). In 2011 he joined the European Doctorate 
in Economics - Erasmus Mundus, a joint PhD degree at the University of 
Amsterdam and Bielefeld University. His research interests include mone-
tary policy, systemic risk, f inancial networks, time series analysis, complex 
systems and agent-based models.



Essays in Nonlinear Dynamics

in Economics and Econometrics

with Applications to Monetary Policy and Banking



Layout: Marcin Wolski

Cover design: Co¤ordesign, Leiden

ISBN 978 90 5629 753 4

NUR 780

' Marcin Wolski, 2014

All rights reserved. Without limiting the rights under copyright reserved above, no part of this

book may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any

form or by any means (electronic, mechanical, photocopying, recording or otherwise) without

the written permission of both the copyright owner and the author of the book.



Essays in Nonlinear Dynamics

in Economics and Econometrics

with Applications to Monetary Policy and Banking

Marcin Wolski

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magni�cus

prof. dr. D.C. van den Boom
ten overstaan van een door het college voor promoties

ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op vrijdag 27 juni 2014, te 16:00 uur

door

Marcin Wolski

geboren te Lublin, Polen



Promotiecommissie

Promotor Prof. dr. Herbert Dawid (Universit¤at Bielefeld)

Prof. dr. Cees G.H. Diks (Universiteit van Amsterdam)

Co-promotor Prof. dr. Cars H. Hommes (Universiteit van Amsterdam)

Overige leden Prof. dr. Ron J. Berndsen (Universiteit van Tilburg)

Dr. Kees Jan van Garderen (Universiteit van Amsterdam)

Dr. Sander van der Hoog (Universit¤at Bielefeld)

Prof. dr. Franc Klaassen (Universiteit van Amsterdam)

Dr. Valentyn Panchenko (University of New South Wales)

Prof. dr. Jan Tuinstra (Universiteit van Amsterdam)

Faculteit Economie en Bedrijfskunde



Dla Karoliny





Acknowledgements

This thesis would have not been written without the support from countless people whom I used

to meet during this exciting intellectual journey.

I would like to thank my advisors; Cees for the thought provoking and inspiring conversa-

tions; that you have always found time for me (even when coming unexpectedly); and that you

polished the ideas I used to bring to you in a messy pile of papers; Herbert for the motivating

discussions and professional approach; that you have always supported my career plans and

that you made Bielefeld my research home; Cars for opening to me the world of nonlinear eco-

nomic dynamics and for asking inspiring questions when I was drifting away with my research

concepts.

Huge credit goes to my colleagues at the International Monetary Fund, Franziska, Sophia

and Karim, for broadening my horizons, stimulating research discussions and motivating de-

bates on the nature of the global economy. The time spent at the Fund was a great research

adventure and I feel that I learned tremendously from your experience and discussions even

though I have not even touched the top of an iceberg of the topics we were covering.

Thank you to the members of my PhD committee, Franc, Jan, Kees Jan, Ron, Sander and

Valentyn for the very detailed and useful feedback on this manuscript.

I would like to highlight the role of the European Doctorate in Economics - Erasmus Mundus

(or EDEEM as it is often called), and the Erasmus Mundus Association, in completing this

thesis. My most honest thank you for the support you gave to my ideas and for the coordination

of my research path.

i



Peter Hall, from the University of Melbourne, must be singled out for his comments on the

technical part of Chapter 3. At the same time all the numerical simulations, referred to over

the following chapters, would have not been ready without the support from LISA Compute

Cluster, maintained by the SURFsara team in Amsterdam.

Through all the universities I have visited while completing this thesis, the biggest credit

shall arrive to the University of Amsterdam (CeNDEF in particular), Bielefeld University,

Tilburg University and Warsaw School of Economics. Thank you for creating a stimulating and

motivating research environment. My sincere gratitude goes Dan, Marco, Tomasz, David, Te,

Domenico, Michiel, Juanxi, Peter, Alek, Florian, Thom, Manu, Marcin and all of the seminar

participants and research colleagues who contributed to the discussion explored in this thesis.

Because of many hard working and sleepless nights, Kosma, Kaman, Frank, Andreea and

Iulia, thank you for keeping me down to the ground when I was �ying away with my PhD. The

Amsterdam Football Group and my UvA climbing team deserve my most honest thanks for

keeping my mind and body fresh while writing this thesis.

Thank you to my Polish friends Skot and Olga, Bubu and Kasia, Mateo, Madej, Obiad,

Pogoda and Ka·ska, Cudny, Sosna and Ania, Wiurek, Kuba, Szafa, Marzi, Sawio and �ysy.

Cheers for the entertainment and hilarious working environment. You all are parts of this thesis.

I shall thank my family; my parents, Babcia, Go·ska and Marcin for the ongoing faith in

what I have been doing and for setting a benchmark for top quality research.

Last but not least, many thanks to Karolina who has never given up on me; for her love and

patience; for her suggestions and spelling control and that she was always my �rst reviewer. I

am a happy man beside her.

Marcin Wolski

March 2014

ii



Contents

1 General Introduction and Thesis Outline 1

2 Monetary Policy, Banking and Heterogeneous Agents 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 The IS curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 The Phillips curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 The banking sector curve . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The in�uence of heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Formation of expectations . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Calibration and numerical results . . . . . . . . . . . . . . . . . . . . 24

2.5 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Appendix 2.A Baseline derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Appendix 2.B The in�uence of heterogeneous agents . . . . . . . . . . . . . . . . 33

Appendix 2.B.1 The heterogeneous IS curve . . . . . . . . . . . . . . . . . . . . . 33

Appendix 2.B.2 The heterogeneous Phillips curve . . . . . . . . . . . . . . . . . . 35

Appendix 2.B.3 The heterogeneous banking sector curve . . . . . . . . . . . . . . 36

Appendix 2.C Model dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Nonlinear Granger Causality - Guidelines for Multivariate Analysis 39

iii



CONTENTS

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Asymptotic properties of the DP test . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 The dimensionality problem . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Data sharpening as a bias reduction method . . . . . . . . . . . . . . . . . . . 45

3.3.1 Bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Performance of the DS in Granger causality setting . . . . . . . . . . . 49

3.4 Nonlinear Granger causality in the US grain market . . . . . . . . . . . . . . 51

3.5 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Appendix 3.A Asymptotics of the sharpened test (Corollary 3.3.1) . . . . . . . . . 58

Appendix 3.B Application of bias reduction . . . . . . . . . . . . . . . . . . . . . 60

Appendix 3.C Illustration of the empirical results . . . . . . . . . . . . . . . . . . 63

4 Exploring Nonlinearities in Financial Systemic Risk 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Methodology of NCoVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Optimal bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Performance of the NCoVaR test . . . . . . . . . . . . . . . . . . . . . 82

4.4 Assessing �nancial systemic risk . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Appendix 4.A Asymptotic properties of test statistic (Theorem 4.2.1) . . . . . . . . 92

Appendix 4.A.1 Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Appendix 4.B Optimal bandwidth sequence (Corollary 4.2.1) . . . . . . . . . . . . 94

Appendix 4.C Data description and results . . . . . . . . . . . . . . . . . . . . . . 95

5 Do Safe Havens Make Asset Markets Safer? 101

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

iv



CONTENTS

5.3 De�ning safe havens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Mapping the network of sovereign bond yields and bank equity . . . . . . . . 111

5.5 Modeling shock propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6 Feedback loops in shock propagation . . . . . . . . . . . . . . . . . . . . . . 118

5.6.1 Sovereign bond yield shock . . . . . . . . . . . . . . . . . . . . . . . 118

5.6.2 Bank equity price shock . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.7 The role of safe havens in shock propagation . . . . . . . . . . . . . . . . . . 124

5.7.1 Sovereign bond yield shock . . . . . . . . . . . . . . . . . . . . . . . 125

5.7.2 Bank equity price shock . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.8 Conclusions and issues for further research . . . . . . . . . . . . . . . . . . . 131

Appendix 5.A Network graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Appendix 5.B Shock propagation mechanism . . . . . . . . . . . . . . . . . . . . 137

6 Summary 139

Bibliography 156

Samenvatting (Summary in Dutch) 157

v





Chapter 1

General Introduction and Thesis Outline

�As a policy maker during the crisis, I found the available models of limited

help. In fact, I would go further: in the face of the crisis, we felt abandoned

by conventional tools.�

� Jean-Claude Trichet, President of the ECB, 18 November 2010

As pointed out by Jean-Claude Trichet, the �nancial crisis from the years 2007-2009 re-

vealed imperfections in existing economic modeling techniques. The standard Dynamic Stochas-

tic General Equilibrium (DSGE) models, widely used by central bankers and policy makers

around the world, proved not to capture the intriguing complexity of the global �nancial sector

nor could they have reproduced the boom and bust scenarios which are observed in the real

world (Buiter, 2009). In fact, paraphrasing Charles Goodhart from the Bank of England, the

standard central banking �excludes everything that [we shall be] interested in�.

The failure of these models might be largely attributed to several simplifying assumptions

which they are built upon. To the most widely criticized belong the Rational Expectations Hy-

pothesis (REH) and representative agent structure (Frydman and Goldberg, 2007), linear depen-

dencies (Hommes, 2013) and the absence of the well-characterized �nancial sector (Bernanke

et al., 1999; Tovar, 2008). Those shortcomings used to be neglected for many years as the

global economy was growing steadily with little �uctuations, making the DSGE models pow-

erful tools which provide a coherent framework for policy discussion and analysis. The beauty
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CHAPTER 1. GENERAL INTRODUCTION AND THESIS OUTLINE

of their simplicity turned, however, into their biggest nightmare as the recent �nancial crisis

erupted. Their forecasting accuracy, highlighted on pre-crisis samples (see e.g. Christoffel

et al. (2010)), in terms of Root Mean Square Error (RMSE), proved to be no better than naive

forecasts (Edge and G¤urkaynak, 2010).

As pointed out by Tovar (2008) �[d]espite the rapid progress made in recent years, at their

current stage of development, these [DSGE] models are not fully ready to accomplish all what

is being asked from them�. The goal of this thesis is therefore threefold. Firstly, it contributes

to the ongoing debate on economic modeling by investigating economic dynamics under het-

erogeneous market structures. Secondly, it proposes econometric concepts of assessing the

in�uence of nonlinear pro�les in economic relationships. Thirdly, it studies the role of the net-

work structures in the shock propagation mechanisms of the global economy. Because of their

extraordinary relevance in the real world, a lot of attention is being paid to banking and �nancial

markets.

The role of expectations

The general equilibrium models, like the Real Business Cycle (RBC), developed by Kydland

and Prescott (1982), or the new Keynesian framework, pioneered by Clarida et al. (1999)

and Woodford (2003), assume at the micro level the utility-maximizing consumers, pro�t-

maximizing companies and market clearing for all goods at all dates in all markets (Hommes,

2013). A subtle assumption of rational expectations helps to solve the models analytically and

derive the macro behavior directly from the micro founded principles.

REH has a long history in economics, ranging back to the seminal papers of Muth (1961)

and Lucas (1972). It states that on average economic agents act as if they could predict future

outcomes perfectly. That means that the incorrect expectations cancel out with each other or are

being eliminated by natural selection (Friedman, 1953) and at the aggregate level one observes

perfectly accurate foresight. In mathematical terms this is parallel to equalizing a variable today

2



to its expected value in the market clearing equilibrium tomorrow (Garcia, 2011). Exploiting

the mathematical courtesy of REH, studying the macro behavior is as easy as looking at the one

representative (or average) agent and associating it with the aggregate decision making process,

as in equilibrium everybody shall have the same model consistent expectations without any

systematic errors.

Nevertheless, REH oversees the possibility that the incorrect expectations might be self-

enforcing instead of being self-mitigating. Indeed, if bad decisions today lead to even worse

decisions tomorrow this feedback mechanism might be of great importance for the aggregate

economic dynamics (Frydman and Goldberg, 2007), driving the system further away from the

fundamentals and creating possible bubbles. This type of feedback structure has been already

recognized in the literature; for instance Soros (2003) refers to it as vicious cycles and Brun-

nermeier (2009) calls it by simply spirals. Frydman and Goldberg (2007) highlight that REH is

very susceptible to this type of expectational dynamics.

Although, in the literature there is no consensus on how to represent economic expectations,

their role and especially the in�uence of their interactions are an extremely important aspect of

modern economic modeling (Stanislawska and Tomczyk, 2010; Evans and Honkapohja, 2001;

Hommes, 2013). Recently, however, one has observed a paradigm shift from REH to the ideas

of bounded rationality and heterogeneous expectations (see e.g. Conlisk (1996); Brock and

Hommes (1997); Branch (2004); Branch and McGough (2009)). The reasoning behind bound-

edly rational agents is attributed to Simon (1955, 1957). Simon points out that because of the

lack of information or limited cognitive and computing capacities, individuals might not be

perfect forecasters nor optimizers but rather they tend to use simple heuristics in their decision

making process when acting under uncertainty. This view has been widely con�rmed in lab-

oratory experiments (Tversky and Kahneman, 1974), proving that in reality these simple rules

of thumb might lead to signi�cant biases so that the incorrect expectations do not necessarily

cancel out as suggested by REH.

This in fact puts in con�ict the idea of a representative agent structure, widely present in

3



CHAPTER 1. GENERAL INTRODUCTION AND THESIS OUTLINE

DSGE models. In a situation where the agents are boundedly rational they do not have to share

the same information set nor use the same heuristics in forming their expectations. The ex

ante individual prediction might thereof not coincide with the ex post aggregate realizations

but certainly they affect them. As a consequence, the beliefs of some agents might indirectly

in�uence the beliefs of others so that the economy becomes an expectational feedback system

(Hommes, 2013). Heterogeneous expectations have been con�rmed both in laboratory exper-

iments (Hommes, 2011, 2013) and in the survey studies (Carroll, 2003; Mankiw et al., 2003)

and tend to be an intriguing and thought-provoking phenomenon for economic modeling.

Heterogeneous expectations, together with boundedly rational agents, proved to generate

complex structures and interesting nonlinear economic dynamics in the DSGE framework (see

e.g. Branch and McGough (2010) or Massaro (2013)). Therefore, they might be an alternative

to the standard model assumptions, pointing out a direction for future developments. In this

thesis, Chapter 2 is fully devoted to these intriguing phenomena in the DSGE new Keynesian

framework with an active banking sector.

Nonlinear dynamics

The standard linear framework �ts nicely in globally stable systems which are close to equilib-

rium. It performed tremendously well from the mid-1980s till 2006, a period often referred to as

the Great Moderation, when the global economy was at a stable growth path. In the absence of

large shocks, the system was settling down to its local equilibrium and the concerns arising from

possible threats and risks were underestimated by both �nancial markets and macroprudential

authorities (Blinder, 2013).

As it is known in the mathematical sciences, the dynamics around a steady state might

be approximated by log-linearization. However, moving further away from that point, log-

linearization produces less accurate approximations. Consequently, the linear economic models

could misperceive the risks which are further away from a given equilibrium point. In fact this
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was clearly visible when the US housing bubble collapsed in years 2006/2007 materializing all

the risk which the world economy had been accumulating during the Great Moderation (Blinder,

2013). Nobody had expected such a big shock nor the continuing recession in the majority of

advanced economies.

Linear models offer attractive mathematical properties, making them relatively easy to solve

analytically. These simpli�cations, however, might have not kept up with the changes in the

globalized and heavily digitalized economy. As pointed out by Alan Blinder, the former Vice

Chairman of the Board of Governors of the Federal Reserve System, in the years before the cri-

sis �the complexity went amok� (Blinder, 2013). Because of their design, purely linear models

cannot capture the sophisticated and complex nature of the modern �nancial system. The need

for new (nonlinear) analytical methods has been therefore widely signalized by professionals

(Buiter, 2009).

The role of the �nancial sector and monetary policy

The importance of the �nancial sector (often referred to as simply banking) in economic mod-

eling has already been recognized and included in more sophisticated models. Nevertheless, the

standard RBC and the new Keynesian models are built around the Ef�cient Market Hypothesis

(EMH), in which no �nancial disequilibrium is possible (Krugman, 2009). The commonly used

view among practitioners highlights the inevitable link between the real economy and its �nan-

cial side, especially when the presence of the latter provokes frictions and market imperfections

(Bernanke et al., 1999), or may even cause signi�cant real disturbances (Blinder, 2013).

The topic of �nancial frictions has attracted a lot of attention recently (Brunnermeier, 2009).

Nevertheless, the recent developments in �nancial engineering and accounting, like emergence

of Structured Investment Vehicles (Tabe, 2010), heavy leverage (Blinder, 2013), novel �nan-

cial products (Datz, 2013) and global exposures and imbalances (International Monetary Fund,

2013), made it more complex in nature not only for regulators and �nancial authorities but also
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for �nancial markets themselves (Datz, 2013).

As a consequence, in order to stabilize the markets and to bridle the �nancial complex-

ity in the aftermath of the crisis 2007-2009, a huge mandate was given to central banks in

advanced economies, like Federal Reserve, European Central Bank or Bank of Japan (Interna-

tional Monetary Fund, 2013). The role of standard monetary policy, i.e. stabilization of in�ation

dynamics (or in the US also the production level) by controlling the nominal short-term interest

rates (Woodford, 2003), has evolved into something often referred to as modern monetary pol-

icy. Under the latter, central banks are allowed to manipulate long-term interest rates and bail-

out troubled markets, or more generally as Mario Draghi, the President of the ECB, famously

pledged �[to do] whatever it takes�. The implications put central bankers and the modern mon-

etary policy into an urgent need for better tools, designed to capture the complex dynamics of

the global economy. This is why the ideas presented in this thesis are assessed through a prism

of monetary policy and banking.

Thesis outline

The methods developed and applied in this thesis aim to contribute to the ongoing discussion on

the fascinating, rapidly changing and primo loco highly nonlinear pro�le of the �nancial world,

being a potentially attractive standpoint for policy makers and practitioners. Chapter 2 studies

the implications of a presence of boundedly rational agents in a monetary policy framework

with an active banking sector. Chapters 3 and 4 develop econometric tests of studying nonlinear

Granger (1969) causal relations in two different settings. Chapter 5 is a result of my stay at the

International Monetary Fund (IMF) in the Summer of 2013 and presents an application of the

network modeling to the global banking sector and sovereign bond market and explores the role

of safe havens in shock propagation mechanism. Chapters 2-4 are published as working papers

at the National Bank of Poland and Center for Nonlinear Dynamics in Economics and Econo-

metrics (CeNDEF) at the University of Amsterdam; Wolski (2013b) is based on Chapter 2, Diks
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and Wolski (2013) is based on Chapter 3 and Wolski (2013a) is based on Chapter 4. Chapter 5,

co-authored by Franziska Ohnsorge and Y. Sophia Zhang, is forthcoming as an IMF working

paper. The ideas contained in this thesis aim at encouraging a thought-provoking discussion

on the nature of nonlinear structures in economic dynamics and econometrics and shall not be

associated with views of any of the aforementioned institutions nor their policies.

Chapter 2 investigates the phenomenon of heterogeneous expectations, analyzing their role

in monetary policy conduct with an active banking sector. In addition to fundamentalists, we

assume a constant fraction of boundedly rational agents who use simple heuristics to form

their expectations. We focus on two types of heuristics which are most commonly referred to

throughout the literature (Hommes, 2013), i.e. adaptive and extrapolative expectations. Both

assume that future realizations depend on the past performance of particular variables, however,

the former assumes that the in�uence of past realizations decreases over time whereas the latter

manifests the opposite. The impact of those biased beliefs is studied in the aggregate economy

framework with an active banking sector, originally developed by Goodfriend and McCallum

(2007). We �rst show that the presence of the banking sector changes the determinacy structure

of the system and, depending on the heuristics used, the presence of boundedly rational agents

might have either stabilizing or destabilizing effect. In particular, when boundedly rational

agents have extrapolative expectations, the range of the stable (determinate) monetary policy

instruments is narrowed.

In Chapter 3 we propose an extension of the nonlinear Granger causality test, originally

introduced by Diks and Panchenko (2006). We show that the basic test statistic lacks consis-

tency in the multivariate setting. The problem is the result of the kernel density estimator bias,

which does not converge to zero at a suf�ciently fast rate when the number of conditioning

variables is larger than one. In order to overcome this dif�culty we apply the data-sharpening

method for bias reduction (Hall and Minnotte, 2002). We then derive the asymptotic properties

of the sharpened test statistic and we investigate its performance numerically. We conclude with

an empirical application to the US grain market, as it creates an ideal environment to test our
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methodology. Chapter 3 does not exploit the �nancial markets explicitly and might be treated

as a general introduction to the topics covered in the Chapter 4. Nevertheless, nonparametric

Granger causality tests have been widely applied to �nancial time series (for instance to ex-

change rates in Bekiros and Diks (2008a) and to crude oil prices in Bekiros and Diks (2008b))

so that one may easily extend our reasoning to a different �nancial setting. In fact, Chapter 4

is closely related to Chapter 3 and raises the discussion on nonparametric Granger causality

testing to the �nancial environment.

More speci�cally, Chapter 4 proposes a new methodology of assessing the effects of individ-

ual institution’s risk on the others and on the system as a whole. We build upon the Conditional

Value-at-Risk approach. However, we introduce explicit Granger causal linkages and we ac-

count for possible nonlinearities in �nancial time series. Conditional Value-at-Risk-Nonlinear

Granger Causality, or NCoVaR as we call it for simplicity, has regular asymptotic properties

which makes it particularly appealing for practical applications. We test our approach empir-

ically and assess the contribution of the euro area �nancial companies to the overall systemic

risk. We �nd that only a few �nancial institutions pose a serious ex ante threat to systemic

stability risk, whereas, given that the system is already in trouble, there are more institutions

which hamper its recovery. Moreover, we discover non-negligible nonlinear structures in the

systemic risk pro�le of the euro zone.

In Chapter 5 we create a network of bilateral correlations of changes in sovereign bond

yields and individual bank equity price changes. We study the nature and the evolution of this

network in the years 2000-2013. We show that, in this context, safe havens have an intuitive

representation as countries in which changes in sovereign bond yields and bank equity prices are

positively correlated. Safe havens, however, have one additional feature, i.e. their asset prices

are highly correlated with those of other countries making them hubs for capital �ows. We

investigate how these two properties of safe havens have affected the propagation of bank and

sovereign shocks in our asset price network since 2000, in a simple shock propagation frame-

work. On balance, we �nd that the presence of safe havens has ampli�ed shock propagation.

8



Chapter 6 concludes and offers some ideas for future research on nonlinear dynamics in

economics and econometrics.

Each chapter is a self-contained manuscript, with separate introduction, summary and ap-

pendices, and might be read independently from other chapters. For the reader’s convenience,

the common bibliography is collected at the end of the thesis. A digital copy of these pages

can be found in the online libraries of the Universiteit van Amsterdam (www.uba.uva.nl) and

Universit¤at Bielefeld (www.ub.uni-bielefeld.de).
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Chapter 2

Monetary Policy, Banking and

Heterogeneous Agents

2.1 Introduction

The need for a framework which would incorporate �nancial frictions in DSGE models was

stressed long before the 2007-2009 �nancial crisis (Bernanke and Gertler, 1989; Kiyotaki and

Moore, 1997). The body of literature in this topic has grown substantially thereafter, bringing

signi�cant changes to monetary policy conduct (Rotemberg and Woodford, 1997; Woodford,

2003). It is surprising, as argued by Goodfriend and McCallum (2007) and Casares, Miguel

and Poutineau (2010), that the role of the banking sector was left unexplored in the monetary

policy analysis until recently.

The framework used in this study clari�es this oversight. Firstly, by introducing pro�t-

maximizing bankers at the micro level, one may explicitly study the impact of their individual

behavior on the macro aggregates. Secondly, the differentiation of the capital market allows to

investigate the relationship between various types of interest rates (Goodfriend, 2005). Thirdly,

by having government bonds which serve for collateral purposes, one observes the direct in�u-

ence of public policy on the monetary aggregates.
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Most noticeably, however, a banking sector per se is an important, if not the most important

part of each economy (Levine, 1997). Since it is a general source of liquidity, its problems

may easily spread over the other sectors, bringing them down eventually. Especially, the recent

history proves that banking sector disturbances might result in sovereign crises, as recently

took place in the euro zone (Grammatikos and Vermeulen, 2012). Therefore, a detailed study

of the banking sector’s role in the monetary framework is required in order to (i) understand its

transmission mechanism and (ii) endow the monetary authorities with the suf�cient preventive

tools.

The goal of this chapter is twofold. Firstly, we assess the determinacy properties of differ-

ent monetary policies in the DSGE model with a banking sector of Goodfriend and McCallum

(2007). The model is built within the standard new Keynesian framework where the aggregate

dynamics is a direct consequence of individual utility maximizing behavior of forward-looking

agents. Secondly, we relax the assumption of agents’ homogeneity and investigate how the

presence of the backward-looking (or boundedly rational after Hommes (2013)) agents in�u-

ences the determinacy of the equilibrium. We introduce agents’ heterogeneity at the micro level,

which means that each agent is solving the individual optimization problem simultaneously. It

is an important distinction from a variety of models which neglect this aspect and allow for

agents’ heterogeneity at the macro level only. Clearly, such a concept violates the Subjective

Expected Utility (SEU) theory and in our view is inappropriate. Instead, we follow the classical

approach where the macro behavior is a direct consequence of agents’ micro optimal plans.

The latter part of this study is motivated by a growing body of research which shows ex-

plicitly that agents differ in forming expectations. This phenomenon was con�rmed by both

survey data analysis (Carroll, 2003; Mankiw et al., 2003; Branch, 2004) as well as laboratory

experiments with human subjects (Hommes et al., 2005; Assenza et al., 2011; Hommes, 2011;

Pfajfar and Zakelj, 2011). The heterogeneity among agents was proved to have important im-

plications on the determinacy properties in the new Keynesian models (Branch and McGough,

2009; Massaro, 2013). We follow this approach and assess its implication within the framework
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with a banking sector.

This chapter is organized as follows. Section 2.2 describes the workhorse model and dis-

cusses the implications of the banking sector on monetary policy conduct. In Section 2.3

we relax the assumption of a representative agent structure and introduce boundedly rational

backward-looking agents. Section 2.4 presents the numerical results and Section 2.5 concludes.

2.2 The model

In this section we develop the workhorse version of the model. Since the complete derivation,

with the �rst order conditions and aggregation, is described in detail in the original paper of

Goodfriend and McCallum (2007), we skip it in the main part of this text. However, for the

reader’s convenience, the complete derivation is given in Appendix 2.A.

The model space consists of a continuum of farmers who provide labor supply to the pro-

duction and banking sectors at the same time t (nt and mt, respectively). Additionally, each

farmer manufactures a differentiated product and sells it in the monopolistically competitive

environment. As in the standard new Keynesian framework, it is assumed that only a fraction

(1� !) of all farmers can adjust their prices fully �exibly. The remaining part takes the prices

from the previous period (Calvo, 1983). Given these conditions, the goal of each farmer is to

maximize her expected utility, which is a linear combination of consumption and leisure, over

the in�nite horizon.

In the utility maximization problem, each farmer has to take into account three constraints:

(i) the budget constraint, (ii) the production constraint and (iii) the banking constraint. The

�rst of these is the standard intertemporal budget constraint which ensures that the net income

and bond/money holdings in one period are being transmitted to the next period. The sec-

ond constraint is a direct consequence of the production technology, which in this case is of

the Cobb-Douglas type. Assuming market clearing, the production (Yt) in each period is the

consequence of the amount of capital (Kt) and labor (ndt ) involved, corrected for their output
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elasticities: � and (1 � �), respectively. The banking constraint assumes that the level of con-

sumption (Ct) has to be rigidly related to the level of deposits held at a bank. One may view

this as if all the transactions were being facilitated through the banking sector and each agent

may consume a part V of her wealth only. A bank is then allowed to use (1� rr) fraction of the

deposits to produce loans using the Cobb-Douglas production function with collateral (colt) and

labor (md
t ) as production factors and � and (1� �) being the output elasticities. The collateral

consists of two parts, i.e. the discounted level of real bond holdings Bt+1=(PA
t (1 + rBt )), with

PA
t being the aggregate price level and rBt the interest rate on bonds, and real level of capital

qtKt+1, corrected for the inferiority of capital to bonds for collateral purposes, �. The last term

results from the fact that bonds, contrary to capital goods, do not require substantial monitoring

effort in order to verify their market value (Goodfriend and McCallum, 2007).

