Adpositional Grammars
A multilingual grammar formalism for NLP

Figure 1: Publius Terentius Afer, Heauton Timorumenos, 77.
Typographical conventions

This dissertation is written in English and adopts the British spelling (however, Italians and Esperantophones can take advantage of the Appendix). The font is Palatino. Linguistic forms are printed in italics: *chess*. Unacceptable forms are marked by a star: *two chess player*. Uncertain forms are marked by a question mark: ?two chess actors. Meanings of linguistic forms, and glosses of non-English language forms, are given between single quotes: *scacchi* in Italian means *chess*, and it is a very important game in A.I. history. I consider English as a vacuum cleaner of lexic, so *foreign words* will never be in italics.

Inline citations are marked by double quotes. Example: Kasparov declared: "chess is mental torture". Longer citations are put in paragraphs with smaller characters:

> I have to play an opponent, a very powerful opponent, that studied all my games, that has a unique ability – the best on the planet – to collect all this information and analyze that, and I know nothing about him... I said ‘him’. ‘I meant “it”.’

Names of semantic categories and moduli are printed in small capitals: CHESS. Semantic features are printed in small capitals enclosed in square brackets: CHESS is [ANIMATE] and [OBJECT], according to context – i.e., the board is [+OBJECT], the game is [-OBJECT]. The implementations of moduli, i.e., the tags, are printed in sans serif: WordSeparator. Every other generic formal object is printed in typewriting: MuteSeparator.

Graphemes are enclosed in brace brackets ({}). There is no use of phonetic transcription, as it is out of the scope of this dissertation. Sentences in natural languages that do not use Latin alphabet are transliterated according to the most-used convention. For instance, Chinese Mandarin excerpts are romanised in Hanyu Pinyin, while Japanese ones in Hepburn.

Bold-face is used for the first appearance of technical terms, where they are explained. Analogously, the first appearance is referred in the Index in bold-face. Further typographical conventions, strictly linked with the content expressed through the dissertation, are explained within their appropriate context.

Notes

Contents

I Theory 19

1 Introduction 21

2 Adpositional trees 35
 2.1 Brondl's contribution to adpositional spaces 36
 2.2 The dichotomy trajector/landmark 38
 2.3 Applicational adpositions, applicative landmarks 38
 2.4 From applications to retroapplications 41
 2.5 Primary and secondary landmarks 44
 2.6 The structure of adtrees 45
 2.6.1 The meaning of the two diagonal axes 46
 2.7 Valence and circumstantial 48
 2.7.1 Valence and its acts 49
 2.7.2 Zerovalent and false monovalent verbs 49
 2.7.3 Monovalent verbs 51
 2.7.4 Bivalent verbs and their acts 52
 2.7.5 The convention for circumstantial 53
 2.7.6 Valence and diathesis transformation 54
 2.7.7 Valence and circumstantial in comparison 55
 2.7.8 Trivalent verbs 57
 2.8 The most complex phrasal adtree 59
 2.9 Some case studies of adtrees 59
 2.9.1 Prepositional bivalent lexemes. False adpositions 62
 2.9.2 To be or not to be? Static and verbless phrases 64
 2.9.3 Mirroring 67
 2.9.4 Representatives as mirrors. Overvalence 68

2 Phrasal adpositions or junctives 72
 2.10.1 Splitting 74
 2.10.2 Zero junctives 75
 2.10.3 Phrasal adpositions in different natural languages 79
 2.11 A cross-lingual example 79

II Application 135

4 The translation game 137
 4.1 The default machine translation scenario 138
 4.1.1 The problem of machine translation evaluation 139
 4.2 The translation game scenario 139
 4.2.1 A new evaluation test 141
 4.3 Esperanto as the entry language 142
 4.3.1 The quest for the international auxiliary language 142
 4.3.2 Esperanto and its evolution 143
 4.3.3 Esperanto and machine translation 146
 4.4 Critique of the translation game 149
 4.4.1 The chinese room argument 150
 4.4.2 The engineer's reaction 150
 4.4.3 The despanzist's argument 150
 4.4.4 The typologist's objection 151
 4.4.5 The human interface argument 151