Such a banking sector setting captures several important aspects of �nancial intermediation.

Firstly, it enters the consumer utility maximization problem at the micro level. Secondly, it

builds a clear link between households and a production sector. Thirdly, because of its depen-

dence on governmental securities, it comprises the monetary policy transmission mechanism

(through the repo market).

There are two main simpli�cations of the original model. Firstly, we abstract from the

capital shocks in the loan production function. We assume that the capital level is at its steady

state level and the productivity shocks are transmitted through the labor channels only. This

simpli�cation does not affect the �nal results as in the determinacy analysis the stochastic terms

do not play a role (Blanchard and Kahn, 1980). Secondly, we assume a zero tax rate. Eventually,

the role of government is narrowed to issuing bonds in each period at some exogenously given

level, and paying the interest.

Given the speci�cation above, we may now turn to derivation of three model equations: the

Investment-Savings (IS) curve, the Phillips curve and the banking curve. The �rst two of these

build the standard new Keynesian model. The last one is the direct consequence of the presence

of the banking sector and describes its role in the aggregate dynamics explicitly.
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2.2.1 The IS curve

The model implies the presence of two Lagrange multipliers: �t for the budget constraint and

�t for the production constraint. They represent the shadow values, or the utility gains, of unit

values of consumption and production respectively (Casares, Miguel and Poutineau, 2010). In

particular, from the banking labor demand optimality condition we know that

�it =
�it
’it

=
�
Cit

1 +
�1�rr

V

�
�it
; (2.1)

where ’it is the individual marginal production cost, � is the utility weight on consumption and

we explored the fact that the �it might be viewed as the individual marginal loan management

cost, or simply the marginal banking cost (Goodfriend and McCallum, 2007; Casares, Miguel

and Poutineau, 2010)1. To put it more formally, imagine the cost minimization problem of

a representative bank in a situation without collateral cost. The total cost function may be

rewritten as TCt = md
twt, where wt is the real wage. The minimization problem includes

the loan production constraint with a Lagrangian multiplier (here perceived as a marginal cost

(Walsh, 2010)), denoted by �t. The �rst order condition implies that �t = V wtmd
t =((1 �

rr)(1 � �)Ct). In fact, �it is parallel to the individual marginal production cost that is being

often referred to in the standard new Keynesian framework (Walsh, 2010). One may view that

as a general variable describing the situation in the banking sector, i.e. the higher it is the less

effective the loan management is. As it is shown later, this variable is of crucial importance as

it becomes a link between a standard new Keynesian model and the banking system.

Eq. (2.1) gives the �rst overview of the model behavior. Firstly, the shadow value of pro-

duction equals the shadow value of consumption corrected for the marginal production cost. In

other words, additional consumption has to turn up in either increased production or decreased

production costs. Secondly, �t is the marginal utility of consumption corrected for the marginal

banking cost. Put differently, each additional unit of consumption requires more deposits, which
1We include superscript i to underline the individual level of the relationship which is explored in detail later.

In the representative agent structure it may be omitted as every agent behaves the same.
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may be raised at the cost �t. It is straightforward to notice that the lower the marginal banking

cost, the relatively cheaper the additional consumption. On the other hand, a highly inef�cient

banking sector limits the incentives to increase consumption.

Substituting Eq. (2.1) into the bond optimality condition, we �nally arrive at the familiar

Euler equation

�Ei
t

0

@
�

Cit+1

1 +
�1�rr

V

�
�it+1

1

A =
�
Cit

1 +
�1�rr

V

�
�it

(1 + Ei
t�t+1)

�
1� 1�rr

V �it
i
t

1 + rBt

�
; (2.2)

where (1 + Ei
t�t+1) = PA

t+1=PA
t is the in�ation rate and 
i

t = �Ci
t=colit.

Following Goodfriend (2005), let us introduce a one-period default-free security with the

nominal rate denoted by rTt . Since we additionally assume that it cannot serve for collateral pur-

poses, rTt represents a pure intertemporal rate of interest and serves as a benchmark for other in-

terest rates. From the agent optimization problem, we know that 1+ri;Tt = Ei
t�itP i

t+1=(��it+1P i
t )

so that it includes the discounted difference between expected changes in shadow prices and ac-

tual prices. An important distinction is that the pricing of this �ctitious security is done at the

individual level which is not strange given its completely arti�cial and agent-dependent nature.

Eventually, the last term of Eq. (2.2) might be rewritten as the reciprocal of (1 + ri;Tt ).

At the same time, let us assume that each bank can obtain funds from the interbank market

at the common rate rIBt . It can then loan them to agents at the rate ri;Tt . The pro�t maximization

of a bank implies that the marginal costs of obtaining funds has to be equal their marginal pro�t

so that

(1 + rIBt )(1 + �it) = (1 + ri;Tt ): (2.3)

Inserting Eq. (2.3) into Eq. (2.2) and taking the log approximation around the steady state

we have

Ŷ i
t = Ei

t Ŷ
i
t+1 +

�
1� rr
V

�
Ei
t ~�it+1 �

�
1� rr
V

+ 1
�

~�it �
�
r̂IBt � E

i
t�t+1

�
; (2.4)
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where tildes and hats denote deviations and percentage deviations from the steady state, respec-

tively, and we explored the market clearing condition2.

As in the standard new Keynesian framework, we de�ne the potential output as the output

under completely �exible prices and wages (Walsh, 2010). We additionally assume that in

such a situation there is a �xed proportion between employment in the production and banking

sector, ndt / md
t . Following Walsh (2010), price �exibility implies that all agents can adjust

their prices immediately, which gives that the marginal cost of production ’t is equal (�� 1)=�

across all individuals, where � is the elasticity of substitution between consumption goods.

The labor optimality condition implies that the real wage has to be equal the marginal rate of

substitution between leisure and consumption, corrected for the presence of the banking sector.

Combining the above-mentioned points with Eq. (2.1) and the production constraint, we �nally

get that under �exible prices and wages, the supply of labor of each individual is �xed so that if

the capital stock is in the steady state (as we assume throughout the model) the log deviations

of the potential product depend only on exogenous disturbances, Ŷ f
t = (1 � �)(A1t � �A1).

Subtracting them from both sides of Eq. (2.3) and omitting the i superscript, we �nally arrive at

the aggregate IS curve corrected for the presence of a banking sector

xt = Etxt+1 +
�

1� rr
V

�
Et ~�t+1 �

�
1� rr
V

+ 1
�

~�t �
�
r̂IBt � Et�t+1

�
+ ut; (2.5)

where xt = Ŷt � Ŷ f
t is the output gap measure and ut is the disturbance term that depends only

on exogenous productivity shocks.

It is straightforward to notice that when skipping the banking sector variables from Eq. (2.5)

we obtain the standard new Keynesian IS curve. What is important, is that the aggregate dynam-

ics is affected not only by the current, but also expected future values of the banking variables.

In other words, the way the agents form their expectations about future banking sector condi-

tions seems to play a role in determining current production. The impact of the banking sector

is limited by (i) the reserve requirement, rr, and (ii) the proportion of consumption that has to
2Following literature, we take the zero in�ation steady state.
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be covered by deposits, V . Clearly, the lower the minimum reserve requirement, the larger the

loan production so that the importance of the banking sector increases, ceteris paribus. At the

same time, if the consumption-to-deposits coverage ratio is large, relative size of the banking

sector is smaller so that its impact decreases.

2.2.2 The Phillips curve

The model allows us also to derive the explicit formula for the Phillips (or Aggregate Supply)

curve. We know that all the farmers share the same production technology and face the same

constant demand elasticities. We know from the Calvo lottery that a fraction ! of agents cannot

adjust their prices in a given period t. Pro�ts of some future date t + k are affected only if an

agent did not receive a chance to adjust prices between t and t + k. Therefore, the probability

of having lower expected pro�ts in period k is !k. Having pointed that out, the price optimality

condition has to be corrected for the nominal price rigidities in the long run and by iterating

forward it might be viewed as

Ei
t

1X

k=0

�k!k
�
(1� �)

�
P i
t

PA
t+k

�
+ �

�
�it+k
�it+k

���
1
P i
t

��
P i
t

PA
t+k

�
CA
t+k = 0: (2.6)

Solving for optimal price setting, we arrive at

P i
t

PA
t

=
Ei
t
P1

k=0 �
k!kCA

t+k’it+k
�
PAt+k
PAt

��

Ei
t
P1

k=0 �k!kCA
t+k

�
PAt+k
PAt

���1 ; (2.7)

where ’it = �it=�it is the individual marginal production cost (Goodfriend and McCallum, 2007).

Skipping the i superscript and taking a log approximation, after some algebra we obtain3

�t = �Et�t+1 + �’̂t; (2.8)
3For a detailed derivation see the appendix of Chapter 8 from Walsh (2010).
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where � = (1�!)(1��!)
! . We further explore the fact that given the Cobb-Douglas production

function, the steady state log deviations of the marginal production cost might be viewed as an

output gap measure (Goodfriend and McCallum, 2007). Finally, we arrive at the standard new

Keynesian Phillips curve

�t = �Et�t+1 + �xt: (2.9)

What is important is that the situation in the banking sector does not affect the in�ation

level directly but only through the consumption channel. The absence of the banking variables

in Eq. (2.9) is a consequence of the banking sector speci�cation. The level of consumption

is rigidly related to the amount of deposits in the banking sector. Therefore, changes in the

banking sector would result in a different deposit level, which would shake the consumption

eventually. However, there is no direct link to the in�ation in the meantime.

2.2.3 The banking sector curve

Since the presence of the banking sector affects the aggregate evolution of the IS and (indirectly)

Phillips curves, it is also necessary to describe its dynamics. Observing that ’t = qtKt=(�Ct),

the capital optimality condition implies

1�
�(1� rr)

V

i
t�
i
t = �(2� �)Ei

t

"�
1 +

�1�rr
V

�
�it
�
’it+1�

1 +
�1�rr

V

�
�it+1

�
’it

#

: (2.10)

Observe that the LHS of Eq. (2.10) is almost identical with the numerator of the last term

in Eq. (2.2). The only difference comes from the inferiority of capital to bonds for collateral

purposes, �. Applying the same interest rate reasoning to the log approximation of the LHS of

Eq. (2.10), we see that ��(1� rr)
i
t�it=V = ��(rIBt � rBt + �it). Since the interbank rate rIBt

and the government bond rate rBt are both short-term rates, they should be close to each other

around the equilibrium (Goodfriend and McCallum, 2007). Additionally, given the fact that � is

relatively small, we neglect the in�uence of �(rIBt �rBt ). Eventually, after taking the deviations
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from the steady state of Eq. (2.10), iterating forward and skipping the i superscript, we get

�
� +

1� rr
V

�
~�t =

1� rr
V

Et ~�t+1 � (Etxt+1 � xt) : (2.11)

Given Eq. (2.11) it is clear that the marginal cost of banking depends on (i) expectations

about the banking situation in the future and (ii) the current and expected future production.

In particular, the expectations about higher next period marginal banking costs work as a self-

ful�lling prophecy, increasing also today’s cost. This positive feedback structure re�ects, to at

least some degree, �nancial market sentiment and herding behavior. When investors see that the

banking sector is going to face dif�culties the next day, they will adjust their today’s positions

accordingly. On the other hand, given the link between the banking sector and consumption,

high expectations about next period output gap decrease today’s marginal banking cost (negative

feedback). Imagine that people expect that there will be a decrease in production in the next

period. Since the banking sector is a source of funding, there will be gradually less effort

involved in the loan production, bringing today’s marginal cost down.

The effects on the current banking situation are proportional to the size of the banking sector,

expressed by (1� rr)=V , being more prominent for smaller banking sectors. Smaller banking

sectors are more vulnerable to changes in the production sector as the relatively higher part of

the banking capital is involved. On the other side, a bigger banking sector might be viewed as

being more stable in the sense that the production sector affects it to the lower extent. It should

be kept in mind, however, that the model does not say that big banks are ultimately stable as a

high drop in today’s production can cause the marginal banking cost to skyrocket. Eq. (2.11)

predicts only that this effect will be more prominent in the environment with a smaller banking

sector.

At the same time, the inferiority of capital to bonds for collateral purposes, �, also plays a

role in determining the current marginal banking cost. In particular, let us consider the extreme

case when capital cannot serve as a collateral, i.e. � = 0. Banks do not have access to capital

then so that the only link between them and the production sector is through loans. If there
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is a production shock, it affects the bond holdings and labor in the banking sector, making

it more severe. In this sense, using capital as collateral serves as a hedge against production

sector disturbances. When banks can access capital, in the presence of a production shock, its

magnitude is being partially absorbed by the capital part.

2.3 The in�uence of heterogeneity

So far, we assumed that all the agents are the same and each of them faces the same optimization

problem. Before turning to the numerical results, let us �rst consider what happens in the envi-

ronment with heterogeneous agents. Contrary to the standard representative agent framework,

we allow a part (1�
) of agents to be boundedly rational in forming their expectations4. In other

words, we assume that a constant proportion of agents is uniformed or unable to form rational

expectations. This implies that we may divide our continuum of farmers into two groups: those

with rational expectations (ERE) producing good j 2 [0; 
] and those with boundedly rational

expectations (EBRE) producing good j 2 [
; 1]. By rational agents we mean forward-looking

fundamentalists who try to analyze the economy and form their expectations accordingly. Both

groups of agents behave as if everybody in the economy was of their type.

To be able to aggregate the results over both groups, we follow the methodology proposed

by Branch and McGough (2009) and we impose similar seven axioms on expectation operators:

1. expectations operators �x observables,

2. if z is a forecasted variable and has a steady state, then ERE�z = EBRE�z = �z,

3. expectations operators are linear,

4. if for all k � 0, zt+k and
P1

k=0 �
t+kzt+k are forecasted variables then

E�
t
�P1

k=0 �
t+kzt+k

�
=
P1

k=0 �
t+kE�

t zt+k for � 2 fRE;BREg,

4Throughout this chapter we use the term ‘rational’ to refer to forward-looking whereas ‘boundedly rational’
to express backward-looking expectations.
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5. expectation operators satisfy the law of iterative expectations,

6. if z is a forecasted variable at time t and time t+k thenE�
t E� 0

t+kzt+k = E�
t zt+k for � 6= � 0,

7. all agents have common expectations on expected differences in limiting wealth and

marginal banking cost.

Our contribution to the original methodology comprises axiom 7, which describes the lim-

iting behavior of the expectation operators. Since we add the banking sector to the model, we

have to include it also in the expectation formation. Branch and McGough (2009) assume that

both types of agents have common expectation on their limiting wealth. It allows to represent

the aggregate expectations operator as a weighted average of group expectations. Otherwise,

there is an extra term on the limiting behavior of expectations that complicates the dynamics

(see Eq. (2.41) from Appendix 2.B). A similar pattern might be observed when aggregating

the banking sector (Eq. (2.49) from Appendix 2.B). The aggregate dynamics of the system is

therefore in�uenced by how agents predict the banking sector behaves over the in�nite horizon.

Axiom 7 might be viewed as an agreement among all agents that in the far future their

banking sectors will be equivalent or will at least generate the same marginal costs. From the

macroeconomic perspective, one may think of it as if both groups of agents were trying to reach

the banking sector technological frontier. Since there is a common technology, both types of

agents should be heading towards the same frontier eventually, satisfying axiom 7.

Proposition 2.3.1. In the presence of fraction (1 � 
) of boundedly rational agents, if agents’

expectations satisfy axioms 1-7 then the model from Eq. (2.5), (2.9) and (2.11) can be rewritten

as

xt = �Etxt+1 +
�

1� rr
V

�
�Et ~�t+1 �

�
1� rr
V

+ 1
�

~�t �
�
r̂IBt � �Et�t+1

�
+ ut; (2.12)

�t = � �Et�t+1 + �xt; (2.13)
�
� +

1� rr
V

�
~�t =

1� rr
V

�Et ~�t+1 �
� �Etxt+1 � xt

�
; (2.14)
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where �Et = 
ERE
t + (1� 
)EBRE

t .

The proof of Proposition 2.3.1 can be found in Appendix 2.B.

2.4 Numerical analysis

As opposed to the standard framework, the central bank policy instrument is the interbank

interest rate, r̂IBt (not the bond rate). In fact, this is the monetary policy tool used in practice

(Goodfriend and McCallum, 2007). As argued by Bernanke and Woodford (1997), to close the

model we use the forward-looking Taylor rule of the form

r̂IBt = �xERE
t xt+1 + ��ERE

t �t+1; (2.15)

where �x and �� are constant weights on output and in�ation variability, respectively. We

follow a common approach and assume that the central bank does not target the situation in the

banking sector directly. Including a banking sector variable in the monetary rule would extend

the monetary policy analysis to a three-dimensional problem so that the interpretation of the

results would not be straightforward anymore. Instead, the purpose of this study is to observe

how the standard monetary policy rule behaves in the environment with a present banking sector.

2.4.1 Formation of expectations

Throughout the model, we assume that the economy consists of two types of agents that are

homogeneous within each group. The �rst type of agents, i = RE, are those who form rational

expectations. We abstract here from the standard understanding of rationality, where agents

have full knowledge and capacities to perfectly predict the future. Instead, we rather view them

as being forward-looking fundamentalists, who collect information and form their expectations

accordingly. They are not aware of the presence of the other type of agents so that they form

their expectations as if everybody in the economy was rational in forming the expectations
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(Branch and McGough, 2009).

The second type of agents is not able to form rational expectations and use simple backward-

looking heuristics instead to predict the future. Following Evans and Honkapohja (2001) we

assume them to have adaptive expectations of the form

EBRE
t zt+1 = �2zt�1; (2.16)

where z is either x, � or ~�. Parameter � > 0 describes the magnitude and the direction of

the expectations. If � > 1, the in�uence of the past is being extrapolated to the future so

that we would call those expectations extrapolative. On the other hand, when � < 1, this

in�uence disappears over time and we would call those expectations adaptive5. When � = 1,

the boundedly rational agents form naive expectations (Evans and Honkapohja, 2001).

Given the expectation operators for both groups of agents, we may rewrite the aggregate

expectations as

�Etzt+1 = 
ERE
t zt+1 + (1� 
)�2zt�1; (2.17)

with z being either x, � or ~�.

2.4.2 Calibration and numerical results

DSGE models often exhibit indeterminacy, i.e. there is no unique path guiding the equilibrium.

In such a situation, the quantities and prices might not be even locally determinate, making the

monetary policy conduct more unstable (Woodford, 1994). Therefore, it is important to make

sure that the monetary tools provide a determinate structure of the economy.
5In the literature, adaptive expectations are being recognized as the whole group of operators of the form similar

to Eq. (2.16). However, for clarity purposes, we distinguish here between extrapolative and adaptive expectations
when � > 1 and � < 1, respectively.
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Table 2.1: Calibration values for the model parameters.

Parameter V rr � � �
Value 0.31 0.005 0.2 0.05 0.99

Let us write the complete model in the matrix form

0

B@
B 0

0 I3

1

CA

0

B@
yt+1

yt

1

CA =

0

B@
F �C

I3 0

1

CA

0

B@
yt

yt�1

1

CA+

0

B@
"t

0

1

CA ; (2.18)

where y = (x; �; ~�)0, " = (u; 0; 0) is a vector of exogenous shocks and B, F and C are the

coef�cient matrices described in detail in Appendix 2.C.

To study the determinacy properties, we apply the methodology developed by Blanchard

and Kahn (1980). Since it does not depend on the exogenous disturbances, we omit " in our

further analysis. The determinacy is a result of the properties of the solution matrix M , where

M =

0

B@
B�1F �B�1C

I3 0

1

CA : (2.19)

The equilibrium of the system is determinate only if the number of eigenvalues that are

outside the unit circle is equal to the number of non-predetermined variables (or the forward-

looking variables (Walsh, 2010)), which is 3 in this case. Having more eigenvalues outside

the unit circle implies explosiveness and fewer of them implies indeterminacy. The degree

of indeterminacy is equal to the number of non-predetermined variables less the number of

eigenvalues outside the unit circle (Evans and McGough, 2005).

We calibrate our model accordingly to Goodfriend and McCallum (2007). The detailed

values are presented in Table 2.1.

The determinacy properties are studied for extrapolative and adaptive expectations sepa-

rately. For the former, the � parameter is set to 1.1 and for the latter to 0.9 (Branch and

McGough, 2009). The ranges for policy parameters �x and �� are set from 0 to 5 and 10,
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respectively, in order to show the complete behavior of the system. The results are presented in

Figs 2.1 and 2.2.

Figure 2.1: Determinacy properties (� = 0:9). Green color describes determinacy, blue order 1
indeterminacy and red order 2 indeterminacy.
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Firstly, the results con�rm the ’rotating’ behavior of the system from Branch and McGough

(2009). With adaptive expectations the system rotates counterclockwise so that the determinacy

area increases. With extrapolative expectations the system rotates clockwise decreasing the

determinacy area.

Secondly, the location of the indeterminacy of order one and two is in line with the �gures

presented in Branch and McGough (2009). In fact, the only difference lies in the size of the

those areas, comparing with the original paper. This, however, is the consequence of the banking

calibration parameters and the different speci�cation of the utility function. In fact, if we allow

for extra parameter describing the intertemporal subsitution elasticity of consumption in the
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Figure 2.2: Determinacy properties (� = 1:1). Green color describes determinacy, blue order 1
indeterminacy and red order 2 indeterminacy.
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utility function, �, the determinacy area is narrowed from the top, being more similar to the

results from Branch and McGough (2009) and Bullard and Mitra (2002).

Thirdly, the presence of the banking sector has one important impact on determinacy proper-

ties. When agents form extrapolative expectations (� = 1:1), a new region of indeterminacy of

order 2 arises for too lenient in�ation targeting. In the case with adaptive expectations (� = 0:9)

there is no similar effect.

2.5 Conclusions and discussion

The goal of this chapter was twofold. Firstly, we derived a workhorse model for monetary

policy analysis with the present banking sector. Secondly, we relaxed the assumption of the
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representative agent structure and investigated the effects of the presence of boundedly rational

agents.

The results suggest that the presence of a banking sector changes the determinacy structure

of the equilibrium. Given that agents form adaptive expectations, the determinacy structure

rotates counterclockwise, so that more lenient output gap and in�ation targeting still guarantees

determinacy.

The problem arises when backward-looking agents extrapolate the past performance over

their future forecasts. The presence of the banking sector brings additional indeterminacy area

for lower in�ation targeting parameter. In other words, in the environment with a fraction of

extrapolative agents, if the monetary policy does not �ght in�ation suf�ciently well, it may not

reach the equilibrium in the long run.

In fact this pattern might have signi�cant consequences for the actual monetary policy con-

duct. Pfajfar and Zakelj (2011) suggest that the fraction of extrapolative agents might be as high

as 30%, even larger than in our analysis. Given the fact that the estimated Taylor rule parameters

vary usually in the region of (0,1) for the output gap weight and of (1,2) for the in�ation weight

(Taylor, 1999; Woodford, 2003), this may suggest that the system is very close to indeterminacy,

if not indeterminate already, which arises as a consequence of the banking sector. Therefore, it

seems vital for the monetary policy to address the issue of agents’ heterogeneity and investigate

in detail how they form their forecasts. There could be many solutions to the problem raised

above, however, it is beyond the scope of this chapter to discuss them in detail. Assuming

that the in�ation and output weights are set to satisfy the goals of the monetary policy, there

seem to be still ways out of the problem. For instance, one may think of increasing the clarity

and �exibility of capital, somehow reducing its inferiority for collateral purposes. This would

make current marginal banking cost more robust with respect to the future disturbances and

thereof could decrease the in�uence of destabilizing extrapolative expectations. Another solu-

tion would be smaller minimum capital requirement, however, this could translate into higher

banking sector leverage and eventually may cause more problems than it originally aimed to

28



2.5. CONCLUSIONS AND DISCUSSION

solve.

It is clear that households’ expectations play an important role in determining the monetary

policy, especially when a banking sector is present. However, this research shows just the top of

an iceberg and more study is required in order to fully understand the phenomenon of banking

in the modern economy. In particular, a straightforward extension of this study is to endogenize

the fraction of rational agents, making it dependent on other systemic variables.
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Appendix 2.A Baseline derivation

The utility of a farmer is de�ned as a weighted average of her consumption and leisure and

takes the form

U i(Ci
t ; n

i
t;m

i
t) = �log(Ci

t) + (1� �)log(1� nit �m
i
t); (2.20)

where � is the relative preference weight on consumption and t is the time subscript. Ci
t repre-

sents a composite consumption good and is of the standard Constant Elasticity of Substitution

(CES) form, as in Dixit and Stiglitz (1977)

Ci
t =

�Z 1

0
cjt

��1
� dj

� �
��1

; (2.21)

with � being the elasticity of substitution.

The farmer’s decision problem is to maximize her discounted expected utility subject to the

budget and technology constraints. Assuming a cashless limit (Woodford, 2003; Branch and

McGough, 2009), we may de�ne the former in real terms as

wt(nit+m
i
t)+qt (1� �)Ki

t+
Y i
t P i

t

PA
t

+
Bi
t

PA
t

= wt(ni;dt +mi;d
t )+Ci

t+qtK
i
t+1+

Bt+1

PA
t (1 + rBt )

; (2.22)

where Ki
t is capital level with qt being its real price and � the depreciation rate, wt is the real

wage and Bi
t are the nominal bond holdings with the nominal interest equal rBt . Y i

t is the

production level, P i is the price of the individual good and PA
t is the aggregate price level, as in

the Dixit-Stiglitz setup. Superscript d denotes the amount of labor demanded by a given farmer.

Superscript i and subscript t relate to the agent and time dimensions, respectively.

Contrary to the standard new Keynesian framework, there is a capital market in the model.

Its role is twofold. Firstly, capital serves as a production factor in the farmers’ technology.

Secondly, it is used as a collateral in the banking sector to produce loans. For simplicity, it

is assumed that the aggregate capital stock is on a steady state growth path (Goodfriend and

McCallum, 2007). What is important is that farmers are allowed to trade it so that its market
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price qt may �uctuate.

The production constraint requires that

Y i
t = Ki

t
�
�
eA1tni;dt

�1��
; (2.23)

where A1t is an aggregate productivity disturbance and � is the capital elasticity measure.

A novelty in the model is the presence of the banking sector. Its main role is to facilitate

transactions between production and consumption sides of the economy. Since the medium of

exchange is the crucial role of the monetary policy analysis, the model does not distinguish

between transaction balances and time deposits at the banks. In this simple form, it implies that

the farmer’s consumption in each period has to be rigidly related to the deposits held at a bank

(Goodfriend and McCallum, 2007). In other words, in each period, the level of consumption

(Ci
t) has to be covered by some constant fraction of the real deposits (V Di

t=PA
t ). Since each

bank has to hold a given level of reserves at the central bank (rr), the nominal amount of loans

it may produce from deposits held by farmer i is constrained by Lit = (1� rr)Di
t. At the same

time, the real loan production depends on the collateral and loan monitoring, and is assumed to

be of a Cobb-Douglas form

Lit
PA
t

= F
�

Bi
t+1

PA
t (1 + rBt )

+ �qtKi
t+1

�� �
eA2tmi;d

t

�1��
: (2.24)

The loan monitoring is assumed to be proportional to the labor supplied to the banking sector

by farmer i and A2t is the productivity disturbance similar to the one in the production sector.

Since capital stock require a substantial monitoring effort to con�rm its physical condition, its

inferiority to bonds for collateral purposes is expressed by � (Goodfriend and McCallum, 2007).

The complete intertemporal farmers’s maximization problem (with a presence of the bank-

ing sector) may be written as

max
nit;mit;n

i;d
t ;mi;dt ;P it ;Ki

t+1;B
i
t+1

Ei
t

1X

k=0

�k
�
�log(Ci

t+k) + (1� �) log
�
1� nit+k �m

i
t+k
��
: (2.25)
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subject to the budget constraint (Eq. 2.22) and production constraint (Eq. 2.23).

Before solving the optimization problem, from Eq. (2.24) we know that

Ci
t =

V F
1� rr

�
bit+1 + �qtKi

t+1
�� �eA2tmi;d

t

�1��
; (2.26)

where bit+1 = Bi
t+1=(PA

t (1 + rBt )). Additionally, by imposing market clearing we know that the

good produced by farmer i is equal to its demand

Y i
t =

�
P i
t

PA
t

���
CA
t ; (2.27)

where CA
t is the aggregate consumption level that each individual takes as given.

Let the Lagrange multipliers be �t and �t for the budget and production constraints respec-

tively. By including Eq. (2.26) and Eq. (2.27) into the maximization problem and assuming

market symmetry (Goodfriend and McCallum, 2007), the �rst order conditions provide

�(1� �)
1� nit �mi

t
+ �itwt = 0; (2.28)

��itwt + �ite
A1t(1� �)

�
Ki
t

eA1tnit

��
= 0; (2.29)

�
�
Ci
t
� �it

�
Ci
t(1� �)
mi
t

� �itwt = 0; (2.30)

CA
t

�
P i
t

PA
t

��� �(1� �)�it
PA
t

+
��it
P i
t

�
= 0; (2.31)

�
�

Ci
t�t
� 1
�


i
t�qt � qt + �(1� �)Ei

t

�
�it+1

�it
qt+1

�
+ ��Ei

t

 
�it+1

�it

�
eA1t+1nit+1

Ki
t+1

�1��
!

= 0;

(2.32)�
�

Ci
t�it
� 1
�


i
t � 1 + �Ei

t

�
�it+1

�it
PA
t

PA
t+1

(1 + rBt )
�

= 0; (2.33)

where 
i
t is the partial derivative of the deposit constraint Ci

t = V Lit
(1�rr)PAt ) with respect to
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collateral


i
t =

�Ci
t

bit+1 + �qtKi
t+1

: (2.34)

Appendix 2.B The in�uence of heterogeneous agents

Throughout the following derivation, we assume that each agent belongs to one of the two

groups, i.e. i = � 2 fRE;BREg. By superscript A we will refer to the aggregate values.

Appendix 2.B.1 The heterogeneous IS curve

Let us �rst introduce a benevolent �nancial institution that helps farmers in hedging the risk

associated with the Calvo lottery (Shi, 1999; Mankiw and Reis, 2007). In each period it col-

lects all the income from the market and then redistribute it evenly across farmers. Given this

property and assuming cashless limit, the agents’ budget constraint becomes

wt(nit+m
i
t)+qt (1� �)Ki

t+
Y i
t P i

t

PA
t

+
Bi
t

PA
t

+I ir;t = wt(ni;dt +mi;d
t )+Ci

t+qtK
i
t+1+

Bt+1

PA
t (1 + rBt )

+I ip;t;

(2.35)

where I ir;t and I ir;t are the real receipts from and payments to the insurance agency. Each

agent maximizes her expected utility over an in�nite horizon, subject to Eq. (2.35) instead

of (Eq. 2.22).

We know that the average real income (denoted by 	�
t ) and the average marginal banking

cost ��t obtained by rational and boundedly rational agents are

	RE
t =

1

PA

t

Z 


0
P i
tY

i
t di and 	BRE

t =
1

(1� 
)PA
t

Z 1



P i
tY

i
t di; (2.36)

�REt =
1



Z 


0
�itdi and �BREt =

1
1� 


Z 1



�itdi: (2.37)

From the above equations it is clear that we may view the aggregate production and aggregate

real marginal banking cost as a weighted average of their components, i.e. Y A
t = 
Y RE

t + (1�
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)Y BRE
t and �At = 
�REt + (1� 
)�BREt .

Following Branch and McGough (2009), if an agent is of type � , then her real receipts from

and payments to the insurance agency are I ir;t = 	�
t and I ip;t = Y i

t P i
t =PA

t . By market clearing

and axiom A2 the steady states of consumption and production are equal at individual and group

levels. By imposing market symmetry, the budget constraint (Eq. 2.35) yields

Ĉ�
t = 	̂�

t +
B�
t =PA

t
�Y A
t
�
B�
t+1=(PA

t (1 + �rBt ))
�Y A
t

+
qt(1� �)K�

�Y A
t

�
qtK�

t+1
�Y A
t

; (2.38)

where the bars indicate the steady state levels. Bond and capital market clearing require that

�BRE
t = �(1� �)BBRE

t and �KRE
t = �(1� �)KBRE

t . After multiplying Eq. (2.38) by 
 for

rational and by (1� 
) for boundedly rational agents and summing up, we arrive at

Ŷ A
t = 
	̂RE

t + (1� 
)	̂BRE
t : (2.39)

From Eq. (2.4), (2.37) and (2.38) we have

	̂�
t = E�

t 	̂�
t+1 +

�
1� rr
V

�
E�
t ~��t+1 �

�
1� rr
V

+ 1
�

~��t �
�
r̂IBt � E

�
t �t+1

�
: (2.40)

Iterating this equation forward and substituting into Eq. (2.39) we �nally get

Ŷ A
t = �EtŶ A

t+1 +
�

1� rr
V

�
�Et ~�At+1 �

�
1� rr
V

+ 1
�

~�At �
�
r̂IBt � �Et�t+1

�
+

+
�

	̂RE
1 + (1� 
)	̂BRE

1

�
� �Et

�

	̂RE
1 + (1� 
)	̂BRE

1

�
;

(2.41)

with �Et = 
ERE
t + (1� 
)EBRE

t and 	̂�
1 = limk!1E�

t 	̂�
t+k. In fact, Eq. (2.41) is of exactly

the same form as in Branch and McGough (2009) but with a banking sector present. Axiom 7

indicates that agents predict their limiting wealth identically, which makes

�

	̂RE
1 + (1� 
)	̂BRE

1

�
= �Et

�

	̂RE
1 + (1� 
)	̂BRE

1

�
: (2.42)
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Subtracting the log deviations of the potential product from both sides, we �nally arrive at

the heterogeneous IS curve with a present banking sector

xt = �Etxt+1 +
�

1� rr
V

�
�Et ~�At+1 �

�
1� rr
V

+ 1
�

~�At �
�
r̂IBt � �Et�t+1

�
+ ut; (2.43)

where xt = Ŷ A
t � Ŷ f;A

t is the output gap measure, the expectation operator is the weighted

average of the group expectations �Et = 
ERE
t + (1� 
)EBRE

t and ut is a disturbance term that

depends only on exogenous productivity shocks.

Appendix 2.B.2 The heterogeneous Phillips curve

It is important to note that when farmers may hedge against the Calvo risk their production level

would be 0 in equilibrium as a result of the free-riding problem. Therefore, following Branch

and McGough (2009), we assume that farmers make their pricing decisions as if there was no

insuring agency.

Let us take the log approximation of Eq. (2.7)

logP �
t � logPA

t = (1� !�)’̂�t + !�E�
t �t+1 + !�E�

t logP �
t+1=P

A
t+1: (2.44)

Branch and McGough (2009) show that the Calvo lottery implies aggregate in�ation to

follow

�t =
1� !
!

�

 logPRE

t =PA
t + (1� 
) logPBRE

t =PA
t
�
: (2.45)

As long as the pricing decisions are homogeneous within each group � , by multiplying

Eq. (2.44) by 
 for rational and by (1 � 
) for boundedly rational agents and adding up, after

some algebra we arrive at the �nal aggregate heterogeneous Phillips curve

�t = � �Et�t+1 + �’At ; (2.46)

where � = (1�!)(1��!)
! .
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Finally, noting that the aggregate marginal production cost is the aggregate output gap mea-

sure, the heterogeneous new Keynesian Phillips curve amended for the banking sector may be

viewed as

�t = � �Et�t+1 + �xt; (2.47)

where �Et = 
ERE
t + (1� 
)EBRE

t .

Appendix 2.B.3 The heterogeneous banking sector curve

Taking the steady state log deviations of Eq. (2.10) and iterating forward we get for each group

of agents

~��t =
�

1� rr
V

��1
"

��E�
t

1X
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�
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�
t )

#

; (2.48)

where �̂�1 = limk!1E�
t �̂�t+k and x�1 = limk!1E�

t x�t+k.

Given Eq. (2.37) and (2.48), we get
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(2.49)

The last two lines disappear due to Axiom 7, which gives

�

 ~�RE1 + (1� 
)~�BRE1

�
= �Et

�

 ~�RE1 + (1� 
)~�BRE1

�
(2.50)
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�

xRE1 + (1� 
)xBRE1

�
= �Et

�

xRE1 + (1� 
)xBRE1

�
(2.51)

so that the �nal banking curve equation may be written as Eq. (2.14).

Appendix 2.C Model dynamics

The condensed model can be viewed as

0

B@
B 0

0 I3

1

CA

0

B@
yt+1

yt

1

CA =

0

B@
F �C

I3 0

1
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0
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1

CA ; (2.52)

where y = (x; �; ~�)0 and

B =

0

BBBB@


 � �x 
 � �� 
(1�rr)
V

0 �
 0

�
 0 
(1�rr)
V

1

CCCCA
; (2.53)
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BBBB@

1 0 (1�rr)
V + 1

�� 1 0

�1 0 � + (1�rr)
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; (2.54)
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BBBB@
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)�2 (1� 
)�2 (1�
)�2(1�rr)
V

0 �(1� 
)�2 0

�(1� 
)�2 0 (1�
)�2(1�rr)
V

1
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: (2.55)
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Chapter 3

Nonlinear Granger Causality - Guidelines

for Multivariate Analysis

3.1 Introduction

Since the introduction of Granger causality over four decades ago (Granger, 1969), the body

of literature on this topic has grown substantially, becoming standard methodology not only

among economists and econometricians, but also �nding followers in physics or even biology

(Guo et al., 2010). Not surprisingly, it alleviated an ongoing discussion on the nature and

validity of the concept, pointing out its methodological limitations. Although, the spectrum

of arguments against the idea of Granger causality is very broad, the main line of criticism

follows from the very simple nature of the dependence relations in the economy, which Granger

causality originally assumes (Cartwright, 2007). The scope of this chapter is to contribute to

the discussion allowing for a more complex structural setting in the nonparametric Granger

causality testing.

Imagine a strictly stationary bivariate process f(Xt; Yt)g. We say that fXtg is a Granger

cause of fYtg if past and current values of X contain additional information on future values

of Y that is not contained in past and current Y -values alone. If we denote the information
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CHAPTER 3. NONLINEAR GRANGER CAUSALITY

contained in past observations Xs and Ys, s � t, by FX;t and FY;t, respectively, and let ‘�’

denote equivalence in distribution, the formal de�nition is:

De�nition 3.1.1. For a strictly stationary bivariate time series process f(Xt; Yt)g, t 2 Z, fXtg

is a Granger cause of fYtg if, for some k � 1,

(Yt+1; : : : ; Yt+k)j(FX;t;FY;t) 6� (Yt+1; : : : ; Yt+k)jFY;t:

Clearly, such a de�nition is very simplistic and seems to be inappropriate to apply in com-

plex environments. An obvious shortcoming is the fact that the vectors of interests are assumed

to be univariate, making the whole problem detached from reality. In other words, this method-

ology does not allow to control for every possible source of variation of every kind [...] as

argued by (Cartwright, 2007). An advantage of such a general de�nition is, however, that it

does not assume any parametric relations between the time series and instead focuses on the

conditional distributions only1.

The most commonly used nonparametric test for the above hypothesis testing (Def. 3.1.1)

is the one proposed by Hiemstra and Jones (1994). Its main advantage lies in a very clear and

intuitive reasoning together with a strong asymptotic theory, derived even for a multivariate

setting2 (Bai et al., 2010). Nevertheless, the test can severely over-reject if the null is satis�ed

(Diks and Panchenko, 2005). Therefore, Diks and Panchenko (2006) (hereafter DP) proposed

a new test statistic which corrects for this shortcoming but, as it turns out, because of the large

kernel estimator bias the DP test lacks consistency in the multivariate setting.

The goal of this chapter is therefore twofold. Firstly, in order to reduce the kernel estimator

bias we apply the data sharpening method (Hall and Minnotte, 2002) and we derive the asymp-

totic properties for the sharpened DP test in a multivariate setting. Secondly, we investigate its
1This brings additional modeling �exibility and does not bind us to the linear autoregressive model as originally

proposed by Granger (1969).
2Throughout the chapter, we will refer to a multivariate setting by a situation where vector fXtg is allowed

to be multidimensional and fXtg is univariate, i.e. fXtg = fX1;t; X2;t:::; Xm;tg, m � 1. In principle, the
dimensions of fXtg vector might describe its corresponding lags, i.e. X1;t = Xt�1, X2;t = Xt�2 etc, so that by
the bivariate case we refer to the situation where fXtg is univariate.
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performance both numerically and empirically on the US grain market. We chose this speci�c

market due to its straightforward causal relationship, where the price of each grain is in�u-

enced not only by the other grains, but to a large extent the whole market is driven by weather

forecasts. Therefore, it serves as an almost ideal environment to test our new methodology in

practice.

This chapter is organized as follows. Section 3.2 discusses the asymptotic properties of the

original DP test and shows why it lacks consistency in the multivariate setting. In Section 3.3

we replace the standard kernel density estimator by its sharpened form and we show that the

new test statistic is asymptotically normally distributed. We con�rm the theoretical results by

computer simulations. In Section 3.4 we apply the new test to the US grain market. Section 3.5

summarizes and concludes.

3.2 Asymptotic properties of the DP test

In testing for Granger non-causality, the aim is to detect evidence against the null hypothesis

H0 : fXtg is not Granger causing fYtg;

with Granger causality de�ned according to Def. 3.1.1. We limit ourselves to tests for detecting

Granger causality for k = 1, which is the case considered most often in practice. Under the

null hypothesis Yt+1 is conditionally independent of Xt; Xt�1; : : :, given Yt; Yt�1; : : :. In a non-

parametric setting, conditioning on the in�nite past is impossible without a model restriction,

such as an assumption that the order of the process is �nite. Therefore, in practice conditional

independence is tested using �nite lags lX and lY , i.e.

Yt+1j(X lX
t ;Y lY

t ) � Yt+1jY lY
t ;
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where X lX
t = (Xt�lX+1; : : : ; Xt) and Y lY

t = (Yt�lY +1; : : : ; Yt). For a strictly stationary bivari-

ate time series f(Xt; Yt)g this is a statement about the distribution of the lX+lY +1-dimensional

vector Wt = (X lX
t ; Y lY

t ; Zt), where Zt = Yt+1. To keep the notation simple, and to bring about

the fact that the null hypothesis is a statement about the invariant distribution of Wt, we of-

ten drop the time index and just write W = (X; Y; Z), where the latter is a random vector

with the distribution of (X lX
t ; Y lY

t ; Yt+1). Nevertheless, Denker and Keller (1983) and Diks and

Panchenko (2006) show that the reasoning holds for weakly-dependent Wt provided that the

covariance between the local density estimators is taken into account in the asymptotic variance

of the test statistic.

For now, let us consider the simplest setting, where lX = lY = 1 so that W = (X; Y; Z)

denotes a three-variate random variable, distributed as Wt = (Xt; Yt; Yt+1). (Throughout the

chapter we assume that W is a continuous random variable.) The DP test restates the null

hypothesis in terms of the joint probability distribution fX;Y;Z(X; Y; Z) and its marginals, i.e.

q � E [fX;Y;Z(X; Y; Z)fY (Y )� fX;Y (X; Y )fY;Z(Y; Z)] = 0: (3.1)

Given a simple square kernel density estimator

f̂W (Wi) =
(2")�dW

n� 1

X

j;j 6=i

I
�
kWi �Wjk

"

�
; (3.2)

where " is a bandwidth, k:k is the maximum norm and I(:) is the indicator function taking

values 1 for any argument within the unit circle, one readily �nds a natural estimator of q being

given as

Tn(") =
(n� 1)
n(n� 2)

X

i

( bfX;Y;Z(Xi; Yi; Zi) bfY (Yi)� bfX;Y (Xi; Yi) bfY;Z(Yi; Zi)): (3.3)

The asymptotic behavior of Tn(") follows directly from the reasoning originally designed

for the MSE (Mean Squared Error) optimal bandwidth selection under the shrinking condi-
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tions, developed by Powell and Stoker (1996). The test statistic has a corresponding third order

U-statistic representation with a kernel given by ~K(Wi;Wj;Wk). Let us denote ~K1(w1) =

E[ ~K(w1;W2;W3)] and ~K2(w1; w2) = E[ ~K(w1; w2;W3)], and assume that the rates of conver-

gence of the pointwise bias as well as the second moment kernel expansions depend on the

bandwidth size in the following way (in fact these are the conditions imposed by Powell and

Stoker (1996))

~K1(wi; ")� lim
"!0

~K1(wi; ") = s(wi)"� + s�(wi; "); � > 0; (3.4)

E
h
( ~K2(W1;W2))2

i
= q2"�
 + q�2("); 
 > 0; (3.5)

E
h
( ~K(W1;W2;W3))2

i
= q3"�� + q�3("); � > 0; (3.6)

where the remainder terms are negligible, i.e. Eks�(Wi; ")k2 = o("2�), (q�2("))2 = o("�
) and

(q�3("))2 = o("��). Parameters �, 
 and � follow directly from the speci�cation of the kernel

function ~K and might be derived analytically. In fact, it might be veri�ed that � is of the same

magnitude as the local kernel estimator bias and Diks and Panchenko (2006) show that two

remaining parameters depend on the dimensionality of the system as 
 = dx + dy + dz and

� = dx + 2dy + dz.

Having pointed that out, the MSE of the test statistic might be expressed as

MSE[Tn(")] = (E[s(Wi)])2 "2�+
9
n
C0"�+

9
n

Var
h
lim
"!0

~K1(Wi; ")
i
+

18
n2 q2"�
+

6
n3 q3"��; (3.7)

where C0 = 2Cov
h
lim"!0 ~K1(Wi; "); s(Wi)

i
. In order to guarantee asymptotic normality of

Tn(") all the "-dependent terms in Eq. (3.7) have to be o(n�1). Given the bandwidth shrinking

condition, i.e. "n � Cn�� , one may �nd that this implies

p
n
Tn("n)� q

�
d�!N (0; 1) iff

1
2�

< � <
1

dx + dy + dz
; (3.8)
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with �2 being the asymptotic variance of
p
n(Tn("n)� q).

Clearly, given the standard kernel density estimator with bias of order 2 and the basic model

speci�cation with dx = dy = dz = 1, the test statistic is asymptotically normally distributed

for any positive constant C and � 2 (1=4; 1=3). Given suitable mixing conditions (see Denker

and Keller (1983)) and provided that covariances between local density estimators are taken

into account, the result holds also for the weakly dependent time series (Diks and Panchenko,

2006).

3.2.1 The dimensionality problem

Let us now consider what happens if we increase the dimensionality by one. For clarity pur-

poses, imagine that we would like to condition the causal relationship on one additional variable,

denoted by Q, so that the null hypothesis of conditional independence becomes3

Yt+1j(X lX
t ;Y lY

t ; QlQ
t ) � Yt+1j(Y lY

t ; QlQ
t ):

Let us keep lX = lY = lQ = 1. Following the reasoning from the previous section, one

may �nd that the asymptotic normality condition requires � to be in range between 1=(2�) and

1=(dx + dy + dz + dq). Given the same standard kernel density estimator with the local bias of

order � = 2 and dx = dy = dz = dq = 1, one observes that if we increase the dimensionality

of the original problem by any number v � 1, there is no feasible �-region which would endow

Tn("n) with asymptotic normality.

The associated problem results from a too large expected pointwise kernel estimator bias,

i.e. E[s(Wi)]. By increasing the vector space, we decrease the estimator precision, which seems

to play a crucial role in the MSE of the test statistic.

One may relate this problem to the so-called curse of dimensionality. As suggested by

Scott (1992), in statistics the problem is a consequence of sparsity of data in larger dimensions.
3In practice, it is dif�cult to �nd an explicit representation of Q variable. However, one may think of the

increased dimensionality problem as conditioning on more than one lag, for instance Qt = Xt�1.
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Imagine, for instance, a uniform sample over the [�1; 1]d hypercube, where d is the total number

of dimensions. Given arbitrary small region of radius � < 1, it might be shown that as d!1

the number of points within [��; �]d tends to 0. Straightforward implication suggests that in

�nite higher dimensional spaces, the smoothing parameter should be larger in order to capture

similar number of points. Nevertheless, by increasing the bandwidth window we decrease the

precision of the estimator, violating the consistency of the test statistic in this case.

There are several methods which could decrease the dimensionality problem. Scott (1992)

suggests principal components method, projection pursuit or informative components analysis.

These solutions, however, put additional boundaries on the underlying structure of the data. For

instance, they might be of a great advantage when dealing with 100-dimensional spaces where

one could assume that the data structure falls into a 20-dimensional manifold. In our example

it is very likely, however, that the minimum number of independent manifolds is larger than

3 so that the dimension reduction does not necessary have to improve the test performance.

Moreover, as argued by Cartwright (2007), we do not want to decrease the complexity of the

environment.

Another solution is a precision improvement, or in other words, reduction of the estimator

bias. Since it does not assume any particular underlying data structure, it is of greater advantage

in our setting.

3.3 Data sharpening as a bias reduction method

The intuition behind Data Sharpening (DS) is to slightly perturb the original data set by a

sharpening function  p(:) in order to obtain the desirable properties of the density estimator f̂

(here p is the order of bias reduction). Hall and Minnotte (2002) show that the ‘sharpened’ f̂ has

smaller bias with variance being of the same order as original f̂ . The idea of the perturbation

is to tighten the data set, i.e. concentrate points where they were already dense and thin them

where they were originally sparse. The explicit form of the sharpening function depends then
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on the order of the bias reduction we would like to get but the technique might be in principle

applied to obtain arbitrary low levels of bias reduction (Hall and Minnotte, 2002).

There are several advantages of DS among the bias reduction techniques. Firstly, as men-

tioned before, it allows for very high levels of bias reduction. Since testing for Granger causality

is widely recognized for its practical purposes, the universality of a method is of a great impor-

tance. Secondly, as we con�rm in our study, it does not affect the kernel function directly,

which leaves other asymptotic properties of the MSE of the test statistic untouched (see other

"-dependent terms in Eq. (3.7)). Thirdly, it is easy and straightforward to implement, even in a

multivariate setting.

With respect to Eq. (3.2), let us consider a sharpened form of the estimator

f̂ sW (Wi) =
"�dW

n

X

j

Kmulti

�
Wi �  p(Wj)

"

�
; (3.9)

where Kmulti(W ) = (2�)�dW =2 exp(�1=2W TW ) is the standard multivariate Gaussian kernel,

as described in Wand and Jones (1995) and Silverman (1998).4

We obtain the sharpened form of the test statistic, T sn("n), by substituting the sharpened

estimators into Eq. (3.3). As we show in Appendix 3.A, the pointwise bias is of order o("p)

with other properties of the kernel ~K being the same. This in fact makes the bias of T sn("n)

(from Eq. (3.4)) being � = p with parameters 
 and � from Eq. (3.5) and Eq. (3.6) unchanged.

This reasoning might be summarized in the following corollary, which is a generalization of the

theorem in Diks and Panchenko (2006) and proposition in Hall and Minnotte (2002)

Corollary 3.3.1. For any suf�ciently smooth, continuous and in�nitely differentiable density,

there exist a sharpening function  p(:), where p is the order of bias reduction, for which one may

�nd a sequence of bandwidths "n = Cn�� withC > 0 and � 2 (1=(2p); 1=D), whereD <1 is

the total dimensionality of the problem, which guarantees that for a weakly-dependent process
4In principle, our reasoning holds for any suf�ciently smooth, symmetric and multiplicative probability density

as a kernel function. Square kernel, as originally applied by Diks and Panchenko (2006), proves not to be smooth
enough which led us to the standard Gaussian kernel.
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the sharpened test statistic T sn satis�es:

p
n

(T sn("n)� q)
Sn

d�!N(0; 1);

where S2
n is an autocorrelation consistent estimator of the asymptotic variance of

p
n(T sn("n)�

q).

The proof of Corollary 3.3.1 can be found in Appendix 3.A.

In order to illustrate its practical application, let us consider the same dimensionality prob-

lem as described in Section 3.2.1. The original kernel estimator bias of order o("2), which

was effectively blocking the consistency of the test, might be reduced to o("4) by applying the

sharpening function of the form

 4(W ) = I + h2�2

2
f̂ 0(W )
f̂(W )

; (3.10)

where I is the identity function, h is the sharpening bandwidth, �2 is the second moment of the

kernel and f̂ 0 denotes the �rst derivative of the density estimator.5 For the sake of clarity, the

detailed derivations and expressions might be found in the Appendix 3.B. Clearly, it is possible

now to �nd a range for �-values which would guarantee asymptotic normality; in this case it is

� 2 (1=8; 1=4).

There are several other methods of kernel bias reduction. The literature distinguishes inter

alia among higher order kernels (Granovsky and Mller, 1991), variable bandwidth estimators

(Abramson, 1982), variable location estimators (Samiuddin and El-Sayyad, 1990) or paramet-

ric transformation methods (Abramson, 1984). Under suf�cient smoothness of the underlying

density, they all reduce the bias from o("2) to o("4) as the sample size increases. Although

it is likely that they might be also successfully applied in our setting, their properties do not

guarantee a clear-cut asymptotic theory for the test statistic. Therefore, we leave this exercise
5We employ the Nadaraya-Watson estimator as a plug-in estimator for sharpening function as suggested by

Choi and Hall (1999). This, in fact, makes the optimal sharpening bandwidth h dependent on "n.
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for future consideration.

3.3.1 Bandwidth selection

The optimal bandwidth, denoted by "�, corresponds to the smallest MSE of the test statistic,

T sn("n). Following the Diks and Panchenko (2006) methodology, this implies that the sum of

dominating squared terms in Eq. (3.7) is minimized, so that under the bandwidth shrinking

condition

"� = C�n
�2

2�+
 ; (3.11)

with

C� =
�

18
q2

2�E[s(W )]2

� 1
2�+


: (3.12)

One may readily observe that the general formula for the optimal bandwidth is similar to the

one derived in the Diks and Panchenko (2006). DS changes the pointwise bias of the estimator

density estimator, intuitively affecting both the rate of convergence, i.e. parameter �, and the

leading bias term, i.e. s(wi).

In order to get more insight into the effects of DS on the optimal bandwidth selection in the

DP setting, it is worthwhile to test it in a similar environment as Diks and Panchenko (2006)

proposed. Therefore, we consider here an interdependent multivariate ARCH process, however

for the sake of presentational purposes, extended to the 3-variate setting and representing the

dimensionality problem discussed in the previous section. Consider the ARCH process without

instantaneous dependence

Qt � N
�
0; c+ aQ2

t�1
�

Xt � N
�
0; c+ aY 2

t�1
�

Yt � N
�
0; c+ aQ2

t�1
�
:

(3.13)

It is clear that the process satis�es the null that fXtg is not Granger causing fYtg, corrected

for the presence of fQtg. Parameters c and a are chosen in order to guarantee stationarity and

ergodicity, i.e. c > 0 and 0 < a < 1.
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Because of the complexity of the problem, in order to get more insight into the magnitude of

the optimal constant C�, and optimal bandwidth value "�, we rely on Monte Carlo simulations.

We perform 1000 simulations of process from Eq. (3.13) with a = 0:4 and c = 1 for different

sample sizes. We extract values for q̂2 and E[s(W )] using standard kernel methods for density

and derivative estimation, described in Wand and Jones (1995) and Silverman (1998). The

results are presented in Table 3.1.

Table 3.1: Optimal constants and bandwidth values for the T sn("n) test of the 3-variate process
from Eq. (3.13) for different sample sizes under the bandwidth shrinking condition. The values
represent the mean over 1000 simulations.

sample size (n) 50 100 200 500 1000
C� 0.83 0.89 0.94 0.97 0.98
"� 0.43 0.41 0.39 0.34 0.31

The reported optimal bandwidths are smaller than those from Diks and Panchenko (2006).