3 Dictionary and lexicon 97
 3.1 Grammar character, moduli and signatures 99
 3.1.1 Moduli and signatures 100
 3.1.2 Equivalence, synonymy and homonymy 101
 3.1.3 The fundamental moduli 102
 3.2 Transference 104
 3.2.1 Suppletion and idiomatic expressions 106
 3.3 Actants and adtypes 107
 3.3.1 Verbal adtypes 107
 3.3.2 Circumstantial adtypes 110
 3.3.3 Static adtypes 110
 3.3.4 Adjunctive adtypes 112

2.11.3 Red vs. blue landmarks 84
2.11.4 The relation of possession 86
2.11.5 The diathesis transformation active-passive 88
Contents

5 The adpositional grammar of Esperanto 188
 5.1 The morphosyntax of Esperanto 157
 5.2 The Esperanto alphabet 159
 5.3 The adpositional space of Esperanto 160
 5.3.1 The fundamental moduli 160
 5.3.2 The quasi-symmetry of adjunction and stativation 161
 5.3.3 The basic form of a verb is stative 162
 5.3.4 Singular and plural 164
 5.3.5 The accusative 165
 5.3.6 The circumstantial 168
 5.3.7 Verification 168
 5.3.8 The prepositions 169
 5.3.9 Correlative 183
 5.3.10 Junctive 187
 5.4 Sentence delimiters 193
 5.5 The Esperanto lexicon 195
 5.5.1 Selection and redundancy 195
 5.5.2 Rules for compounding 196
 5.5.3 Esperanto lexemes 200
 5.5.4 Stative lexemes 202
 5.5.5 Verbal lexemes 202
 5.6 Affixes 203
 5.6.1 Generic prefixes 204
 5.6.2 Generic suffixes 204
 5.6.3 Verbal prefixes 206
 5.6.4 Verbal suffixes 206
 5.6.5 Special verbal suffixes 207
 5.6.6 Stative affixes 211
 5.7 Pronouns 215
 5.8 Determiners 216
 5.8.1 The invariable determiners 216
 5.8.2 The variable determiners 217
 5.8.3 Numerals 217
 5.9 A corpus-based example 220

III Implementation

6 The parsing of Esperanto 233
 6.1 The lambda subgroup 234
 6.1.1 Lambdaas and placeholders 235
 6.2 Fundamental groups 235
 6.2.1 Verbal groups 236

7 The formal model 255
 7.1 The virtual machine 256
 7.2 The lexical analyser 257
 7.2.1 Step 1: String to list of words 257
 7.2.2 Step 2: Alternative interpretation of words 258
 7.2.3 Step 3: Eliminating mute separators 259
 7.2.4 Step 4: words to tokens 261
 7.3 The parsing formalism 261
 7.4 Recognising syntactical objects 266
 7.4.1 The λ predicate 266
 7.4.2 I-predicates 268
 7.4.3 O-predicates 269
 7.4.4 A-predicates 274
 7.4.5 E-predicates 276
 7.4.6 The phrase predicates 277
 7.4.7 The sentence predicates 279
 7.4.8 The text predicates 279
 7.5 Parsing rules 280
 7.5.1 Structural rules 280
 7.5.2 The parsing of λ-subgroups 281
 7.5.3 The I-group 284
 7.5.4 The O-group 285
 7.5.5 The A-group 304
 7.5.6 The E-group 314
 7.5.7 The phrase group 322
 7.5.8 The subject-object-dative group 326
 7.5.9 The sentence group 327
 7.6 The text group 329

8 A machine translation example 335
 8.1 The system architecture 335
 8.2 A translation game example 336
 8.3 Beyond the translation game 339

9 Conclusions 343
<table>
<thead>
<tr>
<th>Contents</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV Appendix</td>
<td>347</td>
</tr>
</tbody>
</table>