This is a straightforward result of the DS method. Given that the sharpened estimate has lower

bias, the test does not have to include such a wide range of points in order to yield similar

properties. This in fact guarantees asymptotic normality of the sharpened test statistic under

smaller bandwidth values.

3.3.2 Performance of the DS in Granger causality setting

Given the optimal bandwidth values, we may turn to the assessment of the performance of the

DS-augmented DP test. Again we rely here on Monte Carlo simulations. Since process from

Eq. (3.13) matches the basic properties of the observed �nancial time series (like conditional

heteroskedasticity), we use it as an underlying behavior for the simulations for our test size

assessment. For the test power assessment we use the same process, however, we switch the

causality between fXtg and fYtg so that, even conditioning on fQtg, the null hypothesis of no

Granger causality is violated.

The results from 1000 simulations for various time series lengths are summarized by the

size-size and power-size plots shown in Fig. 3.1.
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Figure 3.1: Size-size and power-size plots of the T sn("n) test of 3-variate process from Eq. (3.13)
for different sample sizes under the bandwidth shrinking condition aggregated over 1000 simu-
lations.
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(a) Size-size plot
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(b) Power-size plot

One may readily observe that the test demonstrates larger power on larger samples. For 5%

signi�cance level, it ranges from 0.05 for n = 50 (no power) to 0.82 for n = 500 (high power).

A simple rule of thumb may suggest that the test yields satisfactory results for samples of length

500 and larger. Interestingly, for the same signi�cance levels and sample sizes, the sharpened

DP test offers better power than its original counterpart. In fact, the standard DP test yields

power of 0.8 for samples of 1000-2000 length.

At the same time the test tends to be rather conservative for larger nominal p-values, i.e. it

under-rejects when the null is satis�ed. However, for relatively small signi�cance levels the

size-size plot suggests that the larger the sample size, the closer the size is to the ideal rejection

probability.

One may view DS as an almost ideal tool for bias reduction. We observe, however, a price

for the increased precision of the pointwise estimators. For each point in the distribution the

algorithm calculates its sharpened form. This in fact shows up as an additional loop in the

procedure, increasing the computational time from O(n2) to O(n3). For relatively short time

series it may not seem as a problem but for n larger than a couple of thousand, computational
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time might be a bottle neck of the analysis. Therefore, for larger data sets, we recommend using

DS together with multicore or cloud computing.

3.4 Nonlinear Granger causality in the US grain market

In order to show a practical application of the sharpened DP test, we choose the US grain market

as it offers an intuitive and straightforward environment for our hypothesis testing. There is a

common agreement among professionals that any causal relation between prices of different

crops has to be corrected for the weather forecasts at that particular moment (see for instance

Popp et al. (2003) and Carreck and Christian (1997)). This conditioning variable suits as a

perfect example of Q variable, from the 3-variate example in previous sections.

We consider corn, beans and wheat as being most representative of the US grain market.

We consider prices of the 1-month ahead rolling future contracts, traded in USD at the Chicago

Board of Trade (CBoT). The weather variable is approximated by the rolling monthly futures

on Heating Degree Days (HDD), averaged over Philadelphia, New York, Portland, Chicago

and Cincinnati. Daily time series comprise the period from 09/01/2010 till 03/06/2013 making

together 633 observations. The data have been obtained from Bloomberg.

We take all variables in logs and evaluate their statistical properties to check whether the

time series are stationary. The results are presented in Table 3.2.

Looking at the raw data, only prices of corn prove to be stationary at the 5% signi�cance

level. Therefore, in order to assess Granger causality in the market we focus on �rst differences

of all the variables, i.e. log returns.

In the analysis we consider pairwise relations and complete system separately. In the former

we take into account the direct relations between two grains only and in the latter we look at the

model with all grains included. Since in the system setting, Q variable is two dimensional, by

Q1 we refer to the conditioning on grain and Q2 to conditioning on weather.

To underpin the results, we relate them with the standard linear Granger causality setting, as
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Table 3.2: Unit root tests of the log prices on US grain market in period 09/01/2010 till
03/06/2013 for raw data and for �rst differences. Test types comprise the Augmented Dickey-
Fuller test (ADF) and Phillips-Perron test (PP) as described in Fuller (1995) and Phillips and
Perron (1988), respectively. In both tests the null assumes non-stationarity. CV denotes the
Critical Value for a given test speci�cation.

Raw data First diff.
Variable Test type Trend 5% CV Test stat. Unit root Test stat. Unit root

Corn ADF no -2.86 -3.585 no -24.574 no
PP no -2.86 -3.591 no -24.568 no

ADF yes -3.41 -3.469 no -24.611 no
PP yes -3.41 -3.493 no -24.605 no

Bean ADF no -2.86 -2.666 yes -24.504 no
PP no -2.86 -2.668 yes -24.496 no

ADF yes -3.41 -2.564 yes -24.523 no
PP yes -3.41 -2.575 yes -24.516 no

Wheat ADF no -2.86 -2.299 yes -24.905 no
PP no -2.86 -2.288 yes -24.913 no

ADF yes -3.41 -2.272 yes -24.890 no
PP yes -3.41 -2.261 yes -24.898 no

HDD ADF no -2.86 -1.247 yes -21.707 no
PP no -2.86 -1.547 yes -22.048 no

ADF yes -3.41 -1.409 yes -21.690 no
PP yes -3.41 -1.739 yes -22.032 no

proposed by Granger (1969). We also investigate the causality among the VAR-�ltered residu-

als, making sure that discovered causality effects are the results of nonlinearities. We study the

explicit role of the weather variable by comparing our results with the original DP test, i.e. with-

out a conditioning variable. In the analysis we assume the lag of each conditioning variable to

be 1, as suggested by the Bayesian Information Criterion from the VAR speci�cation. The op-

timal bandwidth value for the original DP test is equal 1.27 and for the sharpened test it is 0.33.

Before running the tests, we standardize the data by either standard normal or uniform marginal

transformations. The results for the pairwise relations are presented in Tables 3.3 and 3.4 and

for the complete system in Tables 3.5 and 3.6. Graphical illustration of the results can be found

in Appendix 3.C in Tables 3.C.1 through 3.C.4.
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3.4. NONLINEAR GRANGER CAUSALITY IN THE US GRAIN MARKET

One may readily observe that the US grain market does not show much linear Granger

causality. The only exception is the possible impact of beans on corn prices in all settings.

After VAR �ltering this relation disappears, however, as expected.

Interestingly, our results suggest that the relations between US grain prices exhibit a lot of

nonlinearities. Looking at the basic pairwise setting, there are strong causal linkages between

corn and wheat. If we, however, condition on weather forecasts, some of the relations vanish, in

particular in the uniform transformation setting. Moreover, we observe that after conditioning,

some new causal relations emerge between corn and beans, which additionally are purely non-

linear in nature. It suggests that weather forecasts have a dual role in the grain market. They do

not only drive many of the causal relations themselves but they also mask some of the others in

the bivariate setting. From our pairwise results it is clear that weather is masking the corn-beans

whereas is driving wheat-corn Granger causality.

In the basic system setting the corn-wheat causal relation is preserved, being signi�cant

also after linear �ltering. The corn-beans in�uence is also visible in the uniform transformation

setting, con�rming the pairwise results. After conditioning on weather forecasts, however, we

observe the emergence of the Granger causal relation in the beans-wheat market. Interestingly,

the multivariate setting exhibits many regularities from the pairwise study, nevertheless, because

of the complexity of the environment, we see new nonlinear relations between all the grains.

Prices of corn are Granger causing those of wheat and beans, whereas prices of beans are also

in�uencing those of wheat, conditioning on the weather forecasts.6

A straightforward explanation of our results could be that the nonlinear causal relation

emerge from bigger to smaller markets. Corn is the most heavily traded grain on the CBoT,

followed by beans and wheat. Intuitively, bigger markets should affect those of smaller size

as they are deeper and more liquid (Sari et al., 2012). This reasoning is fact in line with our

previous �nding on the dual role of the weather forecasts in grain market. Since the majority of
6Interestingly, conditioning on weather forecast does not fully remove the bias in the corn-wheat relation, as

in the pairwise nonlinear test (raw data normal adjustment) and in the system nonlinear tests (raw data normal
and uniform adjustments). This, in fact suggests that there can exist additional factors which could in�uence the
corn-wheat price relation, being a potential topic for further investigation.
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shocks in the grain market are weather-related, they serve as a common factor and are displayed

in all the markets, mitigating the effects of the grain-speci�c shocks. Correcting for the weather

stance allows, therefore, to reveal causal relations between grain-speci�c shocks, which spread

from larger to smaller markets.

3.5 Conclusions and discussion

This study contributes to the ongoing discussion on the validity of the Granger causality con-

cept, allowing it to be applied in more complex environments. We show that the Granger causal-

ity test proposed by Diks and Panchenko (2006) lacks consistency in a multivariate setting. The

problems arise as a consequence of a too large pointwise estimator bias, which decreases the

precision of the tests statistic and affects its asymptotic properties. In order to bring back its

desirable properties we propose a sharpened form of the test statistic, which under mild regular-

ity conditions is again asymptotically normal. In fact, we con�rm that the sharpening function

reduces the original bias of the estimator without any consequences for its further properties, as

originally suggested by Hall and Minnotte (2002). We assess properties of the sharpened test

numerically, demonstrating that its power is larger than that of the basic DP test.

In order to show the practical side of our study, we apply the test to the US grain market

as, because of its weather-dependent structure, it serves as an ideal environment to assess our

methodology. We consider Granger causality between corn, beans and wheat, conditioning

on the weather forecasts, approximated by the future contracts on Heating Degree Days. Our

results suggest that the US grain market exhibits many nonlinear relations. We discover a dual

role of the weather forecasts. Firstly, they seem to drive the causal relation from wheat to

corn, in the pairwise setting as they serve as a common factor. Secondly, they are masking the

causal relations from corn to beans and from beans to wheat in the system setting. Correcting

for the common factor, we reveal the true nonlinear Granger casual relations in the US grain

market, suggesting that the causality spreads from bigger, i.e. deeper and more liquid, to smaller
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markets.

Our results might have important further implications for the food market analysis. As

suggested by Gilbert (2010), future contracts are the major transition channel through which

macro variables affect food prices. Understanding possible nonlinear economic dynamics in

these markets is therefore of a great signi�cance, as it may prevent possible bubbles and instant

food price rises, as the ones observed between 2007 and 2008.
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CHAPTER 3. NONLINEAR GRANGER CAUSALITY

Appendix 3.A Asymptotic properties of the sharpened test

statistic (Corollary 3.3.1)

We closely follow here the reasoning developed in Diks and Panchenko (2006), however, for

the Gaussian kernel and sharpened estimator, as proposed in Hall and Minnotte (2002). We

analyze here the case of a random sample as the dependency results follow from the reasoning

in Denker and Keller (1983) and Diks and Panchenko (2006). In particular, rede�ning condi-

tions in Eq. (3.4)-(3.6) for sharpened Gaussian kernel estimators and provided that covariances

between local density estimators are taken into account, the asymptotic results hold for weakly

dependent time series (see Diks and Panchenko (2006)).

By symmetrization with respect to three different indices i; j; k, for a given " the sharpened

test statistic (Eq. 3.3 with sharpened estimators) might be rewritten in the form of the third order

U-statistic as

T sn(") =
1
n3

X

i;j;k

~Ks(Wi;Wj;Wk) (3.14)

with Wi = (X lX
i ; Y lY

i ; Zi), i = 1; : : : ; n and sharpened form of the kernel being

~Ks(Wi;Wj;Wk) =
"�dX�2dY �dZ

6
��
GXY Z
ik GY

ij �G
XY
ik GY Z

ij
�

+
�
GXY Z
ij GY

ik �G
XY
ij GY Z

ik
�

+
�
GXY Z
jk GY

ji �G
XY
jk GY Z

ji
�

+
�
GXY Z
ji GY

jk �G
XY
ji GY Z

jk
�

+
�
GXY Z
ki GY

kj �G
XY
ki G

Y Z
kj
�

+
�
GXY Z
kj GY

ki �G
XY
kj G

Y Z
ki
��
:

(3.15)

where GW
i;j is the sharpened form of the multivariate kernel density, i.e.

GW
i;j = Kmulti

�
Wi �  p(Wj)

"

�
: (3.16)

We assume that the density is smooth enough and in�nitely differentiable so that it is possi-
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ble to �nd any sharpening function which would guarantee bias reduction of order p, i.e.

EWj [G
W
i ]�GW

i = "pRp(Wi) + o("p); (3.17)

where Rp(Wi) is the leading bias term associated with "p evaluated at point Wi.

Let us de�ne ~Ks
1 and ~Ks

2 as in Conditions in Eq. (3.4)-(3.6). The bias of products of es-

timated densities, i.e. s(wi), follows from the properties of the local estimator bias (see the

previous section) and identities such as E[ bfV bfW ] = E[(fV + ( bfV � fV ))(fW + ( bfW � fW ))] =

fV fW + fVE[ bfW � fW ] + fWE[ bfV � fV ] + o("p). Therefore, the local bias of the T sn(") might

be rewritten as proportional to

~Ks
1(wi; ")� lim

"!0
~Ks

1(wi; ") = "p (fY (yi)Rp(xi; yi; zi)� fX;Y (xi; yi)Rp(yi; zi)

+ fX;Y;Z(xi; yi; zi)Rp(yi)� fY;Z(yi; zi)Rp(xi; yi)) + o("p):

(3.18)

Taking into account Condition in Eq. (3.4), one may �nd that it holds with � = p and s(wi)

being equal the term in the brackets.

Looking at the Condition in Eq. (3.5), taking the expectations over Wk for each of the

contributions to the kernel function ~Ks, one �nds that the dominant terms are proportional to

"�dX�2dY �dZGXY Z
ij GY

ik and "�dX�2dY �dZGXY Z
ji GY

jk, for which we have

EWk

�
"�dX�2dY �dZGXY Z

ij GY
ik
�

= "�dX�dY �dZGXY Z
ij fY (Yi) + o("�dX�dY �dZ ); (3.19)

and

EWk

�
"�dX�2dY �dZGXY Z

ji GY
jk
�

= "�dX�dY �dZGXY Z
ji fY (Yj) + o("�dX�dY �dZ ): (3.20)
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Since all the terms are vanishing " slower, we can rewrite that E
��

~Ks
2(wi; wj)

�2
�

is equal

1
36
E
h�
"�dX�dY �dZEWk

�
GXY Z
ij GY

ik
��2
i

+ o("�dX�dY �dZ )

=
"�2dX�2dY �2dZ

36
E
h�
GXY Z
ij fY (Yi)

�2
i

+ o("�dX�dY �dZ )

=
"�dX�dY �dZ

36
E
�
(fX;Y;Z(Xi; Yi; Zi)) fY (Yi)2�+ o("�dX�dY �dZ );

(3.21)

where we exploited the fact that GXY Z
ij GY

ik GXY Z
ji GY

jk are asymptotically perfectly correlated as

" tends to 0 suf�ciently slowly as n!1. This con�rms that the 
 parameter from the original

Diks and Panchenko (2006) methodology is unaffected by the DS, being equal dX + dY + dZ

with

q2 =
1
36
E
�
(fX;Y;Z(Xi; Yi; Zi)) fY (Yi)2� : (3.22)

Since the variance of ~Ks is limited by "dX+2dY +dZ as the sample size increases, condition

from Eq. (3.6) holds for � = dX + 2dY + dZ , again being the same as in Diks and Panchenko

(2006). This brings us to the conclusion that DS decreased the local bias of T sn(") only, leaving

the further MSE asymptotic properties of the test statistic unchanged (see Eq. (3.7)).

Appendix 3.B Application of bias reduction

For practical purposes, let us assume that the H = diag("; "; :::; ") is a dW � dW bandwidth

matrix so that the local density estimator of dW -variate random vector from Eq. (3.2) becomes

f̂W (Wi) =
"�dW

n

X

j

KH(Wi �Wj); (3.23)

where KH(Wi �Wj) = K(H�1(Wi �Wj)) = Kmulti((Wi �Wj)=").

Assume also that the density function is in�nitely differentiable and let f 0 be the vector of

�rst-order partial derivatives of f , f 00 be the matrix of second-order partial derivatives of f , f (3)

be the cube of third-order partial derivatives of f , f (4) be the 4-dimensional matrix of fourth-
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order partial derivatives of f etc, with all the entries being piecewise continuous and square

integrable. For presentational purposes, let us also use
R

as a shorthand for
R
� � �
R

RdW and dW

as a shorthand for dW1 � � � dWdW . By IdW we denote also the dW � dW identity matrix.

Let us consider the case study example from the chapter, where we extend the basic analysis

to the 3-variate causality testing, i.e. Yt+1j(X lX
t ;Y lY

t ; QlQ
t ) � Yt+1j(Y lY

t ; QlQ
t ). As it is shown

in the text, the standard DP test lacks consistency because of the too large pointwise estimator

bias. The original bias of the standard kernel density estimator at point Wi might be computed

from the second order Taylor expansion around the estimation point (Wand and Jones, 1995)

E
h
f̂W (Wi)

i
=
"�dW

n

X

j

E [KH(Wi �Wj)] =
"�dW

n

X

j

Z 1

�1
KH(Wi �W )f(W )dW

= "�dW
Z 1

�1
KH(Wi �W )f(W )dW =

Z 1

�1
Kmulti(s)f(W � "s)ds

=
Z 1

�1
Kmulti(s)

�
f(Wi)� "sTf 0(Wi) +

"2

2
sTf 00(Wi)s+ o("4)

�
ds

= f(Wi) +
"2

2
�2tr ff 00(Wi)g+ o("4) = f(Wi) + o

�
"2� ;

(3.24)

where we exploited the fact that
R
sKmulti(s)ds = 0dW and

R
ssTKmulti(s)ds = �2IdW .

The dominant term in the local estimator bias (R2) is driven by 1=2�2tr ff 00(Wi)g, which

is of order o("2). The idea of DS is to eliminate this term by applying appropriate sharpening

function. It can be best illustrated by calculating the expected value of the sharpened esti-

mator where the DS function is given by Eq. (3.10) with the sharpening bandwidth h being
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"-dependent

E
h
f̂ sW (Wi)

i
=
"�dW

n

X

j

E [KH(Wi �  4(Wj))] =
"�dW

n

X

j

Z 1

�1
KH(Wi �  4(Wj))dF (W )

= "�dW
Z 1

�1
KH (Wi �  4(W )) dF (W ) = "�dW

Z 1

�1
KH (Wi � V ) dF ( �1

4 (V ))

= "�dW
Z 1

�1
KH (Wi � V ) f( �1

4 (V ))
����
@ �1

4 (V )
@V

���� dV

= "�dW
Z 1

�1
KH (Wi � V )

�
f(V )�

"2

2
�2trff 00(V )g+

"4

4
k2

2U(V ) + o("6)
�
dV

=
Z 1

�1
Kmulti(s)

�
f(Wi)� "sTf 0(Wi) +

"2

2
sTf 00(Wi)s�

"2

2
�2trff 00(Wi)g

+
"3

2
�2trfsTf (3)(Wi)g �

"4

4
�2trfsTf (4)(Wi)sg+

"4

4
k2

2U(Wi)
�
ds+ o("6)

= f(Wi) + "4R4(Wi) + o("6);

(3.25)

where

U(V ) =
f 0(V )Tf 0(V )f 0(V )Tf 0(V )

f(V )3 �
5f 0(V )Tf 00(V )f 0(V )

2f(V )2

�
2f 0(V )T (B1(f 00(V ))� f 00(V )) f 0(V )

2f(V )2 +
trff 00(V )Tf 00(V )g �

P
jB2(f 00(V ))j

f(V )

+
trff 0(V )Tf (3)(V )g

f(V )
;

(3.26)

and

R4(Wi) =
1
4
�
�2

2U(Wi)� �4trff (4)(Wi)g
�
: (3.27)

Matrix transformation B1(:) puts the trace of the argument on each of the diagonal entries and

B2(:) takes 2x2 submatrix around the diagonal of the argument.

Clearly, the original bias of order o("2) has decreased to the order o("4) without any effect on

the kernel function Kmulti, leaving the further properties of Eq. (3.3) the same as in the original

reasoning from Diks and Panchenko (2006). Therefore one may calculate optimal bandwidth
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values, which endow the test statistic with asymptotic normality, for the 3-variate setting from

Eq. (3.11) by plugging in the estimates for s(wi) and q2 as

s(wi) = fY;Q(yi; qi)R4(xi; yi; zi; qi)� fX;Y;Q(xi; yi; qi)R4(yi; zi; qi)

+ fX;Y;Z;Q(xi; yi; zi; qi)R4(yi; qi)� fY;Z;Q(yi; zi; qi)R4(xi; yi; qi);
(3.28)

and

q2 =
1
36
E
�
(fX;Y;Z;Q(Xi; Yi; Zi; Qi)) fY;Q(Yi; Qi)2� : (3.29)

In fact, bias reduction from o("2) to o("4) allows to include up to 4 additional variables. Any

additional conditioning variable would again violate the consistency of the test, requiring more

appropriate sharpening function.

Appendix 3.C Illustration of the empirical results

(See Tables 3.C.1 through 3.C.4 on the next pages.)
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Table 3.C.1: Causality results for the pairwise relations of the log returns on the US grain mar-
ket, without conditioning on Weather (HDD). Single, double and triple arrows denote p-value
statistical signi�cance at 10%, 5% and 1%. Period: 09/01/2010-03/06/2013. Nonlinear tests
are performed on standardized data, assuming (N)ormal or (U)niform transformation. Number
of lags is lX = lY = 1 from the Bayesian Information Criterion.

Linear Granger Causality

Corn

Wheat Beans

Corn

Wheat Beans

Raw data VAR residuals

Nonlinear Granger Causality (N)

Corn

Wheat Beans

Corn

Wheat Beans

Raw data VAR residuals

Nonlinear Granger Causality (U)

Corn

Wheat Beans

Corn

Wheat Beans

Raw data VAR residuals
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Table 3.C.2: Causality results for the pairwise relations of the log returns on the US grain
market, with conditioning on Weather (HDD). Single, double and triple arrows denote p-value
statistical signi�cance at 10%, 5% and 1%. Period: 09/01/2010-03/06/2013. Nonlinear tests
are performed on standardized data, assuming (N)ormal or (U)niform transformation. Number
of lags is lX = lY = lQ = 1 from the Bayesian Information Criterion.

Linear Granger Causality

Corn

Wheat Beans

Corn

Wheat Beans

Raw data VAR residuals

Nonlinear Granger Causality (N)

Corn

Wheat Beans

Corn

Wheat Beans

Raw data VAR residuals

Nonlinear Granger Causality (U)

Corn

Wheat Beans

Corn

Wheat Beans

Raw data VAR residuals
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Table 3.C.3: Causality results for the system setting of the log returns on the US grain market,
without conditioning on Weather (HDD). Single, double and triple arrows denote p-value sta-
tistical signi�cance at 10%, 5% and 1%. Period: 09/01/2010-03/06/2013. Nonlinear tests are
performed on standardized data, assuming (N)ormal or (U)niform transformation. Number of
lags is lX = lY = lQ1 = 1 from the Bayesian Information Criterion.

Linear Granger Causality

Corn

Wheat Beans

Corn

Wheat Beans

Raw data VAR residuals

Nonlinear Granger Causality (N)

Corn

Wheat Beans

Corn

Wheat Beans

Raw data VAR residuals

Nonlinear Granger Causality (U)

Corn

Wheat Beans

Corn

Wheat Beans

Raw data VAR residuals
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Table 3.C.4: Causality results for the system setting of the log returns on the US grain market,
with conditioning on Weather (HDD). Single, double and triple arrows denote p-value statis-
tical signi�cance at 10%, 5% and 1%. Period: 09/01/2010-03/06/2013. Nonlinear tests are
performed on standardized data, assuming (N)ormal or (U)niform transformation. Number of
lags is lX = lY = lQ1 = lQ2 = 1 from the Bayesian Information Criterion.

Linear Granger Causality

Corn

Wheat Beans

Corn

Wheat Beans

Raw data VAR residuals

Nonlinear Granger Causality (N)

Corn

Wheat Beans

Corn

Wheat Beans

Raw data VAR residuals

Nonlinear Granger Causality (U)

Corn

Wheat Beans

Corn

Wheat Beans

Raw data VAR residuals
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Chapter 4

Exploring Nonlinearities in Financial

Systemic Risk

4.1 Introduction

The 2007-2009 crisis shed new light on the complexity within the �nancial sector. The linkages

and risk exposures between various institutions proved to be of great signi�cance in transmit-

ting distress across the whole �nancial system. Additionally, during systemic events the malaise

spreads across the �nancial world rapidly through indirect channels, like price effects or liquid-

ity spirals (Brunnermeier, 2009). In effect, market values of various �nancial assets tend to

move closer together, drifting away from their fundamentals. In particular, one observes high

regularities in their tail co-movements (Adrian and Brunnermeier, 2011).

Because of its strong adverse effects on the real economy, great attention has been paid to

measuring and monitoring systemic risk, i.e. risk of disruption in the entire �nancial system,

and individual risk exposures. The majority of econometric approaches in these �elds focus

on co-risk measures, where the risk of the �nancial system is assessed in relation to the risk of

individual institutions. The intuition behind these models lies in negative externalities which

one institution imposes on the others and on the system as a whole. As argued by Adrian
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and Brunnermeier (2011), these externalities are a consequence of excessive risk taking and

leverage. Given, for instance, that one institution is facing a liquidity shock, it liquidates its

assets at �re-sale prices as given, affecting borrowing constraints of others and actually causing

the �re-sale prices. A wonderful summary of research in this �eld can be found in Acharya

(2009), Acharya et al. (2010) or Adrian and Brunnermeier (2011).

A commonly used econometric approach, in the growing body of literature on this topic, is

Conditional Value-at-Risk (CoVaR), attributed to Adrian and Brunnermeier (2011). It is built

around the concept of Value-at-Risk (VaR), which determines the maximum loss on returns

within the 
-percentile con�dence interval (Kupiec, 2002). CoVaR assesses VaR
 of one insti-

tution conditional on distress in the other. In particular, if the former represents the system, one

may associate CoVaR with a systemic risk measure.

A clear shortcoming of such an approach lies in its susceptibility to model misspeci�cation.

Imagine that returns come from an unknown probability distribution F , with density f . Assume

now that f is steeper or nonlinear around its VaR
 . Clearly, standard parametric approaches

oversee this irregularity so that even a small variation in VaR
 might affect co-risk results. In

this chapter we develop a methodology which corrects for this shortcoming, contributing to the

discussion on nonlinear economic dynamics in systemic risk.

The existence of nonlinearities in the �eld has been already recognized. Huang et al. (2010)

suggest that �a bank’s contribution to the systemic risk is roughly linear in its default probability

and highly nonlinear with respect to institution size and asset correlation�. This is supported by

empirical observations of the �nancial markets described by He and Krishnamurthy (2012). In

fact, He and Krishnamurthy (2012) built a theoretical model which matches nonlinear dynam-

ics across different economic variables, including systemic risk. XiaoHua and Shiying (2012)

investigated the topic from the neural network perspective and designed an early warning mech-

anism accordingly. This chapter aims to propose a formal approach to assess the relevance of

nonlinearities in driving systemic events.

We build our approach around the intuition of CoVaR. In particular, we focus on the Granger
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causal effect that distress in one institution may lead to distress in the other or in the whole

system, where distress is de�ned by being near VaR
 .

There are two main novelties in our methodology. The �rst one is the notion of causal-

ity. The basic CoVaR notion does not distinguish between direct causal and common factor

effects. Adrian and Brunnermeier (2011) treat this as a virtue rather than a problem, arguing

that common factor effects are of more importance when dealing with systemic risk, which can

be expected to be particularly true for the herding behavior (Brunnermeier et al., 2009). One

may, however, want to study the causal relations explicitly. Imagine for instance a group of

the biggest �nancial institutions. Since they do not only trade with each other but also serve

as clearing houses or liquidity backstops for smaller parties, they are central to the �nancial

system. Now, imagine that one of them is in trouble. It affects all the banks that are exposed

to its risk, but since it is relatively large, its distress might alone translate into problems in the

entire �nancial system. The causal kind of reasoning seems therefore particularly appealing for

policy makers and central bankers, who in fact might want to focus on preventing this individual

causal relation.

Another justi�cation for considering causality in individual and systemic risk lies in its pos-

sible applications to networks and contagion analysis (see for instance Chinazzi and Fagiolo

(2013)). Looking at any pair of institutions, the possible risk effects of one on another do

not have to be bilaterally equal (as they are assumed to be in a non-causal setting). For in-

stance, a lender has a different kind of risk exposure to a creditor than the other way around.

Causality captures that phenomenon explicitly, allowing for a more detailed analysis on network

spillovers, cascades and shock propagation.

In our study we employ the general causality of Granger type, i.e. a nonparametric version

of the concept originally proposed by Granger (1969), as it is intuitive and does not bring many

model restrictions. It has been also successfully applied as a network mapping tool in �nancial

analysis (Gao and Ren, 2013).

The second novelty lies in the de�nition of �nancial distress. In our study we assume that an

71



CHAPTER 4. EXPLORING NONLINEARITIES IN FINANCIAL SYSTEMIC RISK

institution is in trouble when it is around its VaR
 . Practically speaking, our de�nition captures

the majority of events which fall below VaR
 together with some of the events above it. The

reason why we allow for some variation around VaR
 lies in its possible nonlinear structure,

whose role we want to study explicitly. We recognize that our de�nition might not capture some

of the extreme values from the left tail of the distribution, being potentially susceptible to black

swans (Taleb, 2010). Our analysis shows, however, that the optimal region around VaR
 is very

slowly decreasing with the sample size, somehow hampering the risk of neglecting the extreme

events. Additionally, our setup might be naturally extended to a more general setting, including

all the events below VaR
 . This, however, is behind the scope of this chapter and we leave it

for further investigation.

In our analysis we consider two scenarios of potential Granger causality. In the �rst setting

we investigate the role of individual institutions in blocking the recovery of the system which is

already under distress. In the second scenario we measure the contribution of individual institu-

tions to the systemic problems. The second setting is more similar to the standard understanding

of systemic risk (Acharya, 2009) and might be useful in ex ante applications. The �rst scenario

might be perceived either as a kind of a robustness check or a policy relevant tool for ex post

actions. Indeed, if the system is already in trouble one may want to determine which of its parts

are hampering its recovery. In fact, we could think of these two scenarios from a perspective of

a doctor who either prescribes precautionary drugs or is trying to heal an already sick patient.

This chapter is organized as follows. In Section 4.2 we explain the methodology of Con-

ditional Value-at-Risk-Nonlinear Granger Causality (or NCoVaR for simplicity). We evaluate

the asymptotic properties of the test statistic and we con�rm them numerically in Section 4.3.

In Section 4.4 we apply our approach to the euro zone �nancial sector and evaluate which in-

stitutions got the most signi�cant impact on the systemic risk in years 2000-2012. Section 4.5

concludes.
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4.2 Methodology of NCoVaR

Let us �rst bring some intuition behind the Conditional Value-at-Risk and Granger causality

separately and then use this to build CoVaR-NGraCo (Conditional Value-at-Risk-Nonlinear

Granger Causality) or NCoVaR for simplicity. In the standard setting we consider two insti-

tutions, i and j, whose returns on assets are given by X i and Xj , respectively. Talking about

systemic risk, we set j to be some aggregate variable so that we investigate the relationship

between institution i and the system as a whole. Following the original CoVaR literature, let us

de�ne VaR
 as the left 
-quantile of the unconditional returns of a given institution. (In practice


 is chosen from f0:01; 0:05; 0:1g.) For institution i we have therefore

P (X i � VaRi

) = 
; (4.1)

or equivalently

VaRi

 = inffxi : FXi(xi) � 
g; (4.2)

where FXi is the cumulative distribution function of X i. (For institution j, the notation is anal-

ogous throughout the chapter.) The intuition behind CoVaR is to evaluate VaR
 of institution

j conditional on some event associated with institution i. In particular, Adrian and Brunner-

meier (2011) consider two conditioning events, i.e. institution i is at its VaRi

 or at its median

(VaRi

=0:5 = Mediani). By comparing the difference between the two, it is possible to estimate

the risk contribution of institution i onto j, denoted by �CoVaR.

In our study we follow a similar reasoning as Adrian and Brunnermeier (2011), however, we

add a (discrete) time dimension. For any period t, let us de�ne the future returns’ information

set by GX i
t , and the past and/or current returns’ information set by FX i

t . Following Granger

(1969), we say that returns of institution i are Granger causing those of institution j if FX i
t

contains additional information on GXj
t which is not already contained in FXj

t alone. We

formulate the de�nition of conditional Granger causality analogously, i.e. we say that returns

of institution i are Granger causing those of institution j if, conditional on some past or current
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events of those institutions (denoted by A(FX i
t) and B(FXj

t ), respectively), FX i
t contains

additional information on GXj
t which is not already contained in FXj

t alone.

Given the intuition behind the CoVaR and general Granger causality, we may now turn

to NCoVaR. Similarly to �CoVaR, we test the difference in Granger causal risk effects from

institution i on j, between two conditioning events, i.e. when institution i is and/or was in

trouble (or around its VaRi

) and when it is and/or was around the median of its returns. An

advantage of allowing institutions to be around (and not exactly at) their VaR
 or median levels

is that we could thereof account for possible nonlinearities in corresponding distributions -

something the original methodology could not capture. In particular, we consider a �-radius

ball (� > 0) centered at VaR
 or the median. (The following reasoning holds for G and F

being multivariate, provided that VaR
 and the medians are taken over the marginals.) We also

allow for conditioning on the past and/or current realizations of Xj
t . To formalize this we give

the following de�nition of NCoVaR.

De�nition 4.2.1. Given any stationary bivariate process f(X i
t ; X

j
t )g, we say that fX i

tg is a

nonlinear CoVaR Granger cause of fXj
t g if

P
�
kGXj

t � VaRj

k � �

��kFX i
t � VaRi


k � �;B(FXj
t )
�
6=

P
�
kGXj

t � VaRj

k � �

��kFX i
t �Medianik � �;B(FXj

t )
�
;

where � > 0, k:k is the Euclidian distance measure, G denotes a set of future realizations andF

denotes a set of past and/or current realizations of the corresponding variables and B(:) re�ects

some event over the argument.

In this study, we consider two possible scenarios. In the �rst, we assume that institution

j is already in distress, so that potential Granger causal risk effects from institution i do not

only induce even higher losses on j but also can clog its recovery. The second scenario is more

similar to the traditional risk analysis, where future troubles in institution j come directly from

the past problems of institution j. One may thereof reformulate Def. 4.2.1 in the form of two

possible scenarios, which we investigate in detail below.
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Scenario 1. Given any stationary bivariate process f(X i
t ; X

j
t )g, we say that fX i

tg is a nonlinear

CoVaR Granger cause of fXj
t g in tail if

P
�
kGXj

t � VaRj

k � �

��kFX i
t � VaRi


k � �; kFXj
t � VaRj


k � �
�
6=

P
�
kGXj

t � VaRj

k � �

��kFX i
t �Medianik � �; kFXj

t � VaRj

k � �

�
;

where � > 0, k:k is the Euclidian distance measure, G denotes a set of future realizations and

F denotes a set of past and/or current realizations of the corresponding variables.

Scenario 2. Given any stationary bivariate process f(X i
t ; X

j
t )g, we say that fX i

tg is a nonlinear

CoVaR Granger cause of fXj
t g in median if

P
�
kGXj

t � VaRj

k � �jkFX i

t � VaRi

k � �; kFXj

t �Medianjk � �
�
6=

P
�
kGXj

t � VaRj

k � �jkFX i

t �Medianik � �; kFXj
t �Medianjk � �

�
;

where � > 0, k:k is the Euclidian distance measure, G denotes a set of future realizations and

F denotes a set of past and/or current realizations of the corresponding variables.

In practice it is impossible to condition on the in�nite sets of future or past realizations of

variables of interest. Therefore, we reformulate G and F as �nite sets of future periods or lags,

respectively. We limit ourselves to the canonical setting where GXj
t = Xj

t+1, as it is most

commonly used in practical Granger causality testing, however, our reasoning holds for any

GXj
t = Xj

t+k, 1 � k <1. Similarly, we replace FX i
t and FXj

t by X i
t;li = fX i

t�li+1; : : : ; X i
tg

and Xj
t;lj = fXj

t�lj+1; : : : ; X
j
t g, where li � 1 and lj � 1 denote the number of lags of a

corresponding variable.

In Granger causality testing, the goal is to �nd evidence against the null hypothesis of no

causality, which according to Def. 4.2.1 is represented by equivalence in conditional probability.

We assume that process f(X i
t ; X

j
t )g is strictly stationary. In that case, the null hypothesis is a

statement about the invariant distribution evaluated at conditional VaR
 levels of the (li + lj +

1) -dimensional vector Wt = (Zt; X i
t;li ; X

j
t;lj), where we substitute Zt = Xj

t+1. (For clarity
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purposes and to bring forward the fact that we consider the invariant distribution of Wt, we

drop the time index, so that W = (Z;X i; Xj).) Formally, the null hypothesis from Scenarios 1

and 2 can be rewritten as

fZ;Xi;Xj
�
z
jxi
; x

j
�
�

= fZ;Xi;Xj
�
z
jxim; x

j
�
�
; (4.3)

where z
 = VaRZ

 , xi
 = VaRi


 , xim = Mediani and � distinguishes between Scenario 1 and 2

as xj
 = VaRj

 or xjm = Medianj , respectively. It is helpful to restate the problem in terms of

ratios of joint densities evaluated at given quantiles, as under the null the density of Z evaluated

around its VaR
 level and conditional on speci�c events in X i and Xj is equal to the same

density conditional on the different set of events in X i and Xj . Therefore, the joint probability

density function, together with its marginals must satisfy

fZ;Xi;Xj
�
z
; xi
; xj�

�

fXi;Xj
�
xi
; x

j
�
� =

fZ;Xi;Xj (z
; xim; xj�)
fXi;Xj

�
xim; x

j
�
� : (4.4)

Since Eq. (4.4) holds for any quantile of the vector (Z;X i; Xj) in the support of Z;X i; Xj ,

Eq. (4.4) might be equivalently rewritten as

fZ;Xi;Xj
�
z
; xi
; xj�

�

fXi;Xj
�
xim; x

j
�
� =

fXi;Xj
�
xi
; xj�

�

fXi;Xj
�
xim; x

j
�
�
fZ;Xi;Xj (z
; xim; xj�)
fXi;Xj

�
xim; x

j
�
� : (4.5)

Analogously to Baeck and Brock (1992) or Hiemstra and Jones (1994), a natural methodology

to assess Eq. (4.5) comes from the test for conditional independence. However, as showed

by Diks and Panchenko (2005) and Diks and Panchenko (2006), these tests can severely over-

reject in Granger causal setting, because its dependence on the conditional variance. Diks and

Panchenko (2006) propose to add a positive weight function g(z
; xim; xj�) and, given that the
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null should hold in the support of the joint densities, it might be equivalently written as

�g �

 
fZ;Xi;Xj

�
z
; xi
; xj�

�

fXi;Xj
�
xim; x

j
�
�

�
fXi;Xj

�
xi
; xj�

�

fXi;Xj
�
xim; x

j
�
�
fZ;Xi;Xj (z
; xim; xj�)
fXi;Xj

�
xim; x

j
�
�

!

g(z
; xim; x
j
�) = 0:

(4.6)

Diks and Panchenko (2006) discuss several possibilities of choosing g(z
; xim; xj�). In this study

we focus on g(z
; xim; xj�) = fXi;Xj (xim; xj�)
2, as the estimator of �g has a corresponding U-

statistic representation, bringing the desired asymptotic normality properties for weakly depen-

dent data. Substituting into Eq. (4.6), one �nds that

� = fZ;Xi;Xj
�
z
; xi
; x

j
�
�
fXi;Xj

�
xim; x

j
�
�
� fXi;Xj

�
xi
; x

j
�
�
fZ;Xi;Xj

�
z
; xim; x

j
�
�
: (4.7)

To evaluate the data-driven representation of � , we rely on kernel methods. In particular, we

consider the local density estimator

f̂W (w) =
"�dW

n

nX

k=1

K
�
w � wk

"

�
; (4.8)

where n is the sample size, " is the bandwidth parameter (similar to � from the Def. 4.2.1), d

re�ects the dimensionality of a given vectorW andK(:) is a bounded Borel function RdW ! R

satisfying

Z
jK(t)jdt <1;

Z
K(t)dt = 1 and jtK(t)j ! 0 as jtj ! 1: (4.9)

In practice, K(:) is often chosen to be a probability density function (Wand and Jones, 1995).

In order to guarantee the consistency of the pointwise density estimators, we assume that the

bandwidth parameter " comes from the sequence "n, which is slowly decreasing with the sample

size, i.e.

"n ! 0 and n"n !1 as n!1: (4.10)
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Parzen (1962) shows that under conditions (4.9) and (4.10) and provided that f is continuous at

w, the estimate of density f at a given point w is consistent.

Given a given bandwidth ", a natural estimator for � is

Tn(") = C
nX

k=1

nX

p=1

"

K

 
(z
; xi
; xj�)T � (zk; xik; x

j
k)T

"

!

K

 
(xim; xj�)T � (xip; xjp)T

"

!

� K

 
(xi
; xj�)T � (xik; x

j
k)T

"

!

K

 
(z
; xim; xj�)T � (zp; xip; xjp)T

"

!#

;

(4.11)

where " is the bandwidth and

C =
"�dZ�2dXi�2dXj

n2 : (4.12)

(We sum over two indices as it allows to calculate the variance of Tn(") explicitly.) The asymp-

totic distribution of the test statistic can be derived from the behavior of the properties of the

second order U-statistic, as described by Ser�ing (1980) and van der Vaart (1998).

Theorem 4.2.1. Under the conditions described by Eqs. (4.9) and (4.10), for a given set of

VaR
 levels and given bandwidth parameter sequence "n, test statistic Tn("n) satis�es:

p
n

(Tn("n)� �)
Sn

d�!N (0; 1);

where Sn is a heteroskedasticity and autocorrelation consistent estimator of the asymptotic

standard deviation of
p
n(Tn("n)� �).

The proof of Theorem 4.2.1 can be found in Appendix 4.A. As argued by Diks and Panchenko

(2006), although the test statistic is not positive de�nite, the one-sided version of the test, i.e. re-

jecting on larger values, turns out to yield better performance.

In this study we choose 
 to be 0.05 as it is the most commonly applied VaR signi�cance

level. We calculate VaR
 from the empirical quantile function (Jones, 1992). Following the

literature on nonparametric Granger causality testing (Hiemstra and Jones, 1994; Diks and

Panchenko, 2006) we take the square kernel function.1 The square kernel form of the estimator
1The asymptotic properties of the test statistic are, however, robust to any kernel speci�cation, provided that it
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in Eq. (4.8), can be rewritten as

f̂SQW (w) =
(2")�dW

n� 1

nX

k=1

I(kw � wkk < "); (4.13)

where I(kw � wkk < ") is the indicator function taking values 1 for any kw � wkk < " and

zero otherwise, and k:k is the supremum norm over all the dimensions.

4.2.1 Optimal bandwidth

Although the asymptotic normality of the test statistic holds for an arbitrary decreasing sequence

of bandwidths as long as it satis�es condition from Eq. (4.10), it in�uences the power of the test

to a great extent (Silverman, 1998). Therefore, in order to improve the performance of the test,

we calculate the optimal size of the bandwidth explicitly. Following Wand and Jones (1995)

and Silverman (1998), the optimal bandwidth minimizes the Mean Squared Error (MSE) of

Tn("n), which may be decomposed into the sum of variance and squared bias of Tn("n). In

our inference it is worthwhile to point out that the optimal bandwidth values of Tn("n) do not

violate the consistency properties of any of the density estimators.

Corollary 4.2.1. Under the conditions given by Eqs. (4.9) and (4.10), the MSE-optimal se-

quence of bandwidths of Tn("n) guarantees consistency of any of the pointwise density estima-

tors contributing to Tn("n).

The proof of Corollary 4.2.1 is given in Appendix 4.B. In fact, the MSE optimum rate

of convergence of the bandwidth of Tn("n) is slightly faster than that of individual density

estimators, but still much slower than n�1. This is caused by the increased variance of a product

of two estimators compared to their individual variances. Therefore, in order to balance this

effect in the MSE, the sequence of optimal bandwidths of Tn("n) should decrease at a slightly

faster rate as n ! 1, but never as fast as n�1. In testing for systemic risk this proves to be of

satis�es conditions (4.9) and (4.10).
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large importance as with a bandwidth parameter decreasing just slightly with the sample size

we are still able to capture the majority of returns which are left to VaR
 .

In evaluating the optimal bandwidth value we rely on Monte Carlo methods. Correcting

for the weak dependency, we apply the autocorrelation consistent estimator for the variance of

Tn("), as proposed in Newey and West (1987). It might be veri�ed that for a given bandwidth

", the bias of Tn(") may be calculated from the Taylor expansion around any point as

E[Tn(")]� � =
1
2
�2"2 �fZ;Xi;Xj

�
zr; xir; x

j
�
�
r2fXi;Xj

�
xis; x

j
�
�

+ fXi;Xj
�
xis; x

j
�
�
r2fZ;Xi;Xj

�
zr; xir; x

j
�
�

� fXi;Xj
�
xir; x

j
�
�
r2fZ;Xi;Xj

�
zr; xis; x

j
�
�

� fZ;Xi;Xj
�
zr; xis; x

j
�
�
r2fXi;Xj

�
xir; x

j
�
��

+ o("2);

(4.14)

where �2 is the second moment of the kernel andr2fW (w) is the trace of the second derivative

of density evaluated at pointw. Up to the error of order o("2), Eq. (4.14) has a plug-in estimator,

which can be easily calculated using kernel methods (Wand and Jones, 1995).

4.3 Numerical simulations

To give an example of the optimal bandwidth value, we perform a numerical experiment on the

same bivariate process as considered by Jeong et al. (2012), i.e.

xit = 1 +
1
2
xit�1 + r1;t

xjt =
1
2
xjt�1 + c

�
xit�1

�2 + r2;t;
(4.15)

where r1;t and r2;t independent standard normal variables. The biggest advantage of the process

in Eq. (4.15) is its tuning parameter on Granger causality, c. Clearly, if c = 0 the model

corresponds to the hypothetical scenario of no Granger causality from X i
t to Xj

t . The larger

the parameter c becomes, the stronger the Granger causal effect, which we thus may control for
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4.3. NUMERICAL SIMULATIONS

Figure 4.1: MSE of the test statistic for bandwidth values in the range [0:3; 1:5] and for different
sample sizes, aggregated over 1000 simulations.
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(a) Null hypothesis as in Sc. 1
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(b) Null hypothesis as in Sc. 2

explicitly.

We perform 1000 simulations of normalized data of process given by Eq. (4.15) for different

sample sizes and evaluate the MSE of the test statistic for different bandwidth values within the

range [0:3; 1:5].2 For practical reasons, we take lags of order 1 for both variables. The results

for two scenarios of Granger causality are presented in Fig. 4.1 and the optimal bandwidths are

reported in Table 4.1.

It is straightforward to notice the differences of the MSE curves between two settings.

Firstly, for the same sample size and ", Scenario 2 demonstrates larger MSE than in Scenario

1. Secondly, in Scenario 1 the MSE curve becomes �atter, whereas in Scenario 2 the visible

U-shape is preserved as the sample size increases. These, in fact, are direct consequences of

the curvature of the true distribution around particular quantiles. Scenario 1 is driven by the tail

dependence, where the curvature is relatively �at. On the contrary, Scenario 2 represents the

relation between the tail and the median, where the distribution is typically more bell-shaped

or simply steeper. This, in fact, shows up in the steepness and in the relative size of the MSE

curve. As expected, the minimum of the MSE curves is decreasing with the sample size in both
2We apply the standard score normalization.
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scenarios (see Table 4.1).

Table 4.1: Optimal bandwidth values for test statistic evaluated for the process given by
Eq. (4.15) for different sample sizes and for two scenarios. The values represent means over
1000 simulations.

n = 100 n = 200 n = 500 n = 1000
"� (Sc.1) 0.74 0.66 0.6 0.52
"� (Sc.2) 0.68 0.64 0.48 0.44

The reported optimal bandwidth values represent the radius around the VaR
 which is being

considered in the NCoVaR. One may readily observe that Scenario 1 has slightly larger optimal

bandwidths than Scenario 2. We may view this as a result of scarcity of data in tails compared

with that around the median. Extracting information from tails requires, on average, slightly

larger windows in comparison to the region near the median (Caers and Maes, 1998).

Because the MSE of the test statistics might be calculated explicitly, bootstrapping optimal

bandwidths is a powerful technique which might be applied to any data set without assuming an

underlying process structure. We recognize, however, that it might take a lot of computational

time. For very large samples we suggest taking bins of 0.02 or 0.05 in order to make it compu-

tationally less demanding. Our simulations con�rm that the power of the test is preserved in the

range ["� � 0:05; "� + 0:05].

4.3.1 Performance of the NCoVaR test

We perform two experiments to evaluate the practical side of the test. In both we rely on Monte

Carlo methods on the example of the process in Eq. (4.15).3 In the �rst one, we assess the

distribution of the test statistic under the null, evaluated for different sample sizes for 500 runs.

In the second experiment, we estimate the power of the test. Given that the null hypothesis

is violated (c > 0), we estimate rejection rates for different nominal signi�cance levels. We
3One may expect that the numerical size distortions and power of the NCoVaR test would depend on the exact

process speci�cation. Eq. (4.15) offers a simple testing environment, which has been already applied in the quantile
testing literature (Jeong et al., 2012). We therefore leave the assessment of the NCoVaR numerical performance
on other processes for future investigation.

82



4.3. NUMERICAL SIMULATIONS

Figure 4.2: Size-size diagram of the NCoVaR test for the process from Eq. (4.15) for different
sample sizes over 500 simulations.
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(a) Null hypothesis as in Sc. 1
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(b) Null hypothesis as in Sc. 2

summarize the results from both experiments in the size-size plots and size-adjusted power

diagrams. The former plots the actual against nominal cumulative rejection rates under the null,

showing the size distortions. The latter shows the power of the test corrected for the possible

size bias, plotting the observed cumulative rejection rates under the alternative (actual power)

against observed rejection rates under the null (actual size). Ideally, the power function should

be 1 for any signi�cance level larger than 0, however, in practice we would like to observe

an increase in the slope at the origin as the sample size grows. Fig. 4.2 shows the size-size

diagrams whereas the size-adjusted power plots are presented in Figs 4.3-4.5.

Fig. 4.2 suggests that the nominal size distortions are larger in Scenario 2 than in Scenario

1. Additionally, the size-size curves are �atter in Scenario 1 whereas they are more wavy in

Scenario 2. In fact, this is similar to the pattern observed in the MSE (see Fig. 4.1) and might

be largely attributed to the curvature of the true probability density function around particular

quantiles.

One can readily observe from Figs 4.3-4.5 that the size-adjusted power of the test increases

with the sample size and with the strength of Granger causality. Nevertheless, there are two
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CHAPTER 4. EXPLORING NONLINEARITIES IN FINANCIAL SYSTEMIC RISK

main patterns emerging from the numerical analysis which deserve to be pointed out.

Firstly, for relatively smaller size the power of the test is higher for Scenario 1 than for Sce-

nario 2. This is again the result of model dynamics, where the underlying relation on variable j,

i.e. (Xj
t+1 � VaRj


jX
j
t �Medianj) is more rare to observe on the process given by Eq. (4.15).

Practically speaking, as the sample size gets larger this effect is hampered.

Secondly, the size-adjusted power is almost negligible for very small Granger causality

and short time series. Clearly, one should blame the relative scarcity of observations around

quantiles for this discomfort. In order to apply the test to shorter data sets, we propose two

solutions to overcome this issue. The �rst comprises different kernel speci�cations. The square

kernel takes into account only observations which are "-close to the quantile, leaving out many

possibly informative data points. Replacing the kernel by a smoother one, like Gaussian or

logistic, should therefore correct for this effect. The second possible solution lies in improving

the precision of the density estimators. In the standard kernel estimators (like square kernel

estimators applied here) the bias is of order "2 (Wand and Jones, 1995). Making the bias smaller

should decrease the disinformative effect of the observations around a given quantile so that

keeping the sample size �xed we get relatively better representation of the true Granger causal

relation, which translates into improved test performance. One may consider Data Sharpening

(DS) as being potentially attractive bias reduction method in our setting. Following Hall and

Minnotte (2002), the idea behind DS is to slightly perturb the original data set in order to

obtain desirable estimator properties (here it is the reduced bias). Diks and Wolski (2013) show

that, besides reducing the estimator bias, DS does not affect other asymptotic properties of the

test statistic in a similar Granger causality setting. Therefore, it seems to be a straightforward

extension to NCoVaR for shorter samples.
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4.3. NUMERICAL SIMULATIONS

Figure 4.3: Size-adjusted power for the NCoVaR test for the process given by Eq. (4.15) for
c = 0:05 for different sample sizes over 500 simulations.
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(a) Null hypothesis as in Sc. 1
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(b) Null hypothesis as in Sc. 2

Figure 4.4: Size-adjusted power for the NCoVaR test for the process given by Eq. (4.15) for
c = 0:25 for different sample sizes over 500 simulations.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Actual size

A
ct

ua
l p

ow
er

45 degree
n=100
n=200
n=500
n=1000

(a) Null hypothesis as in Sc. 1
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(b) Null hypothesis as in Sc. 2
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CHAPTER 4. EXPLORING NONLINEARITIES IN FINANCIAL SYSTEMIC RISK

Figure 4.5: Size-adjusted power for the NCoVaR test for the process given by Eq. (4.15) for
c = 0:4 for different sample sizes over 500 simulations.
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(a) Null hypothesis as in Sc. 1
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(b) Null hypothesis as in Sc. 2

4.4 Assessing �nancial systemic risk

In our analysis we focus on the NCoVaR of individual institutions on the overall systemic risk.

Therefore, we set j to represent the system variable and i individual �nancial institutions.

We approximate the returns on assets by equity returns and take into account �nancial in-

stitutions publicly traded within the euro zone. In order to make the analysis more transparent

we focus on companies which constitute the Euro STOXX Financial Index in years 2000-2012.

Our sample thus covers the Great Recession in Europe (2008-12), the �nancial crisis (2007-

2009) and the sovereign debt crisis (2010-2012). In total we collect daily equity returns for 48

companies (3 �nancial, 13 insurance, 23 banks and 9 real estate) and one aggregate index. For

each variable we have 3390 observations. The list of companies, together with the country of

origin and their sector can be found in Appendix 4.C. The data have been obtained from the

DataStream.

All time series are stationary at the 1% signi�cance level, according to both the Phillips-

Perron and Augmented Dickey-Fuller speci�cations (Phillips and Perron, 1988; Fuller, 1995).

We run the pairwise tests against the null of no NCoVaR between each company and system
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4.4. ASSESSING FINANCIAL SYSTEMIC RISK

Figure 4.6: NCoVaR between euro area individual �nancial companies and system variable for
raw data.
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variable. In order to make sure that all the Granger causal relations are nonlinear, we run the

same test speci�cation on VAR-�ltered residuals also. In each run the number of lags is taken

according to the Schwarz-Bayes Information Criterion of the VAR speci�cation, and the optimal

bandwidth value is approximated by bootstrap. As a robustness check, we also correct for

possible causality in second moments, as suggested in Francis et al. (2010), by running NCoVaR

test on residuals from Dynamics Conditional Correlation GARCH model (Engle, 2002).