9

10
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.245</td>
<td>The adtree of Di mio (vecchio amico) (vecchio) (37,38).</td>
<td>69</td>
</tr>
<tr>
<td>1.246</td>
<td>The adtree of (qui)en domani piero (39).</td>
<td>69</td>
</tr>
<tr>
<td>1.247</td>
<td>The adtree of qualcosa che piove (41a) and sansi sono (41b).</td>
<td>70</td>
</tr>
<tr>
<td>1.248</td>
<td>The adtree of qualcosa che piove sono sansi (41ab).</td>
<td>71</td>
</tr>
<tr>
<td>1.249</td>
<td>The adtree of pierono sansi (41).</td>
<td>71</td>
</tr>
<tr>
<td>1.250</td>
<td>The adtree of it’s raining and cats and dogs (41ab).</td>
<td>72</td>
</tr>
<tr>
<td>1.251</td>
<td>The adtree of it’s raining cats and dogs (41).</td>
<td>72</td>
</tr>
<tr>
<td>1.252</td>
<td>The English and Italian adtrees of Al knows that book (42a).</td>
<td>73</td>
</tr>
<tr>
<td>1.253</td>
<td>The adtree of Al knows that Carl is studying (42b).</td>
<td>73</td>
</tr>
<tr>
<td>1.254</td>
<td>The adtree of Al and Carl study in the library (42c).</td>
<td>75</td>
</tr>
<tr>
<td>1.255</td>
<td>The adtree of Al studies in the library ... (42d).</td>
<td>76</td>
</tr>
<tr>
<td>1.256</td>
<td>The adtree of Al studies ... and is sad (42e).</td>
<td>76</td>
</tr>
<tr>
<td>1.257</td>
<td>The adtree of and Carl is studying (44).</td>
<td>77</td>
</tr>
<tr>
<td>1.258</td>
<td>The adpositional tree of Si scateno un fiammifero (45).</td>
<td>78</td>
</tr>
<tr>
<td>1.259</td>
<td>The English and Italian adtrees of The library where I don’t work (46)</td>
<td>80</td>
</tr>
<tr>
<td>1.260</td>
<td>The Chinese and Japanese adtrees of in the book ... (46).</td>
<td>81</td>
</tr>
<tr>
<td>1.261</td>
<td>The Patient as tr with a red lm and a blue lm (example 47).</td>
<td>82</td>
</tr>
<tr>
<td>1.262</td>
<td>The English and Italian adtrees of The book is in... (47).</td>
<td>83</td>
</tr>
<tr>
<td>1.263</td>
<td>The adtree of Kitap adamım elindir (47).</td>
<td>84</td>
</tr>
<tr>
<td>1.264</td>
<td>The Patient as the tr and two red landmarks (48).</td>
<td>84</td>
</tr>
<tr>
<td>1.265</td>
<td>The adtree of Un libro è in mano a un uomo (48).</td>
<td>85</td>
</tr>
<tr>
<td>1.266</td>
<td>The Agent is a t and while the Patient is a blue landmark (49).</td>
<td>85</td>
</tr>
<tr>
<td>1.267</td>
<td>The English and Italian adtrees of A man is with a man (49).</td>
<td>86</td>
</tr>
<tr>
<td>1.268</td>
<td>The adtree of O kitap adamdır (49).</td>
<td>87</td>
</tr>
<tr>
<td>1.269</td>
<td>The Patient as tr with a blue retroaplicative lm.</td>
<td>87</td>
</tr>
<tr>
<td>1.270</td>
<td>The adtree of The man’s book (50).</td>
<td>87</td>
</tr>
<tr>
<td>1.271</td>
<td>The adtree of Il libro di quell’uomo (50).</td>
<td>88</td>
</tr>
<tr>
<td>1.272</td>
<td>The adtree of Adam kimyası kim (50).</td>
<td>88</td>
</tr>
<tr>
<td>1.273</td>
<td>The adtree of Adam kitap okuyor (51).</td>
<td>89</td>
</tr>
<tr>
<td>1.274</td>
<td>The English and Italian adtrees of The book is read by... (52).</td>
<td>91</td>
</tr>
<tr>
<td>1.275</td>
<td>The adtree of Adam kitap okuyor (52).</td>
<td>92</td>
</tr>
<tr>
<td>1.276</td>
<td>Some adtrees of Liza, walk and calm (55b).</td>
<td>108</td>
</tr>
<tr>
<td>1.277</td>
<td>The adtree of Carlo è arrivato / E arrivato Carlo (56ab).</td>
<td>110</td>
</tr>
<tr>
<td>1.278</td>
<td>The adtree of He conducts muggly (57).</td>
<td>110</td>
</tr>
<tr>
<td>1.279</td>
<td>The adtree of Reading is enjoyable (58).</td>
<td>111</td>
</tr>
<tr>
<td>1.280</td>
<td>The adtree of This book is mine (59).</td>
<td>112</td>
</tr>
<tr>
<td>1.281</td>
<td>Predicative (left) and attributive (right) uses of adjectives (60ab).</td>
<td>113</td>
</tr>
<tr>
<td>1.282</td>
<td>The adtree of Paolo ha trovato il telefono rotto (63ab).</td>
<td>114</td>
</tr>
<tr>
<td>1.283</td>
<td>The adtree of Liza speaks informally (62).</td>
<td>119</td>
</tr>
<tr>
<td>1.284</td>
<td>The adtree of Quite so! (65).</td>
<td>125</td>
</tr>
</tbody>
</table>