The detailed results can be found in Appendix 4.C (Tables 4.C.2, 4.C.3 and 4.C.3), however,

for presentational clarity we refer to the star-graphs, which show the NCoVaR between each

company and the system as a whole. The center of the star-graph represents the system variable

and the satellite nodes correspond to individual institutions. The width of the arrows represents

the inverse of the statistical signi�cance level of NCoVaR (the stronger the NCoVaR effect, the

wider (and darker) the arrow). Fig. 4.6 shows the results for the raw returns, Fig. 4.7 depicts the

VAR-�ltered returns and Fig. 4.8 refers to the GARCH residuals. Considering that at least one

NCoVaR relation denotes a systemically important institution, our analysis suggests that out of

48 companies 33 might be so described. The group consists of 3 �nancial services companies,

87



CHAPTER 4. EXPLORING NONLINEARITIES IN FINANCIAL SYSTEMIC RISK

Figure 4.7: NCoVaR between euro area individual �nancial companies and system variable for
VAR-�ltered data.
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Figure 4.8: NCoVaR between euro area individual �nancial companies and system variable for
GARCH-�ltered data.

DEU

STOXX

AGE

ALL

ASS

AXA
PAS

ROM

BBV

ESP

SAN

COM

MAP

AEG

ERS

SOC

ING

INT

KBC

UNI

MED

POH

WER

VIE

COR

WEN

(a) Euro area NCoVaR in Sc. 1 (b) Euro area NCoVaR in Sc. 2

88



4.4. ASSESSING FINANCIAL SYSTEMIC RISK

6 insurance �rms, 19 banks and 5 real estate companies. In fact, all of the �nancial services

companies in our sample prove to be systemically important.

There are two main patterns emerging from our analysis. Firstly, there are fewer systemi-

cally risky institutions in Scenario 2. Secondly, NCoVaR in Scenario 1 is on average stronger

than in Scenario 2. These �ndings hold for the original as well as the VAR- and GARCH-�ltered

data. Interestingly, our study suggests that only a few �nancial institutions pose a serious ex ante

threat to the systemic risk in the euro area, whereas, given that the system is already in trouble,

there are more institutions which hamper its recovery. This result con�rms a common view in

the literature on macroprudential supervision (Acharya, 2009) that the relative preventive costs

are smaller than those after the crisis has already erupted.

The analysis con�rms the nonlinear structure of the institutional contribution to the systemic

risk. Filtering out the linear relations and second moment spillover effects does not remove

the co-risk relations among individual companies and system as a whole. Interestingly, after

�ltering we observe some new co-risk relations emerging. To illustrate this better let us consider

ACK (Ackermans & Van Haaren). The raw returns do not show any NCoVaR, however, after

linear �ltering it poses a very strong threat to the system’s recovery (see Table 4.C.3 in Appendix

4.C which shows a test statistic of order 6.351 in Scenario 1) and after GARCH �ltering it has

a weak ex ante effect on the system’s risk (test statistic of order 1.329 in Scenario 2). One

may speculate that there are some strong purely nonlinear and second moment co-risk effects

from ACK on the system variable, which are being partly offset by their linear equivalents. In

other words, under normal circumstances ACK does not seem to be an important systemic risk

contributor. However, in abnormal times, like a crisis, it reveals its systemic importance.

There is one more �nding which we believe is worth pointing out. We confront our re-

sults with the of�cial list of Global Systemically Important Banks (G-SIBs), published by the

Financial Stability Board (FSB) in 2011.4 The FSB recognizes 11 G-SIBs in the euro area.

Our sample covers 8 of them, i.e. Banco Bilbao Vizcaya Argentaria (BBV), Banco Santander
4The G-SIBs list is being frequently updated. In our comparison we consider the most recent version of the

list, published on November 11th, 2013.
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(SAN), BNP Paribas (BNP), Commerzbank (COM), Deutsche Bank (DEU), Societe Generale

(SOC), UniCredit (Uni) and ING Bank (ING), as a part of the ING Groep. For all of them we

con�rm their G-SIB status in at least one NCoVaR setting.

4.5 Conclusions and discussion

Conditional Value-at-Risk-Nonlinear Granger Causality, or NCoVaR, is a new methodology of

assessing co-risk relations, designed to capture the possible nonlinear Granger causal effects.

Our approach distinguishes between two possible scenarios. In the �rst one, we test what is the

role of individual institutions in hampering the recovery of others, given that they are already

in distress. In the second scenario, we assess the contribution of individuals to the others’

troubles. We derive the regular asymptotic properties of the NCoVaR test for both scenarios

and we con�rm them numerically.

We apply our methodology to assess the systemic importance of �nancial institutions in the

euro area. Our �ndings suggest that (i) only a few �nancial institutions pose a serious ex ante

threat to the systemic risk, whereas, given that the system is already in trouble, there are more

institutions which hamper its recovery and (ii) there are intriguing nonlinear structures in its

systemic risk pro�le.

Our study suggests that the most systemically risky institution in our sample is UNI (Uni-

Credit), an Italian bank. In all settings it demonstrates a very strong NCoVaR relation to the

system. In 2011 it was recognized by the FSB as G-SIB. This analysis con�rms its systemical

importance, also revealing its nonlinear nature. Interestingly, there are two more companies

which demonstrate very strong NCoVaR in 5 out of 6 settings, i.e. ERS (Erste Group Bank),

an Austrian bank, and AEG (Aegon), a Dutch insurer. Only the latter was recognized by the

FSB to be potentially systemically important, with no of�cial view on the former. However, the

former was recognized as a systemically important bank for the Austrian �nancial sector (von

Kruechten et al., 2009). Our results point to potential systemic importance of Erste Group Bank
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in the entire euro area.

NCoVaR might be of great use for macroprudential policy, however, it has to be tested

on other samples and in other periods. It reveals some intriguing phenomena in the co-risk

relations. In order to understand these better, a tempting idea is to investigate the underlying

nonlinear structures analytically in models of the aggregate economy. Such settings would

allow to capture not only the contribution of individual institutions to systemic risk but also how

individual companies are affected by aggregate disturbances. One may also apply NCoVaR as

a mapping tool and bring the risk analysis to the network level.
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Appendix 4.A Asymptotic properties of test statistic (Theo-

rem 4.2.1)

We �rst deal with the properties for the independent sample and consider the dependency later.

By symmetrization with respect to two indices, the test statistic in Eq. (4.11) has a corresponding

U-statistic representation of the form

Tn("n) � Tn(") =
1�n
2

�
nX

k=1

X

p�k

~K(Wk;Wp); (4.16)

with Wk = (Zk; X i
k;li ; X

j
k;lj), k = 1; : : : ; n and kernel given by

~K(Wk;Wp) =
"�dZ�2dXi�2dXj (n� 1)

2n
�
Kk(z
; xi
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�)Kp(xim; x

j
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; xim; x

j
�) +Kp(z
; xi
; x

j
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j
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; x
j
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j
�)
�
;

where for clarity we denote Kk(w) = K((w � wk)=") and dZ , dXi and dXj are general rep-

resentations of the dimensionality of G and F operators for particular variables. It is worth to

remind here that subscript n in the test statistic refers to its sequence.

The asymptotic properties of the sequence of test statistic can be derived by the projection

method (van der Vaart, 1998). From the H·ayek’s projection lemma we know that the projection

of Tn(")� � on the set of all function of the form
Pn

k=1 �k(Wk) is given by

T̂n(") =
nX

k=1

E[(Tn(")� �)jWk] =
2
n

nX

k=1

~K1(wk); (4.17)

where

~K1(wk) = EWp

h
~K(wk;Wp))

i
� �: (4.18)

Projection T̂n(") is mean zero sequence with variance 4=nVar( ~K1(W1)). By the Central

Limit Theorem, one may verify that
p
nT̂n(") converges in distribution to the normal law with
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mean 0 and variance given by 4Var( ~K1(W1)).

Provided that Var(T̂n(")) ! Var(Tn(")) as n ! 1, by Slutsky’s lemma, we now observe

that for a given " and given quantiles of any independent �nite-variance process (Zt; X i
t;li ; X

j
t;lj),

the sequence
p
n
�
Tn(")� � � T̂n(")

�
converges in probability to zero as n ! 1. What

follows, the sequence
p
n (Tn(")� �) converges in distribution to N (0; �2), where

�2 = 4�1; (4.19)

with �1 = Cov
�

~K(W1;W2); ~K(W1;W 0
2)
�

= Var( ~K1(W1)).

Appendix 4.A.1 Dependence

Following the reasoning from Denker and Keller (1983), the above asymptotic normality prop-

erties of the test statistic, Tn("), hold for a weakly dependent process if we take into account

the covariance between estimators of particular vectors in the asymptotic variance �2,

�2 = 4

"

�1 + 2
nX

t=2

Cov
�

~K1(W1); ~K1(Wt)
�#

: (4.20)

According to the kernel speci�cation, the estimator for ~K1(Wk) is given by

K̂1(Wk) =
(2")�dZ�2dXi�2dXj

n

nX

p=1

~K(Wk;Wp):

The Newey and West (1987) heteroskedasticity and autocorrelation consistent estimator of �2

is

S2
n =

BX

b=1

Rb!b; (4.21)

where B is equal to the �oor of n1=4, Rb is the sample covariance function of K̂1(Wb) given by

Rb =
1

n� b

n�bX

a=1

(K̂1(Wa)� Tn("))(K̂1(Wa+b)� Tn(")); (4.22)
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and !b is the weight function of the form

!b =

8
><

>:

1; if b = 1

2� 2(b�1)
� ; if b > 1:

(4.23)

For any �nite-variance process (Zt; X i
t;li ; X

j
t;lj), it follows from Denker and Keller (1983) that

p
n

(Tn(")� �)
Sn

d�!N (0; 1); (4.24)

which completes the proof of Theorem 4.2.1.

Appendix 4.B Optimal bandwidth sequence (Corollary 4.2.1)

For a given bandwidth ", the MSE of the test statistic might be rewritten as as sum of variance

and squared bias (Wand and Jones, 1995), i.e.

MSE[Tn(")] = Var(Tn(")) + Bias(Tn("))2; (4.25)

where Bias(Tn(")) can be calculated explicitly from the Taylor expansion as in Eq. (4.14) and

variance of the test statistic might be represented as 4S2
n=n from Appendix 4.A.1. Asymptotic

covariance terms tend to zero as n!1 so that under the null one might �nd that the asymptotic
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variance of Tn(") might be decomposed into

Var(Tn(")) = Var(f̂Z;Xi;Xj
�
z
; xi
; x

j
�
�
)Var(f̂Xi;Xj

�
xim; x

j
�
�
)

+ Var(f̂Xi;Xj
�
xi
; x

j
�
�
)Var(f̂Z;Xi;Xj

�
z
; xim; x

j
�
�
)

+ Var(f̂Xi;Xj
�
xim; x

j
�
�
)E[f̂Z;Xi;Xj

�
z
; xi
; x

j
�
�
]2

+ Var(f̂Z;Xi;Xj
�
z
; xi
; x

j
�
�
)E[f̂Xi;Xj

�
xim; x

j
�
�
]2

+ Var(f̂Xi;Xj
�
xi
; x

j
�
�
)E[f̂Z;Xi;Xj

�
z
; xim; x

j
�
�
]2

+ Var(f̂Z;Xi;Xj
�
z
; xim; x

j
�
�
)E[f̂Xi;Xj

�
xi
; x

j
�
�
]2 + o(1):

One may �nd that the variance and bias of the individual density estimators are o(n�1"�dW )

and o("�2), respectively (Silverman, 1998). Therefore, the dominant terms in the asymptotic

variance are of order o(n�1"�dZ�dXi�dXj�4).

Taking the �rst order conditions of the MSE of of individual density estimators, one �nds

that the optimum rate of convergence of bandwidth parameter is n�1=(dW+4). Doing the same

for our test statistic, we �nd that this rate is n�1=(dZ+dXi+dXj ). Therefore, for any �nite dimen-

sion, the MSE-optimal rate of convergence of the test statistic’s bandwidth is slightly faster than

those of individual density estimators but never as fast as n�1 which would violate condition

imposed by Eq. (4.10). Provided that the optimum rate of convergence of the individual estima-

tors is suf�cient for the consistency (Silverman, 1998), the optimum rate of Tn("n) guarantees

consistency as well.

Appendix 4.C Data description and results

The Euro STOXX Financials Index consists originally of 61 entities. However, only 48 of them

cover years 2000-2012 (see Table 4.C.1). For all of them we collect daily equity prices and

calculate their log returns accordingly. Data comes from the DataStream and covers period

01/01/2000 till 12/31/2012.
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Table 4.C.1: List of all entities used in the empirical analysis.

Company name/Index Symbol Sector Country
1 Euro STOXX Financials STOXX Aggregate Aggregate
2 Ackermans & Van Haaren ACK Financial Services BE
3 Aegon AEG Insurance NL
4 Ageas AGE Insurance NL
5 Allianz ALL Insurance DE
6 Assicurazioni Generali ASS Insurance IT
7 AXA AXA Insurance FR
8 Bank Of Ireland BIR Banks IR
9 Bankinter BAN Banks ES

10 Banca Monte Dei Paschi PAS Banks IT
11 Banca Popolare Di Milano MIL Banks IT
12 Banca Popolare Di Sondrio SON Banks IT
13 Banca Popolare Emilia Romagna ROM Banks IT
14 BBV Argentaria BBV Banks ES
15 Banco Comr. Portugues POR Banks PT
16 Banco Espirito Santo ESS Banks PT
17 Banco Popolare POP Banks IT
18 Banco Popular Espanol ESP Banks ES
19 Banco Santander SAN Banks ES
20 BNP Paribas BNP Banks FR
21 CNP Assurances CNP Insurance FR
22 Co�nimmo COF Real Estate BE
23 Commerzbank COM Banks DE
24 Corio COR Real Estate NL
25 Deutsche Bank DEU Banks DE
26 Erste Group Bank ERS Banks AT
27 Fonciere Des Regions FON Real Estate FR
28 Gecina GEC Real Estate FR
29 GBL New GBL Financial Services BE
30 Societe Generale SOC Banks FR
31 Hannover Ruck. HAN Insurance DE
32 ICADE ICA Real Estate FR
33 Immo�nanz IMM Real Estate AT
34 ING Groep ING Insurance NL
35 Intesa Sanpaolo INT Banks IT
36 KBC Group KBC Banks BE
37 Klepierre KLE Real Estate FR
38 Mapfre MAP Insurance ES
39 Mediobanca MED Banks IT
40 Muenchener Ruck. MUE Insurance DE
41 Natixis NAT Banks FR
42 Pohjola Pankki POH Banks FI
43 Sampo SAM Insurance FI
44 SCOR SCO Insurance FR
45 Unibail-Rodamco ROD Real Estate FR
46 UniCredit UNI Banks IT
47 Vienna Insurance Group VIE Insurance AT
48 Wendel WEN Financial Services FR
49 Wereldhave WER Real Estate NL
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Table 4.C.2: NCoVaR from institution i on the system risk in two scenarios in period 01/01/2000
till 12/31/2012 for raw returns. Lags determines the optimal number of lags from the VAR
speci�cation using the Schwarz-Bayes Information Criterion. Optimal epsilon values calculated
from bootstrap. T-val represents the test statistic of NCoVaR from Eq.(4.11). (*),(**), (***)
denotes one-sided p-value statistical signi�cance at 10%, 5% and 1%, respectively.

Scenario 1 Scenario 2
Institution i System variable Lags Opt. " T-val Lags Opt. " T-val

1 ACK STOXX 1 0.54 0.913 1 0.44 1.329*
2 AEG STOXX 1 0.28 6.359*** 1 0.4 2.855***
3 AGE STOXX 4 0.6 0.213 4 0.6 3.516***
4 ALL STOXX 1 0.38 1.45 1 0.2 -6.365
5 ASS STOXX 1 0.24 6.351*** 1 0.22 -6.359
6 AXA STOXX 1 0.26 6.351*** 1 0.2 -3.035
7 BIR STOXX 2 0.6 0.585 2 0.6 2.611***
8 BAN STOXX 1 0.38 -1.262 1 0.22 -3.446
9 PAS STOXX 1 0.32 6.351*** 1 0.2 -4.382

10 MIL STOXX 1 0.24 -6.369 1 0.2 -4.477
11 SON STOXX 1 0.3 -3.854 1 0.3 4.448***
12 ROM STOXX 1 0.48 1.571* 1 0.26 -5.833
13 BBV STOXX 1 0.38 -1.081 1 0.2 -6.361
14 POR STOXX 1 0.26 -6.351 1 0.3 -5.378
15 ESS STOXX 1 0.26 -6.357 1 0.2 -5.44
16 POP STOXX 1 0.32 -1.551 1 0.26 5.359***
17 ESP STOXX 1 0.26 6.351*** 1 0.2 -6.364
18 SAN STOXX 1 0.2 6.351*** 1 0.42 0.673
19 BNP STOXX 1 0.34 -1.947 1 0.2 -3.121
20 CNP STOXX 1 0.3 0.78 1 0.2 -6.367
21 COF STOXX 1 0.2 -6.351 1 0.2 -6.365
22 COM STOXX 1 0.26 6.351*** 1 0.2 -6.36
23 COR STOXX 1 0.58 0.411 1 0.22 -6.375
24 DEU STOXX 1 0.24 6.352*** 1 0.24 -6.371
25 ERS STOXX 1 0.38 1.576* 1 0.26 3.295***
26 FON STOXX 1 0.26 -6.357 1 0.32 0.052
27 GEC STOXX 1 0.24 -6.362 1 0.32 -0.389
28 GBL STOXX 1 0.3 -6.359 1 0.42 0.088
29 SOC STOXX 1 0.24 6.351*** 1 0.22 -6.364
30 HAN STOXX 1 0.32 -0.645 1 0.2 -3.911
31 ICA STOXX 1 0.24 -1.474 1 0.34 3.846***
32 IMM STOXX 2 0.6 -0.316 2 0.6 2.684***
33 ING STOXX 1 0.26 6.351*** 1 0.22 -3.734
34 INT STOXX 1 0.28 -2.919 1 0.28 4.994***
35 KBC STOXX 1 0.26 6.352*** 1 0.2 -6.359
36 KLE STOXX 1 0.24 6.351*** 1 0.52 -0.315
37 MAP STOXX 1 0.26 -0.444 1 0.22 -6.371
38 MED STOXX 1 0.26 6.351*** 1 0.2 -6.361
39 MUE STOXX 1 0.28 -6.351 1 0.2 -6.357
40 NAT STOXX 1 0.26 1.417* 1 0.28 -4.937
41 POH STOXX 1 0.28 6.352*** 1 0.24 -3.925
42 SAM STOXX 1 0.6 -0.026 1 0.28 -4.666
43 SCO STOXX 1 0.32 -2.487 1 0.2 -6.365
44 ROD STOXX 1 0.52 0.239 1 0.24 -6.377
45 UNI STOXX 1 0.28 6.352*** 1 0.3 5.886***
46 VIE STOXX 1 0.32 3.747*** 1 0.2 -6.362
47 WEN STOXX 1 0.24 4.733*** 1 0.22 -6.364
48 WER STOXX 1 0.3 3.34*** 1 0.44 1.572*
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Table 4.C.3: NCoVaR from institution i on the system risk in two scenarios in period 01/01/2000
till 12/31/2012 for VAR-�ltered returns. Lags determines the optimal number of lags from the
VAR speci�cation using the Schwarz-Bayes Information Criterion. Optimal epsilon values cal-
culated from bootstrap. T-val represents the test statistic of NCoVaR from Eq.(4.11). (*),(**),
(***) denotes one-sided p-value statistical signi�cance at 10%, 5% and 1%, respectively.

Scenario 1 Scenario 2
Institution i System variable Lags Opt. " T-val Lags Opt. " T-val

1 ACK STOXX 1 0.26 6.351*** 1 0.44 1.417*
2 AEG STOXX 1 0.24 6.355*** 1 0.2 -6.36
3 AGE STOXX 1 0.38 0.983 1 0.24 5.506***
4 ALL STOXX 1 0.36 0.247 1 0.2 -6.363
5 ASS STOXX 1 0.3 -2.589 1 0.22 -6.361
6 AXA STOXX 1 0.32 6.353*** 1 0.2 -6.358
7 BIR STOXX 1 0.22 -6.362 1 0.32 4.329***
8 BAN STOXX 1 0.28 -2.625 1 0.2 -6.36
9 PAS STOXX 1 0.34 6.35*** 1 0.3 5.469***

10 MIL STOXX 1 0.34 -5.756 1 0.2 -3.407
11 SON STOXX 1 0.36 4.458*** 1 0.2 -5.44
12 ROM STOXX 1 0.34 2.491*** 1 0.22 -5.627
13 BBV STOXX 1 0.2 6.35*** 1 0.2 -6.36
14 POR STOXX 1 0.32 -6.36 1 0.24 -6.336
15 ESS STOXX 1 0.36 1.998*** 1 0.24 5.202***
16 POP STOXX 1 0.34 -3.085 1 0.3 4.667***
17 ESP STOXX 1 0.36 2.102** 1 0.26 -6.375
18 SAN STOXX 1 0.2 6.351*** 1 0.44 -0.077
19 BNP STOXX 1 0.22 6.35*** 1 0.2 -6.356
20 CNP STOXX 1 0.34 -0.525 1 0.2 -6.374
21 COF STOXX 1 0.34 -2.344 1 0.2 -6.363
22 COM STOXX 1 0.4 3.693*** 1 0.2 -6.354
23 COR STOXX 1 0.6 0.627 1 0.24 -6.38
24 DEU STOXX 1 0.32 6.355*** 1 0.22 -6.366
25 ERS STOXX 1 0.36 0.493 1 0.34 1.903**
26 FON STOXX 1 0.3 -6.355 1 0.3 0.633
27 GEC STOXX 1 0.34 4.518*** 1 0.46 -0.53
28 GBL STOXX 1 0.26 -2.699 1 0.38 3.204***
29 SOC STOXX 1 0.2 6.351*** 1 0.2 -6.36
30 HAN STOXX 1 0.32 -6.35 1 0.2 -2.984
31 ICA STOXX 1 0.32 0.502 1 0.32 4.231***
32 IMM STOXX 1 0.58 0.962 1 0.32 4.231***
33 ING STOXX 1 0.26 6.35*** 1 0.24 -6.363
34 INT STOXX 1 0.34 -4.345 1 0.28 3.23***
35 KBC STOXX 1 0.24 6.351*** 1 0.2 -6.358
36 KLE STOXX 1 0.36 2.593*** 1 0.36 3.947***
37 MAP STOXX 1 0.48 1.519* 1 0.2 -6.364
38 MED STOXX 1 0.2 6.35*** 1 0.2 -6.364
39 MUE STOXX 1 0.24 -6.35 1 0.2 -6.354
40 NAT STOXX 1 0.28 1.093 1 0.3 -4.97
41 POH STOXX 1 0.32 6.353*** 1 0.44 0.314
42 SAM STOXX 1 0.52 -0.857 1 0.2 -6.362
43 SCO STOXX 1 0.32 0.759 1 0.2 -6.364
44 ROD STOXX 1 0.5 -0.401 1 0.24 -6.38
45 UNI STOXX 1 0.3 6.351*** 1 0.28 5.673***
46 VIE STOXX 1 0.34 0.611 1 0.3 2.273***
47 WEN STOXX 1 0.26 6.368*** 1 0.2 -6.359
48 WER STOXX 1 0.32 -2.424 1 0.22 -6.37
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Table 4.C.3: NCoVaR from institution i on the system risk in two scenarios in period 01/01/2000
till 12/31/2012 for GARCH-�ltered returns. Lags determines the number of lags used in the test.
Optimal epsilon values calculated from bootstrap. T-val represents the test statistic of NCoVaR
from Eq.(4.11). (*),(**), (***) denotes one-sided p-value statistical signi�cance at 10%, 5%
and 1%, respectively.

Scenario 1 Scenario 2
Institution i System variable Lags Opt. " T-val Lags Opt. " T-val

1 ACK STOXX 1 0.54 0.913 1 0.44 1.329*
2 AEG STOXX 1 0.28 6.359*** 1 0.4 2.855***
3 AGE STOXX 1 0.25 6.362*** 1 0.23 -4.646
4 ALL STOXX 1 0.38 1.45* 1 0.21 -6.366
5 ASS STOXX 1 0.23 6.351*** 1 0.21 -6.359
6 AXA STOXX 1 0.26 6.351*** 1 0.2 -3.035
7 BIR STOXX 1 0.25 -4.733 1 0.21 5.319***
8 BAN STOXX 1 0.38 -1.262 1 0.23 -3.61
9 PAS STOXX 1 0.32 6.351*** 1 0.2 -4.382

10 MIL STOXX 1 0.24 -6.369 1 0.21 -4.477
11 SON STOXX 1 0.3 -3.854 1 0.31 4.083***
12 ROM STOXX 1 0.27 6.351*** 1 0.27 -5.883
13 BBV STOXX 1 0.25 6.352*** 1 0.21 -6.362
14 POR STOXX 1 0.26 -6.351 1 0.3 -5.378
15 ESS STOXX 1 0.26 -6.357 1 0.21 -5.771
16 POP STOXX 1 0.29 -4.344 1 0.27 4.958***
17 ESP STOXX 1 0.27 6.351*** 1 0.21 -6.364
18 SAN STOXX 1 0.21 6.351*** 1 0.43 0.418
19 BNP STOXX 1 0.34 -1.947 1 0.2 -3.121
20 CNP STOXX 1 0.31 0.531 1 0.21 -6.37
21 COF STOXX 1 0.2 -6.351 1 0.21 -6.365
22 COM STOXX 1 0.26 6.351*** 1 0.2 -6.36
23 COR STOXX 1 0.25 2.84*** 1 0.21 -6.371
24 DEU STOXX 1 0.23 6.352*** 1 0.23 -6.37
25 ERS STOXX 1 0.38 1.576* 1 0.27 3.141***
26 FON STOXX 1 0.26 -6.357 1 0.32 0.052
27 GEC STOXX 1 0.24 -6.362 1 0.33 -0.46
28 GBL STOXX 1 0.3 -6.359 1 0.42 0.088
29 SOC STOXX 1 0.24 6.351*** 1 0.22 -6.364
30 HAN STOXX 1 0.27 -3.068 1 0.2 -3.911
31 ICA STOXX 1 0.25 -3.335 1 0.34 3.846***
32 IMM STOXX 1 0.22 -6.361 1 0.35 4.183***
33 ING STOXX 1 0.26 6.351*** 1 0.22 -3.734
34 INT STOXX 1 0.26 6.352*** 1 0.2 -6.359
35 KBC STOXX 1 0.24 6.351*** 1 0.52 -0.315
36 KLE STOXX 1 0.26 -0.444 1 0.22 -6.371
37 MAP STOXX 1 0.25 1.432* 1 0.28 4.994***
38 MED STOXX 1 0.27 6.351*** 1 0.2 -6.361
39 MUE STOXX 1 0.29 -6.351 1 0.2 -6.357
40 NAT STOXX 1 0.27 0.34 1 0.28 -4.937
41 POH STOXX 1 0.29 6.352*** 1 0.24 -3.925
42 SAM STOXX 1 0.59 -0.147 1 0.2 -6.362
43 SCO STOXX 1 0.32 -2.487 1 0.2 -6.365
44 ROD STOXX 1 0.52 0.239 1 0.23 -6.375
45 UNI STOXX 1 0.28 6.352*** 1 0.3 5.886***
46 VIE STOXX 1 0.32 3.747*** 1 0.2 -6.362
47 WEN STOXX 1 0.25 4.869*** 1 0.22 -6.364
48 WER STOXX 1 0.25 6.352*** 1 0.45 1.411*





Chapter 5

Do Safe Havens Make Asset Markets

Safer?

5.1 Introduction

Over the past half-decade, since the onset of the global �nancial crisis, asset prices and capital

�ows have gyrated and their movements have differed strongly across different groups of coun-

tries. In particular, some countries (let us call them �safe havens�) experienced strong in�ows

into sovereign bond markets while others found their most liquid markets drying up. Has the

presence of these safe haven �ows changed the resilience of the global �nancial network that

was buffeted by repeated shocks since 2007? In this chapter we present some stylized facts on

the role of safe havens in spreading or containing contagion.

A rapidly expanding literature has documented contagion across asset prices and, in particu-

lar, between sovereign and bank debt. Several authors have provided evidence of cross-country

contagion in long-term sovereign bond yields (Basurto et al., 2010; Gilmore et al., 2010) or

sovereign Credit Default Swap (CDS) spreads (Caporin et al., 2012) for euro area countries

or a broader sample of European countries, the US, and Japan. While there is some concern

that strong sovereign-sovereign correlations simply re�ect correlations in fundamental �nan-
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cial factors, especially short-term interest rates (Manganelli and Wolswijk, 2007), Mody (2009)

has shown that 2007 was a turning point in sovereign-sovereign correlations with increasing

differentiation according to credit risk. In addition to sovereign-sovereign correlations, several

authors have also documented sovereign-bank contagion. After bank bailout episodes and �nan-

cial rescue packages in the euro area, the correlation between bank and sovereign CDS spreads

increased signi�cantly (Acharya et al., 2011), and bank and sovereign CDS spreads’ sensitiv-

ity to a global risk factor became more similar (Ejsing and Lemke, 2011). Also outside these

�nancial rescue episodes, Merton et al. (2013) show rising correlations between sovereign and

bank CDS spreads. By estimating correlations, this literature has essentially mapped the shape

of the network of asset prices, whether around periods of stress or over longer time spans. To

our knowledge, the literature has not yet analyzed how this network’s shape affects contagion

once a shock enters this network.

Several authors have shown network measures to be signi�cant correlates of banking system

and general �nancial system stress. Minoiu et al. (2013) found rising interconnectedness (mea-

sured as clustering coef�cients and degree centrality) in the global network of cross-border

banking exposures from the BIS locational statistics to be signi�cant predictors of systemic

banking crises. So were degree and betweenness centrality in a bank-level network of syndi-

cated loans (Caballero, 2012). At the same time, increased connectivity in the same network

fostered trade (Hale et al., 2013). While the previous papers related mainly to the pre-crisis

period, Chinazzi et al. (2013) found that degree centrality in a network of cross-country debt

and equity exposures was a signi�cant predictor of the drop growth and stock market volatility

during the crisis. The measures these authors used were country-level measures of a country’s

position in the network. While these are useful to predict crises or trade in any particular coun-

try, they do not explain the dynamics of contagion from a crisis. In contrast, here we do not

attempt to predict a crisis or any other shock but, contingent on a shock occurring somewhere,

we trace how contagion travels through global asset prices.

Blending elements of the literatures on asset price contagion and exposure networks, we

102



5.1. INTRODUCTION

examine how the shape of the global network of asset price co-movements has been conducive

(or not) to the spread of contagion. We hone in on a particular group of countries with unique

characteristics, the safe haven countries, and their role in amplifying or slowing the spread

of contagion across borders and asset classes. In particular, we �nd important differences in

sovereign-bank feedback loops between safe haven and non-safe haven countries. This dis-

tinction comes out more clearly in our sample than in those of previous authors because we

deliberately expand it to include many emerging markets (50 sovereigns) and individual banks

(331 banks). To achieve this larger sample, we rely on sovereign bond yields and bank equity

prices, which in many countries are more liquid than CDS spreads. By using individual bank

data, we are able to distinguish sovereign-bank correlations between more and less systemic

banks which are too big to fail to different degrees.

The existing literature on safe havens has de�ned safe haven assets as hedges of returns

on reference portfolios during times of �nancial stress or rising risk aversion. This literature

has examined exchange rates (Beck and Rahbari, 2008; Habib and Stracca, 2012; Ranaldo and

S¤oderlind, 2010), gold (Baur and McDermott, 2010), or sovereign bonds (Hartmann et al., 2004)

as hedges against stock market risk. To our knowledge, the literature has not de�ned safe haven

status based on the potential for sovereign bonds to serve as hedges against individual banking

risk. Since ours is a network of sovereign bond yields and individual bank equity returns, we

prefer a de�nition of safe havens relevant to our data instead of one that is exogenous to our

data set. However, our de�nition, as we show below, does not deviate more from common usage

than other de�nitions in the literature or de�nitions used by �nancial market participants.

Our de�nition of a safe haven country explicitly treats sovereign bonds as possible safe

haven assets when banks (not the stock market more generally) are under stress: safe havens

are those countries where bank equity prices and sovereign bond yields move strongly in tan-

dem. If bank equity prices and sovereign bond yields were purely driven by country-level credit

risk, one would have expected the opposite: if credit risk rises, sovereign bond yields increase

and bank equity prices fall. In contrast, where credit risk is of negligible concern, i.e. in safe
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havens, expectations about future growth and monetary policy become predominant: an im-

proving growth outlook raises bank equity prices and the expectation of tightening monetary

policy which, in turn, puts pressure on sovereign bond yields.

Hence, by de�nition, safe havens are countries without sovereign-bank feedback loops that

amplify shocks to both banks and sovereigns. For example, contagion from a global shock

that simultaneously raises bond yields and reduces bank equity prices in a safe haven could

trigger the expectation of a monetary policy response in the safe haven that would raise bank

equity prices and reduce sovereign bond yields. In contrast, outside safe havens, a similar

shock could trigger concerns about credit risk and set in motion self-ful�lling bank-sovereign

feedback loops. It turns out, however, that in our network, this benign property of safe havens is

offset by a less benign one. In particular, safe havens tend to have stronger sovereign-sovereign

and stronger bank-bank correlations than non-safe havens. As a result, if a shock arrives in safe

havens, they can propagate shocks to other countries faster than non-safe havens. Which of the

two effects dominates depends on the nature of the shock and the nature of the broader network.

In our sample, we �nd that, on balance, safe havens amplify shocks (although to varying degrees

depending on the shock).

In the next section, we describe our data, followed by our de�nition of safe havens and

their properties in Section 5.3. Section 5.4 describes the global network structure of sovereign

bond yields and bank equity returns. In Sections 5.5 and 5.6, we document some stylized

facts of feedback loops in shock propagation. In Section 5.7, we examine the role of the two

characteristics of safe havens in amplifying or dampening shock propagation. Several of these

facts raise intriguing questions, summarized in Section 5.8, that are left for further research.

5.2 Data

We use daily changes in 5-year bond yields of 50 sovereigns and daily log changes in bank eq-

uity prices of 331 individual banks using Bloomberg data.1 Because of limited data availability
1The results are broadly robust to including the smaller sample using 10-year bond yields.

104



5.2. DATA

in the 1990s, the time span for our network of global bank equity prices and sovereign bond

yields comprises 2000-2013. The full sample is divided into four subsamples: years 2000-2006

(Great Moderation), 2007-2009 (Subprime Crisis), 2010-2012 (Sovereign Debt Crisis), 2013

(Emerging Markets (EM) Stress).2 We adjust the daily data for time zones and exchange rate

changes.

For each bank-bank, sovereign-sovereign, and bank-sovereign pair, we calculate bilateral

Pearson correlation coef�cients between bank equity price log changes and sovereign bond

yield changes over each of our four subperiods. Ideally, we would have used measures that

explicitly incorporate causality, e.g . Granger (1969) causality or spillover coef�cients as in

Diebold and Yilmaz (2011), but the estimations necessary to derive these measures would typ-

ically have constrained our sample size. Therefore, here we begin by focusing on simple cor-

relations.3 To eliminate spurious correlations, we set the correlations between sovereigns and

banks outside their countries to zero.4

We call our network G(V;E) a representation of a set of nodes V = fv1; v2; : : : ; vng, con-

nected by a set of edges E � V � V . For now, the strength of the edge between two adjacent

nodes is determined by our Pearson correlation coef�cient. Formally, we may represent a net-

work G in a matrix form, denote it by An�n, where all diagonal elements are equal to zero,

i.e. the relation between the same assets is irrelevant, and elements aij represent the correlation

between assets i and j. Since we use time adjusted data, matrix A is not symmetric, making

the network directed, i.e. aij 6= aji for some i and j. Formally, if we denote the number of

sovereigns by ns and number of banking sectors by nb, one may rewrite the complete network

as a block matrixB(ns+nb)�(ns+nb), where two diagonal blocks represent the individual networks

2The majority of the euro zone countries provide sovereign bond yields ranging back to 1994. Therefore, we
consider this as a special case and we devote Box 1 to analyze the situation in the Economic and Monetary Union
(EMU) individually over the years 1994-2012.

3In principle, shocks can of course also jump from equity and bank stock prices to interbank money markets or
foreign exchange markets. We will consider these asset classes in future research.

4While this does mean that, e.g. the correlation between the Greek sovereign bond yield and a French bank’s
equity price is eliminated by assumption, it also avoids many spurious correlations, e.g. between the Finnish
sovereign and Argentinian banks. Here, to avoid the many spurious correlations at the cost of eliminating some
valid ones, we remove all sovereign-bank correlations except those within each country.
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and the remaining blocks are zeros except for the case when the sovereign and banks refer to

the same country.

Fig. 5.1 shows the distribution of correlations over our four subperiods. The bulk of them are

inside the 95% con�dence interval [�0:2;+0:2] for Pearson correlation coef�cients and, hence,

statistically insigni�cant. This is especially the case for bank-sovereign correlations where less

than one-�fth of the correlations are statistically signi�cantly negative or positive. Sovereign-

sovereign correlations are stronger than bank-bank and, even more so, bank-sovereign correla-

tions (the distribution of sovereign correlations is further to the right and has fatter tails than

that of bank-bank or bank-sovereign correlations). In addition, even if not visible in Fig. 5.1,

within-country bank-bank correlations are stronger than cross-country bank-bank correlations.

Negative correlations between sovereigns and other sovereigns or banks and other banks are

rare. Negative correlations among sovereigns are con�ned to a few country pairs.5

In aggregate, correlations strengthened in 2007-09 but by 2013 had fallen back to pre-crisis

levels (the right tail of all three distributions moved sharply out in 2007-09 but has since moved

back inwards). The number of strong bank-sovereign correlations has shrunk even below pre-

crisis levels.

The global �nancial crisis and the subsequent euro area crisis triggered increasing cluster-

ing of sovereign and bank asset prices. Fig. 5.2 shows the distribution of clustering coef�cients

(loosely speaking, the share of �friends� that are also �friends� with each other) for bank eq-

uity prices (Fagiolo, 2007). The distribution shifted sharply to the right as banks equity prices

became strongly correlated globally in 2007-09 and regionally in 2010-12. Since then, there

has been some reversion towards 2000-06 norms. Similarly, clustering of sovereign bond yields

increased sharply in 2007-09 and even more so in 2010-12. The rightward shift of the distribu-
5In 2000-06, they include the US against 14 EU countries and Switzerland. In 2007-09, they include Japan

against several advance and emerging market commodity producers (Australia, New Zealand, Canada, Mexico,
Brazil, South Africa, Turkey), the US against Switzerland, and Colombia against several Asian and European
emerging markets (China, Singapore, Malaysia, Indonesia, Slovakia, Ukraine). In 2010-12, there is only one neg-
ative correlation, between Japan and the US. In 2013, negative correlations are between the US and large emerging
markets (Brazil, Turkey, Hungary, Mexico, Thailand, Malaysia, Philippines, South Africa) and/or commodity pro-
ducers (Australia, New Zealand, Norway) and global �nancial centers (Japan, Switzerland, UK).
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Figure 5.1: Distribution of correlations at the sovereign, bank and sovereign-bank levels.

(a) 5-year sovereign bond yields

(b) Daily bank equity returns

(c) Daily bank equity returns and 5-year sovereign bond yields
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tion 2007-09 re�ects a stronger clustering especially in Asia whereas the rightward shift of the

distribution in 2010-12 re�ects especially a stronger clustering in Europe.

5.3 De�ning safe havens

We distinguish between �safe havens� and �non-safe havens� on the basis of their correlation

between sovereign bond yields and bank equity prices. For advanced countries, including the

US, the positive correlation between sovereign bond yields and prices of riskier assets has been

documented by Bauer and Rudebusch (2013) and Pandl (2013). In contrast, for emerging mar-

kets, Drainville et al. (2011) show a negative correlation between bond yields and bank equity

prices and speculate that this re�ects strongly correlated risk premia of EM assets.

Here, we also base our de�nition on the correlation between sovereign bond yields as po-

tentially the safe assets, and individual bank equity returns as the riskier assets. Speci�cally,

we de�ne countries as �safe havens� if daily changes of sovereign bond yields and bank equity

prices are signi�cantly positively correlated (correlation > 0.2). The rationale is as follows.

Long term sovereign bond yields can be broadly decomposed into two components: (i)

expectations of average future short-term interest rates and (ii) a premium that investors require

for bearing the (e.g., credit, liquidity) risk of a long-term bond investment. The expectations

component (i) is driven by in�ation expectations and expectations of future real rates of return,

which depend on future economic growth. The risk premium component (ii) is determined

by the degree of uncertainty about these future developments and by the degree of investors’

risk aversion. Similarly, bank equity prices can be decomposed into a component that re�ects

expectations of future pro�tability and a risk premium.

During a downturn, a pessimistic economic outlook drives down bank equity prices; the

expectation of a loosening monetary policy response drives down sovereign bond yields. This

is our expectations component (i). Separately, rising risk aversion during a downturn induces

investors to turn away from riskier assets to safer ones. This reduces yields on safe assets and
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Figure 5.2: Distribution of clustering coef�cients for bank equity price correlations and
sovereign bond yield correlations. Source: Fagiolo (2007).

(a) Sovereign bond yield (all and Asia)

(b) Sovereign bond yield (all and euro area)

(c) Bank equity returns
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raises yields (i.e. reduces prices) of riskier assets. This is our risk premium component (ii).

In safe haven countries, sovereign bonds are considered safe assets. Hence, both effects

generate a positive correlation between bank equity prices and sovereign bond yields.

In contrast, in non-safe haven countries, sovereign bonds are not considered a �safe asset�

to which investors will turn when risk aversion rises. As global risk aversion rises, therefore,

investors will move out of both sovereign bonds and bank equity, sovereign bond yields will rise

while bank equity prices fall, and, for a given economic outlook, a negative correlation between

sovereign bond yields and bank equity prices will emerge. Since expectations about economic

outlook and risk aversion drive the correlation between sovereign bond yields and bank equity

prices into opposite directions, the sign of overall correlation is ambiguous.

Safe havens thus de�ned vary over time (Table 5.1). Japan, Germany, Finland and the

United States have been considered safe havens throughout our sample period. But some euro

area countries such as Austria, Belgium, France, Italy, Portugal, and Spain lost their safe haven

status during the European crisis. Other countries gained safe haven status as the global �nancial

crisis unfolded, including some commodity exporting countries such as Canada and Australia.

As European economies are crawling out of recession against the backdrop of public and pri-

vate deleveraging and as emerging markets are slowing down, many European economies and

oil producers with close trade and �nancial links to emerging markets lost their safe haven sta-

tus, including Australia, Canada, the UK, and Switzerland. How does our de�nition compare

with other de�nitions of safe havens? Fig. 5.3 shows our list of safe havens against two other

de�nitions:

� countries with AAA ratings from S&P, Fitch, and Moody’s (similar to de�nition used in

the International Monetary Fund (2012));

� �negative-beta� countries whose sovereign bond yields are negatively correlated with

global (here, S&P500) equity prices, a commonly used de�nition among �nancial market

analysts.

In particular, Luxembourg, Singapore, and some Northern European countries are not identi�ed
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Table 5.1: �Safe havens�: positive co-movement between sovereign yields and bank equity.

2000-2006 2007-2009 2010-2012 2013
Austria 0 1 0 0
Australia 0 1 1 0
Belgium 1 1 0 0
Canada 0 1 1 0
Denmark 0 0 1 0
Finland 0 1 1 1
France 1 1 0 0
Germany 1 1 1 1
Italy 1 1 0 0
Japan 1 1 1 1
Norway 0 1 0 0
Netherlands 1 0 0 0
Portugal 0 1 0 0
Spain 1 1 0 0
Sweden 1 1 1 0
Switzerland 1 1 1 0
UK 1 1 1 0
US 1 1 1 1

as safe havens by our de�nition even though they are either AAA-rated or can be considered

�negative beta� countries. Note that all these countries have �xed exchange rate regimes. Our

expectations channel that distinguishes safe havens from others, and which works through ex-

pected monetary policy changes, would therefore be not expected to be strong.

5.4 Mapping the network of sovereign bond yields and bank

equity

For visual clarity, we can only show a subset of all the pairwise links. As discussed above,

sovereign-sovereign correlations tend to be much higher than bank-bank correlations and bank-

sovereign correlations tend to be the weakest. To make sure that at least some links in each data

set are represented, we select the strongest 10 percent of sovereign-sovereign, bank-bank, and
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Figure 5.3: Safe havens by three de�nitions.
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bank-sovereign links.6

Fig. 5.A.1 shows the characteristics of sovereign-sovereign interconnectedness. Pre-crisis

(2000-06), Singapore and, less directly, Korea were the main �bridges� between Emerging

Asian and European sovereign bond yields. Since the crisis, sovereign bond yields in Emerging

Asia have been drawn into the group of advanced country sovereign bond yield correlations.

European sovereign bond yields remain the most closely intertwined, despite some recent

weakening of links with some of the periphery. In contrast, correlations with North American

sovereign bond yields have weakened since the pre-crisis period.

Fig. 5.A.2 shows the characteristics of bank-bank interconnectedness. Pre-crisis (2000-06),

there were few strong bank-bank correlations and they were con�ned to individual regions,

Europe in particular, or individual countries. The global �nancial crisis (2007-09) tightened

these disparate pre-crisis groups into one knot of cross-border correlations between bank equity

returns. One Singaporean bank tied this tight global cluster to Asian-Paci�c banks. Since

then (2010-12) only the European cluster remains tightly intertwined (see also Box 1 for euro

area countries) whereas other countries’ bank equity prices have drifted out of the dense global

cluster.

In our sample, bank links across countries are signi�cantly smaller than bank links within a

country. There are only a few strong cross-border correlations outside Europe: in Asia-Paci�c

(Singapore and Australia) and North America (Canada and the US).

During the European crisis (2010-12), Asian and Latin American banks decoupled from

banks in other advanced economies. In Asia, two cross-country bank clusters remained strong:

one including individual Australian, Singaporean, Korean, and Malaysian banks and another

including banks in Hong Kong and China. In Europe, banks in Greece and Cyprus separated

from the main European cluster.

In Figs 5.A.3-5.A.5, for individual country groups, we parse the network for cross-country

chains of correlations between banks and sovereigns.
6Due to space constraints, we only show the networks up to 2010-12. However, networks for 2013 do not

materially differ from those for 2010-12.
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� Emerging Asia:7 Signi�cant (negative) correlations between sovereign bond yields and

bank equity prices were present within each country. In contrast to these within-country

correlations, cross-country correlations between sovereign bond markets and banking sec-

tor were relatively weak prior to the global �nancial crisis. This suggests that sovereign-

bank feedback loops have played an important role in propagating shocks in emerg-

ing Asian economies domestically (despite the size and relative impact compare to the

European countries) whereas cross-country contagion through either sovereign or bank-

ing channels was more muted. At the height of the global �nancial crisis (2007-09),

sovereign-bank linkages strengthened in almost all the emerging Asian economies: shocks

from European banks were tramsmitted through Singapore to other Asian banks which

further propagated them to Asian sovereigns. During the subsequent euro area crisis

(2010-12), sovereign-bank links weakened again whereas bank-bank links tightened, es-

pecially with European banks. Singaporean banks have continued to be the cross-continental

�bridge�, affecting directly Thailand, China, Malaysia, and indirectly India and Indone-

sia. In contrast, Philippine and (some) Korean banks decoupled from the rest.

� Emerging Europe: Like emerging Asian countries, Turkey, Poland and Hungary (less

in magnitude than the other two) bank equity prices were highly correlated with their

own countries’ sovereign bond yields. During the global �nancial crisis (2007-09), both

sovereign-bank links and cross-country banking sector linkages strengthened, contribut-

ing to stronger contagion. Stress in Turkey’s tightly-linked banking sector could poten-

tially affect both sovereigns and banks in Poland and Hungary through the banking chan-

nel. During the subsequent European crisis (2010-12), Turkey decoupled from Poland

and Hungary which remain together in a tightly interconnected cluster. Turkey and Ro-

mania developed into two highly correlated within-country groups.

� GIIPS and Cyprus: Unlike in emerging Asian and European countries, sovereign-bank in-

terconnections were weak prior to the global �nancial crisis. During the global �nancial
7Malaysia, Thailand, Indonesia, Philippines, China, India.
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crisis (2007-09), Spanish and Italian banks began to be highly correlated with core Euro-

pean banks whereas the Greek and Cypriot banks formed a separate group of strong bank-

bank correlation. Sovereign-bank linkages remained quite weak, however. As the Euro-

pean crisis deepened (2010-12), aside from higher interconnectedness of global banks,

sovereign-bank inter-linkages also strengthened. Take Spain for example. Stress in bank

6 would have �rst affected Spain’s sovereign which then could have propagated it most

strongly to banks 2, 4 and 7 which, in turn, are highly correlated with Austrian and Ital-

ian banks, etc. Similar contagion chains can be drawn for Belgium, Portugal, Italy and

Austria. Greece and Cyprus remained decoupled from the other European banks and

sovereigns during this period.

Box 1. Clustering and declustering of the euro zone community in sovereign bond yields.

Since data is available from 1994, we construct a time line of the evolution of the network

of the Economic Monetary Union (EMU) sovereign bond yields in 12 EMU and later euro

area countries (Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Nether-

lands, Portugal, Slovakia and Spain). We can detect a changing core community in Europe

over time. By a community, we understand a part of the global network where the inter-

connectedness is relatively higher than to the rest of the network. In order to distinguish

communities we apply the random-walk algorithm developed by Rosvall and Bergstrom

(2007).

In 1994-1996 the core of the EMU: Austria, Belgium, France, Germany and the Nether-

lands, built a separate cluster, visibly distinct from all remaining countries. In 1997-1999,

Italy and Spain joined the core EMU cluster, and Greece, Ireland, Portugal, Finland joined

it in 2000-2006. As might be expected from its late membership in the euro area in 2009,

Slovakia did not join the community.

In 2010-2012 the core cluster partly dissolved. Belgium, Greece, Ireland and Portugal

separated completely, whereas Italy and Spain joined a common cluster.
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Box Figure 1: The evolution of the clustering structure in the sovereign bond yields within the euro zone

network. Source: Graph prepared by the software delivered by the courtesy of Rosvall and Bergstrom (2007).

Note: GIIPS countries are shown in red. Lines refer to clusters. For instance in 2000-2006 all the countries

except for Slovakia joined one big cluster of sovereigns.

5.5 Modeling shock propagation

To investigate how shocks are propagated in this network we adapt a standard model from the

disease spreading literature, developed by Jammazi and Aloui (2012). Every period each node

propagates the cumulative shock it has received to all adjacent nodes. The impact of the shock

is weighted by the strength of the link between the nodes. To keep it simple, we make two

simplifying assumptions in our use of Jammazi and Aloui (2012). Firstly, we assume that nodes

are neutral, i.e. our nodes cannot stop shock propagation, so that the propagation depends on the

network structure only. Secondly, we do not put any boundaries on nodes’ absorptive capacity,

i.e. our nodes cannot slow down shock propagation, as it could hamper the actual cascade effect

observed in �nancial markets. The details of the shock propagation mechanism are described

in Appendix 5.B.

Our shock propagation exercise inherently assumes some degree of causality: a shock is

�triggered� in one country and �passed on� to others. While the correlations themselves are

agnostic on the direction of causality, we posit that causality is unlikely to run from small
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entities to large entities. For example, the 93 percent correlation between changes of the 5-

year sovereign bond yields of Ireland and Germany in 2010-12 is more likely to re�ect the

Irish sovereign bond market responding to shocks in Germany than vice versa. To capture

this discrepancy when the source market is much smaller than the destination market, we scale

the correlation between the two entities down proportionately to the relative size: We weight

each correlation by the relative size of the source’s and destination’s total assets (for banks)

or government debt (for sovereigns), capping the weight at one. (In future research, we aim

to determine the direction of causality of the correlation in a less ad hoc manner, e.g. by

using Diebold and Yilmaz (2011) spillover coef�cients or including Granger (1969) causality

measures.)

We simulate two types of shocks, one in each of our markets: a sovereign bond yield shock

and a bank equity price shock. The initial shock is assumed to be a 1 percent increase in

either sovereign bond yields or in daily bank equity prices. For example, in the �rst step, the

source country’s sovereign bond yield is increased by 1 percent. All the adjacent countries’

(destinations’) sovereign bond yields are then impacted by their (weighted) correlations with

the source country sovereign bond yield. Also, the local banks’ equity prices are affected by

their correlation with their home sovereign bond yield. In the second step, the destination

countries themselves become the countries of origins of the next round of shocks: each of them

propagates the shock they received in the previous round to all their partner countries. The

mechanism repeats step after step and in each step we calculate the cumulative effects of shock

propagation in all the countries. We simulate shocks in three subsets of countries: a random

shock in any country of the network, a simultaneous shock in all the GIIPS countries (Greece,

Ireland, Italy, Portugal, and Spain), or a simultaneous shock in all the Fragile Five countries

(Indonesia, India, Brazil, Turkey, South Africa).

Two more caveats are in order. Firstly, by assumption, there is nothing in our experiment

that stops shock propagation; in practice, of course, policy steps would (and did) contain shock

propagation. Of course, these policy interventions are also implicit in our estimated correla-
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tions. Nevertheless, for now we interpret our results as counterfactuals that may have occurred,

had modest additional shocks happened and/or had there been no additional policy measures.

Secondly, our experiment does not say anything about the speed of contagion from shocks.

Since almost all sovereigns bond yields and all bank equity prices have at least some corre-

lation (even if small) and we do not exclude any by assumption. Therefore, the network is

complete, i.e. a shock in any one part of the network will immediately travel to all other parts

of the network. Instead of speed of contagion, our results are indicative of the size of the impact

and the ampli�cation over time of an initial shock on each country and on average. Although

the steps have no time dimension, they show the path along which a shock travels around the

network. Therefore, in our results below, we retain the notion of distinct steps for illustrative

purposes.

5.6 Feedback loops in shock propagation

Feedback loops, even along the relatively weak sovereign-bank correlations in our data set,

spread a shock from one asset class into another, where it can then proliferate and return to the

initial asset class. We test the effect of feedback loops in sovereign bond contagion by com-

paring shock propagation under two scenarios: the actual network of sovereign-sovereign and

bank-sovereign correlations and a counterfactual network where we assume all bank-sovereign

links are zero, i.e. a counterfactual network in which feedback loops are not possible. In our

counterfactual network without bank-sovereign links, a sovereign bond yield shock would not

travel into the banking system at all and vice versa.

5.6.1 Sovereign bond yield shock

Fig. 5.4 shows the results of a sovereign bond shock in the GIIPS, the Fragile Five, or any

country. Each line displays the average impact on sovereign bond yields of a 1 percent bond

yield shock in any country (bottom panel), the GIIPS (top right panel), or the Fragile Five (top
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left panel). We measure the impact relative to the impact under a baseline scenario: the baseline

scenario is one where we assume all bank-sovereign feedback loops are zero. On average,

feedback loops have ampli�ed the impact of sovereign bond yield shocks (all curves are above

1). However, the strength of feedback loops varies across countries and over time depending on

the source of the shock.8

On average, the ampli�cation of feedback loops in 2013 is broadly similar for sovereign

bond yield shocks in the Fragile Five and in the GIIPS (the curves in the top left chart are about

level with those in the top right chart). We speculate that a sovereign bond shock propagates

strongly in the highly interconnected sovereign bond yield network. It thus reaches countries

with strong bank-sovereign feedback loops quickly and strongly, independent of the source of

shocks. (This contrasts with a bank shock, see Section 5.6.2.) Not surprisingly, shocks in an

average single country propagate less fast than shocks originating in all of the GIIPS or Fragile

Five (the curve in the bottom chart is below those in the top right and top left charts).

For both Fragile Five and GIIPS sovereign shocks, the ampli�cation by feedback loops has

strengthened in 2013 compared with 2010-12 (the curve for 2013 is above that for 2010-12).

This re�ects a strengthening of bank-sovereign correlations in both sets of countries over these

two periods. In the case of the GIIPS, for which earlier data are available, feedback loops are

now only little stronger than pre-crisis.9

The weak impact of feedback loops in the case of a GIIPS shock in 2010-12 raises the

possibility of an interesting interpretation. Shock propagation among asset prices may have

been short-circuited by policy interventions, of which there were many in Europe during 2010-

12. In 2013, when there were fewer policy actions targeted at dampening GIIPS shocks, a

similar GIIPS shock would have propagated more strongly.

This contrasts with a shock in any single country which triggers broadly unchanged feed-
8The statistical signi�cance of the differences in shock propagation between various settings and years depend

on the size of the initial shock and the number of steps the shock has traveled across the network. Therefore, for
presentational clarity, we do not report them in the main body of the text. The exercise aims to illustrate the general
patterns of shock propagation in different years with different network structures.

9Data is not available for India and Turkey from mid-/late-2001, for Indonesia from 2003, and for Brazil from
2007.
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Figure 5.4: Average impact of bond market shock on global sovereign bond yields, with feed-
back loops (in multiples of average impact of same shock on sovereign bond yields without
feedback loops).

(a) Shock propagation to Fragile Five

(b) Shock propagation to GIIPS

(c) Shock propagation to any country
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back loops. The correlation of the Fragile Five and GIIPS sovereign bond yields with their

banks’ equity prices (already well above the sample average) increased more than for the av-

erage country between 2010-12 and 2013. As a result, these correlations intensi�ed feedback

loops from shocks originating from the GIIPS and Fragile Five.

Table 5.2 traces how feedback loops ampli�ed sovereign bond yield shocks in the GIIPS or

the Fragile Five in 2010-12. A redder tone indicates greater ampli�cation by feedback loops.

For example, feedback loops would have intensi�ed the impact of a sovereign bond yield shock

in the GIIPS initially (Step 1) more strongly (light orange) to the euro area core than the Nordics.

Over time, feedback loops would have also ampli�ed contagion to the Nordics (light orange in

Step 2). In contrast, feedback loops would have strongly ampli�ed contagion to the Nordics

from a sovereign bond yield shock in the Fragile Five, mainly because strong bank-bank correla-

tions with banks in the Fragile Five would have transmitted the shock to the Nordic sovereigns.

In the euro area periphery, where bank-bank correlations with Fragile Five were less strong,

feedback loops from a Fragile Five sovereign shock would have built more slowly over time.
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Table 5.2: Average strength of feedback loops after sovereign bond yield shock by region
in years 2010-12.

Sovereign bond yield shock in GIIPS Sovereign bond yield shock in Fragile Five

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

Emerging Markets Emerging markets

Euro area core Euro area core

Euro area periphery Euro area periphery

Nordics Nordics

Adv. Asia-Paci�c Adv. Asia-Paci�c

Financial centers Financial centers

Note: Red = increase in sovereign bond yield in the highest quintile of each step; decline in bank equity

price in the lowest quintile of each step. Orange = increase in sovereign bond yield in the second highest

quintile of each step; decline in bank equity price in the second lowest quintile of each step. Yellow =

increase in sovereign bond yield in the third highest quintile of each step; decline in bank equity price in

the third lowest quintile of each step. Light blue = increase in sovereign bond yield in the second lowest

quintile of each step; decline in bank equity price in the second highest quintile of each step. Dark blue

= increase in sovereign bond yield in the lowest quintile of each step; decline in bank equity price in the

highest quintile of each step.

5.6.2 Bank equity price shock

We repeat the exercise but this time for a shock to bank equity prices in the GIIPS, the Fragile

Five, or any country (Fig. 5.5). In general, feedback loops matter less for the propagation of

bank shocks than for sovereign bond yield shocks (the scale of the vertical axis of Fig. 5.5

below is smaller than that of Fig. 5.4). This presumably re�ects the fact that bank-sovereign

correlations are generally weaker than sovereign-sovereign correlations and hence dampen the

transmission of shocks from loosely interconnected bank equity prices to highly interconnected

sovereign bond yields.

There are some notable differences to the propagation of bond shocks that deserve high-

lighting. In 2013, feedback loops amplify bank shocks in the GIIPS more than Fragile Five
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Figure 5.5: Average impact of bank equity shock on bank equity prices, with feedback loops
(in multiples of average impact of same shock on bank equity prices without feedback loops).

(a) Shock propagation to Fragile Five

(b) Shock propagation to GIIPS

(c) Shock propagation to any country
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shocks. In contrast to the sovereign bond yield shock, the greatest shock propagation occurs

when the shock reaches the highly interconnected sovereign bond yield network. The entry

point for a bank shock into the sovereign bond network is through bank-sovereign correlations.

On average, bank-sovereign correlations in the GIIPS are twice as strong as those in the Fragile

Five.10 As a result, bank shocks originating in the GIIPS are transmitted more strongly than

bank shocks in the Fragile Five into the highly interconnected sovereign bond network. From

there, shocks spread rapidly.

Also in contrast to sovereign bond shocks, feedback loops amplify bank shocks in the GIIPS

or in any country more strongly now (2013) than they did at the height of the global �nancial

crisis (2007-09). The reason for strengthening feedback loops after bank shocks is the shrinking

number of safe havens. At the height of the �nancial crisis, bank equity price shocks in Italy and

Spain triggered a decline in yields (probably as a result of a monetary policy response to �nan-

cial system disruptions) that generated benign spillovers in the sovereign-sovereign network. In

the next section, we explore the role of safe havens in more detail.

5.7 The role of safe havens in shock propagation

Our next exercise is focused on safe havens as de�ned above. In our sample, safe havens

have two characteristics, one by de�nition and one by coincidence. Firstly, by our de�nition,

safe havens display strong positive correlations between sovereign bond yields and bank equity

prices. Secondly, by coincidence, they also display strong sovereign-sovereign and bank-bank

correlations. This is the case not only for strongly correlated European sovereign bonds but

also for non-European safe haven bonds. Even sovereign bond yields for non-European safe

havens are, on average, correlated 50 percent more strongly with other sovereign bond yields

than non-safe havens. In principle, the �rst characteristic is stabilizing to the network, whereas

the second characteristic is destabilizing. A positive correlation between domestic banks and
10This difference is due both to stronger unweighted correlations and to higher weights (i.e. higher bank assets

relative to sovereign debt) in the GIIPS than in the Fragile Five.
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their sovereign (the �rst characteristic) dampens the impact of a foreign shock that, by itself,

would spill over into a spike in sovereign bond yields and a drop in bank equity prices. A

strong positive correlation with other sovereigns and banks, however (the second characteristic)

generates strong transmission of any shock that arrives in a safe haven. Fig. 5.6 shows the

different distributions of sovereign-sovereign, bank-bank and bank-sovereign correlations for

safe havens and non-safe havens.

5.7.1 Sovereign bond yield shock

To distill the unique role of safe havens, we need to construct a �no-safe havens� counterfactual

network that we can compare against our actual network. For our �no-safe havens� counterfac-

tual network, we replace all the safe havens’ correlations with average correlations of non-safe

haven countries (for bank-sovereign links alone, or in a separate experiment for sovereign-

sovereign, bank-bank, and bank-sovereign links) as if they were the average non-safe haven

country. Then we repeat the shock propagation exercises and compare with the results for the

actual network.

Figs 5.7 and 5.8 show the role of safe havens in the propagation of sovereign bond shocks

in the Fragile Five and the GIIPS. We measure the impact of a shock in a network without safe

havens (one in which all safe haven correlations have been replaced with non-safe haven average

correlations (continuous line)) against a baseline of the actual network of correlations. A line

below 1 indicates that shocks propagate more strongly in a network with safe havens than in one

without safe havens: the destabilizing effect of safe havens’ �rst characteristic predominates.

To distil separately the stabilizing effect of safe havens, we compare the same baseline of

actual correlations against another counterfactual (dotted line) in which only bank-sovereign

correlations of safe havens have been replaced with average non-safe haven correlations but all

sovereign-sovereign and bank-bank correlations remain actual correlations. A dotted line above

1 indicates that the bank-sovereign links of safe havens dampen the propagation of shocks. In

all our scenarios, shocks eventually propagate faster in networks with safe havens than without
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Figure 5.6: Distribution of bilateral correlations for safe havens and non-safe havens.

Between sovereigns Between banks Between sovereigns and banks

(a) Years 2000-2006

Between sovereigns Between banks Between sovereigns and banks

(b) Years 2007-2009

Between sovereigns Between banks Between sovereigns and banks

(c) Years 2010-2012

Between sovereigns Between banks Between sovereigns and banks

(d) Year 2013
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Figure 5.7: Average impact of Fragile Five sovereign bond shock without safe havens (in multi-
ples of average impact of Fragile File bond market shock in the actual network of correlations).

(a) Fragile Five sovereign bond shock in 2010-12

(b) Fragile Five sovereign bond shock in 2013

Note: The upper limit of the band indicates the impact when only bank-sovereign correlations are replaced for safe
havens by sample averages; the lower limit indicates the impact when all correlations for safe havens are replaced
by sample averages.
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Figure 5.8: Average impact of GIIPS sovereign bond shock without safe havens (in multiples
of average impact of GIIPS market shock in the actual network of correlations).

(a) GIIPS sovereign bond shock in 2010-12

(b) GIIPS sovereign bond shock in 2013

Note: The upper limit of the band indicates the impact when only bank-sovereign correlations are replaced for safe
havens by sample averages; the lower limit indicates the impact when all correlations for safe havens are replaced
by sample averages.
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safe havens (the continuous lines are eventually below 1). Not surprisingly, the larger group of

safe havens in 2010-12 than in 2013 results in stronger effects in 2010-12 than in 2013.

The stabilizing effects of safe havens take time to gather momentum after a sovereign bond

shock. A sovereign bond shock spreads rapidly and strongly across the highly interconnected

sovereign bond network. In contrast, the stabilizing bank-sovereign effect in safe havens only

operates once a shock hits either a safe haven banking system or a safe haven sovereign.

The stabilizing effect of safe havens depends on the origin of the shock. For example,

in 2010-12, the stabilizing effect emerged more strongly and faster if the shock originated in

the GIIPS than in the Fragile Five. Because GIIPS sovereign bond yields were on average one-

third more strongly correlated with safe haven sovereign bond yields than Fragile Five sovereign

bond yields, a sovereign shock originating in the GIIPS reached safe havens more strongly. This

also triggered stronger stabilizing bank-sovereign links in safe havens.

5.7.2 Bank equity price shock

In Fig. 5.9, we conduct the same experiment for a bank equity shock in the Fragile Five coun-

tries. Again, a continuous line below 1 indicates that the presence of safe havens ampli�es the

propagation of shocks. The stabilizing effect of safe havens is too small to be noticeable in the

chart because the origin of the shock (the Fragile Five) is weakly correlated with safe haven

banks or sovereigns. However, as the shock reaches into the sovereign bond yield network, it is

strongly ampli�ed by the presence of safe havens.

In 2013, bank-bank correlations between Fragile Five banks and safe havens, on average,

doubled compared with 2010-12 whereas sovereign-sovereign correlation between Fragile Five

and safe havens halved. As a result, the stabilizing effects of safe havens were triggered more

strongly in the initial phases of shock propagation but were later superseded by the destabilizing

effects.
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Figure 5.9: Average impact of Fragile Five bank equity shock on bank equity prices without
safe havens (in multiples of average impact of Fragile File bank equity shock on bank equity
prices in the actual network of correlations).

(a) Fragile Five bank equity shock in 2010-12

(b) Fragile Five bank equity shock in 2013

The upper limit of the band indicates the impact when only bank-sovereign correlations are replaced for safe
havens by sample averages; the lower limit indicates the impact when all correlations for safe havens are replaced
by sample averages.
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5.8 Conclusions and issues for further research

Our results thus far highlight a few stylized facts. We show how competing features of safe

havens (highly interconnected sovereign bond yields versus stabilizing bank-sovereign links)

combine to accelerate shock propagation in global bond and bank equity prices. We also show

how feedback loops amplify especially shocks in the highly interconnected sovereign bond

yield network. We speculate that these feedback loops may have been short-circuited by policy

measures to contain contagion from GIIPS sovereign bond stress during the euro area crisis of

2010-12.

Our results raise some intriguing follow-on questions for further research. Firstly, the role of

safe havens probably changes depending on their �neighborhood� in the network. Safe havens

in deeply interconnected Europe may well play a different role than safe havens in Asia. Sec-

ondly, although we speculate in some instances about policies, their role is not directly ad-

dressed in this chapter. It is likely that announced policies altered the shape of the correlation

network and drastically change shock propagation.
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Appendix 5.A Network graphs

Figure 5.A.1: Sovereign interconnectedness.

(a) Years 2000-2006

(b) Years 2007-2009

(c) Years 2010-2012
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Figure 5.A.2: Bank interconnectedness.

(a) Years 2000-2006

(b) Years 2007-2009

(c) Years 2010-2012
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Figure 5.A.3: Sovereign-bank correlations in Emerging Asia.

(a) Years 2000-2006

(b) Years 2007-2009

(c) Years 2010-2012
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Figure 5.A.4: Sovereign-bank correlations in Emerging Europe.

(a) Years 2000-2006

(b) Years 2007-2009

(c) Years 2010-2012
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Figure 5.A.5: Sovereign-bank correlations in GIIPS and Cyprus.

(a) Years 2000-2006

(b) Years 2007-2009

(c) Years 2010-2012
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Appendix 5.B Shock propagation mechanism

For illustration purposes, imagine a very simple network structure, consisting of 4 nodes con-

nected by links of weights -0.25 and 0.25 in the following way

Figure 5.B.6: System setup.

0

A

0

B

0

C

0

D

-0.25

0.25 0.25 0.25 0.25

-0.25

Before the shock, none of the nodes is affected so that all of them are 0. Imagine now, that

in step 1 node A is hit by a shock of magnitude one.

Figure 5.B.7: Shock in node A.
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0
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0

D
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0.25 0.25 0.25 0.25

-0.25

The node is now a source of the shock to the adjacent nodes B and C, propagating 25% of

its initial magnitude with an appropriate sign.
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Figure 5.B.8: Shock propagation (step 1).
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0.25 0.25 0.25 0.25
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In the second step, there are three sources of the shock, i.e. nodes A, B and C each, prop-

agating 25% of the initial shock accumulated. Node A would therefore propagate 0.25 to the

adjacent nodes B and C again. Node B would which would propagate 0.0625 to adjacent node

D, and node C would propagate 0.0625 to node A. At the end of the second step, the network

looks the following:

Figure 5.B.9: Shock propagation (step 2).
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The process repeats itself for 10 steps. In each of them we calculate the cumulative shock

in each of the nodes.
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Chapter 6

Summary

In this thesis we aim at exploring the captivating and highly nonlinear pro�le of the modern

world and assess its relevance in monetary policy conduct and macroprudential supervision. In

particular, we focus on three different aspects of possible nonlinearities, i.e. as arising from (i)

heterogeneous and boundedly rational expectations, (ii) probability distribution irregularities

and (iii) complex network structures in the globalized economy.

We propose formal practical tools for central bankers and �nancial authorities to assess

nonlinear structures among various institutions and system as a whole. In times of very non-

standard policy actions, these tools might prove to be of great importance as they may reveal

existing nonlinear relations and dependencies which standard econometric models cannot cap-

ture.

Highlighting the detailed outcomes from individual chapters, in Chapter 2 we investigate the

possible irregularities arising from the presence of boundedly rational agents in the economy.

We show that, in the setting with an active banking sector and extrapolative heuristics, the range

of determinate policy instruments is narrowed. In fact this might have signi�cant consequences

for the real world. Pfajfar and Zakelj (2011) suggest that the fraction of extrapolative agents

might be as high as 30%, which is even larger than in our setting. Given the fact that the

estimated Taylor rule parameters vary usually in the region of (0,1) for the output gap weight

and of (1,2) for the in�ation weight (Taylor, 1999; Woodford, 2003), this may suggest that the
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system is very close to indeterminacy, if not indeterminate already, which is the consequence of

�nancial intermediation. This, in fact, is an interesting topic for further detailed investigation.

Chapters 3 and 4 propose formal methodologies to assess the in�uence of nonlinear causal

structures in time series. We correct for these nonlinearities by assuming no underlying param-

eter structure but we test for the equivalence in conditional probability distribution instead. A

clear advantage of such an approach lies in its generality. Chapter 3 reveals the intriguing re-

lationships in the US grain market. Besides highlighting the role of nonlinearities, we discover

a dual role of weather forecasts. Firstly, they seem to drive the causal relation from wheat to

corn in the pairwise setting as they serve as a common factor, i.e. they affect both variables at

the same time. Secondly, they are masking the causal relations from corn to beans and from

beans to wheat in the system setting. Correcting for the common factor, we reveal the nonlinear

Granger casual relations in the US grain market, suggesting that the causality runs from bigger,

i.e. deeper and more liquid, to smaller markets. Chapter 4 tests the co-risk relations in the euro

area �nancial sector. The results suggest that (i) only a few �nancial institutions pose a serious

ex ante threat to the systemic risk, whereas, given that the system is already in trouble, there are

more institutions which hamper its recovery and (ii) there are intriguing nonlinear structures in

the euro zone systemic risk pro�le.

Chapter 5 treats nonlinearities from a network’s perspective. Interestingly, our model high-

lights a few stylized facts observed over the past decade. We show how competing features

of safe havens (highly interconnected sovereign bond yields versus stabilizing bank-sovereign

links) combine to accelerate shock propagation in global bond and bank equity prices. We also

show how feedback loops amplify shocks in the highly interconnected sovereign bond yield net-

work. We speculate that these feedback loops may have been short-circuited by policy measures

to contain contagion from GIIPS sovereign bond stress during the euro area crisis of 2010-12,

supporting the actions of the European Commission, ECB and IMF.
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A view to the future

The general conclusion arising from this thesis underpins the relevance of the nonlinear dynam-

ics in economics and econometrics. The complexity of the real world has proven to play an

important role in economic constructions since the very �rst models. As pointed out by Blin-

der (2013), this complexity has increased substantially, being one of the core reasons for the

�nancial malaise during the crisis in the years 2007-2009. Therefore, even though the role of a

model is to simplify the real world, it can cause severe consequences if it simpli�es the reality

by too much.

This thesis provides the tools and general directions on how to incorporate more complex

structures into the existing economic methodologies. One should never claim that the ideas

contained on these pages are ultimate as they arose as an answer to the recent �nancial crisis.

With the technological advance and rapidly changing global environment, it is just a matter of

time that these tools would not be enough. The same as the telescopes evolved satisfying the

constantly rising curiosity about the mysteries of the deep universe, the methodologies describ-

ing complex and highly nonlinear economic structures should change in line with the advances

in their �elds.

Even though it is not possible to predict the stance of economic modeling in ten years from

now, heterogeneous agents and network models constitute a very promising direction. With the

support from behavioral economics and natural sciences, they create a natural horizon for future

study of the main questions raised in this thesis.

The common conclusion, arising probably not only from this, but from many theses around

the world, is to ask the right questions. This ultimately drives a researcher towards right an-

swers, and right answers are likely to improve the world. But when a right questions is asked,

a researcher can apply the question-speci�c methodology and work therefore more ef�ciently.

This thesis advertises nonparametric statistics and econometrics, proposing novel approaches

of assessing the role of nonlinear dynamics in the �nancial world. Although designed through

a prism of a policy maker, the advances of these pages can be viewed as question-speci�c
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methodologies so that to a large extent they rely on the ability to ask right questions.

The beginning of modern monetary policy, advertised in the Introduction, signalled the

importance of macroprudential supervision and regulation. Hopefully, it will also encourage

economists to look outside the box and to ask the right questions. For such researchers, the

ideas contained in this thesis offer a powerful set of tools on how to capture the complexity

around us.
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Samenvatting (Summary in Dutch)

In dit proefschrift willen we het boeiende en sterk niet-lineaire pro�el van de moderne �-

nanci¤ele wereld en zijn relevantie in het voeren van monetair beleid en macro-prudentieel

toezicht verkennen. In het bijzonder richten we ons op drie verschillende aspecten van mogelij-

ke niet-lineariteiten, te weten degenen die voortvloeien uit (i) heterogene en begrensd rationele

(boundedly rational) verwachtingen, (ii) kansverdeling onregelmatigheden en (iii) complexe

netwerkstructuren in de geglobaliseerde economie.

We opperen formele praktische instrumenten voor centrale bankiers en �nanci¤ele autoriteiten

ter beoordeling van niet-lineaire structuren tussen verschillende instellingen en het systeem als

geheel. In tijden van zeer niet-standaard beleidsmaatregelen, kunnen deze instrumenten van

groot belang blijken te zijn, aangezien zij aanwezige niet-lineaire relaties en afhankelijkheden

kunnen laten zien die standaard econometrische modellen niet kunnen vatten.

Aandacht gevend aan de gedetailleerde resultaten van afzonderlijke hoofdstukken, onder-

zoeken we in Hoofdstuk 2 de mogelijke onregelmatigheden die voortvloeien uit de aanwezigheid

van begrensd rationele agenten in de economie. We laten zien dat, in een omgeving met een

actieve bankensector en extrapolerende agenten, het bereik van gedetermineerde beleidsinstru-

menten wordt versmald. In feite kan dit aanzienlijke gevolgen voor de re¤ele wereld hebben.

Pfajfar en Zakelj (2011) suggereren dat de fractie van extrapolerende agenten zo groot als 30%

kan zijn, zelfs groter dan in ons model. Gezien het feit dat de geschatte Taylor-regel parameters

meestal in het interval (0; 1) vari¤eren voor het output-gap gewicht en (1; 2) voor het in�atie-

gewicht (Taylor, 1999; Woodford, 2003), kan dit erop wijzen dat het systeem zich zeer dicht bij
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onbepaaldheid bevindt, zo niet onbepaald is, ten gevolge van van �nanci¤ele bemiddeling. Dit is

een interessant onderwerp voor verder gedetailleerd onderzoek.

Hoofdstukken 3 en 4 introduceren formele methoden ter beoordeling van de invloed van

niet-lineaire structuren in de tijdreeksanalyse. We corrigeren voor deze niet-lineariteiten door

aan te nemen dat er geen onderliggende parameter-structuur is, maar we toetsen in plaats daar-

van de gelijkwaardigheid in voorwaardelijke kansverdeling. Een duidelijk voordeel van een

dergelijke aanpak ligt in zijn algemeenheid en intu¤�tieve gevolgtrekking. Hoofdstuk 3 toont de

intrigerende relaties in de Amerikaanse graanmarkt aan. Naast het aantonen van de rol van niet-

lineariteiten, ontdekken we een dubbele rol van weersvoorspellingen. Ten eerste lijken zij in de

paarsgewijze toets de causale relatie van tarwe tot ma¤�s te veroorzaken, waarin ze een gemeen-

schappelijke factor vormen. Ten tweede maskeren zij de causale relaties tussen ma¤�s en bonen

en tussen bonen en tarwe in de multivariate context. Corrigerend voor de gemeenschappelijke

factor, onthullen we de niet-lineaire Granger causaliteitsrelaties in de Amerikaanse graanmarkt,

die suggereert dat de causaliteit loopt van grotere, namelijk diepere en meer liquide, tot kleinere

markten. Hoofdstuk 4 toetst de co-risico relaties in de �nanci¤ele sector binnen het eurogebied.

De resultaten suggereren dat (i) slechts een paar �nanci¤ele instellingen een ernstige ex ante

bedreiging voor de systeemrisico’s vormt, terwijl, aannemende dat het systeem al in de proble-

men is, er meer instellingen zijn die het herstel belemmeren en (ii) er intrigerende niet-lineaire

structuren zijn in het risicopro�el van de eurozone.

Hoofdstuk 5 behandelt niet-lineariteiten vanuit het oogpunt van een netwerk. Interessant

is dat ons model wijst op een aantal gestileerde feiten die gedurende de afgelopen tien jaar

waargenomen zijn. We tonen aan hoe concurrerende kenmerken van veilige havens (sterk met

elkaar verbonden rente op staatsobligaties tegenover stabiliserende banksoevereine koppeling-

en) combineren om schokvoortplanting in wereldwijde obligatie- en bank aandelenkoersen te

versnellen. We laten ook zien hoe feedback loops schokken versterken in het sterk gekoppelde

netwerk van opbrengsten van overheidsobligaties. We speculeren dat deze feedback loops kort-

gesloten kunnen zijn geweest door middel van beleidsmaatregelen om besmetting van GIIPS
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staatsobligatie-stress tijdens de eurozone crisis van 2010-2012 te voorkomen, de acties van de

Europese Commissie, ECB en IMF ondersteunend.

Een blik op de toekomst

De algemene conclusie uit dit proefschrift ligt ten grondslag aan de relevantie van de niet-

lineaire dynamica in economie en �nanci¤en. De complexiteit van de echte wereld heeft een be-

langrijke rol gespeeld in economische constructies sinds de allereerste modellen. Zoals Blinder

(2013) opmerkt is deze complexiteit substantieel toegenomen, en is het een van de hoofdrede-

nen voor de �nanci¤ele malaise gedurende de crisis in de jaren 2007-2009. Hoewel de rol van

een model is om de werkelijkheid te vereenvoudigen, kunnen de gevolgen groot zijn als een

model de werkelijkheid te veel vereenvoudigt.

Dit proefschrift verschaft middelen en algemene suggesties om complexere structuren in

bestaande economische methodologie¤en te verwerken. We zullen echter niet beweren dat de

idee¤en uiteengezet op deze bladzijden het laatste woord zijn, omdat ze als een antwoord zijn

gekomen op de recente �nanci¤ele crisis. Met technologische vooruitgang en een snel veran-

derende globale omgeving is het slechts een kwestie van tijd eer deze hulpmiddelen tekort schie-

ten. Net zoals telescopen zijn ge¤evolueerd om aan de alsmaar toenemende nieuwsgierigheid

omtrent de mysteries van het diepe heelal tegemoet te komen, zullen de methodologie¤en die

complexe en sterk niet-lineaire economische structuren beschrijven zich moeten aanpassen aan

de vooruitgang binnen hun onderzoeksvelden.

Hoewel het onmogelijk is om de stand van zaken in economisch modelleren over tien jaar te

voorspellen, vormen heterogene-agentmodellen en netwerkmodellen een veelbelovende richt-

ing. Met hulp van gedragseconomie en de natuurwetenschappen cre¤eren zij een natuurlijke

horizon voor toekomstige bestudering van de hoofdvragen die in dit proefschrift zijn gesteld.

De gebruikelijk conclusie, die waarschijnlijk niet alleen uit dit proefschrift kan worden

getrokken, maar uit vele proefschriften wereldwijd, is dat de juiste vragen gesteld moeten wor-
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den, en dat de juiste vragen de wereld kunnen verbeteren. Pas als de juiste vraag gesteld is

kan een onderzoeker vraag-speci�eke methodologie toepassen en aldus ef�ci¤enter werken. Dit

proefschrift staat het gebruik van niet-parametrische statistiek en econometrie voor, en stelt ver-

schillende aanpakken voor het bepalen van de rol van niet-lineaire dynamica in de �nanci¤ele

wereld voor. Hoewel ontworpen vanuit de visie van een beleidsmaker, kunnen de vorderingen

die hier zijn beschreven worden gezien als vraag-speci�eke methodologie¤en, zodat zij in grote

mate steunen op het vermogen om de juiste vragen te stellen.

Het begin van modern monetair beleid, waarvan de relevantie is aangegeven in de Inleiding

(Introduction), gaf het belang aan van macro-prudenti¤eel toezicht en regulatie. Hopelijk zal

dit economen ook aanmoedigen om van de gebaande paden af te wijken en de juiste vragen te

stellen. Voor dergelijke onderzoekers bieden de idee¤en uit dit proefschrift een rijke verzameling

hulpmiddelen om de complexiteit om ons heen te vatten.
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