List of Figures

1. Publius Terentius Afer, *Hauton Timorumenos*, 77, 2

1.2 Bronadal’s prepositional space of English (elaboration) 37
1.3 The between relation (10, left) and the V O (11, right) 38
1.4 A provisional applicative adpositional space of English 40
1.5 The structure of adpositional spaces 42
1.6 The with relation in example 12 (left) and 13 (right) 43
1.7 Two give conceptual spaces: example 14 (left) and 15 (right) . 45
1.8 The meaning of colours and arrows in adspaces 46
1.9 The abstract minimal adtree types 47
1.10 The minimal anonymous adtree 47
1.11 The relation between adtrees and Cecatto’s translation system 47
1.12 The abstract adtree of zerovalent verbs 49
1.13 The adtree of *(16-t) piove* . 50
1.14 The adtree of *(16-en) it rains* 51
1.15 The abstract adtree of monovalent verbs 51
1.16 The dynamic adtree of *Somebody rang at the phone* *(22)*. 53
1.17 The adtree of *Liza was called at the phone* *(23)* 55
1.18 The adtree of *Somebody called *(me)* at the phone* *(24,25)* . 56
1.19 The adtree of *Somebody called me with the phone* *(26)* . . . 57
1.20 The adtree of *Somebody called me at the phone* with... *(27)* . 58
1.21 The abstract adtree of trivalent verbs 58
1.22 The adtrees of the transformation lead by to give *(28)* 60
1.23 The most complex abstract phrasal adtree 61
1.24 The English and Italian adtrees of *Liza fell [...] knees* *(29)* 62
1.25 The English and Italian adtrees of *Liza is ill [...] today* *(30)* . 63
1.26 The English and Italian adtrees of *Carl falls [...] cover* *(31)* . 64
1.27 The English and Italian adtrees of *Carl smokes in [...] cover* *(32)* . 65
1.28 The adtree of *Liza is blonde* *(33)* 66
1.29 The adtree of *The sky above us* *(34)* 66
1.30 The adtree of the Chinese sentence *(štšt hên gui)* *(35)* . . . 67
1.31 The adtree of the Italian sentence *(Quello alto)* *(36)* 68
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10</td>
<td>The adtree of The bookmaker paid out the winning (67)</td>
<td>128</td>
</tr>
<tr>
<td>4.1</td>
<td>The life of a planned language [Gobbo, 2008a, 28]</td>
<td>143</td>
</tr>
<tr>
<td>5.1</td>
<td>The adtree of Liza parolas neformale (62)</td>
<td>160</td>
</tr>
<tr>
<td>5.2</td>
<td>The adtrees of Mi šatas danci and the like (70)</td>
<td>163</td>
</tr>
<tr>
<td>5.3</td>
<td>The adtree of Juna knabo promenas rapide (71b)</td>
<td>164</td>
</tr>
<tr>
<td>5.4</td>
<td>Predicative and attributive adjuncts in Esperanto (61ab)</td>
<td>166</td>
</tr>
<tr>
<td>5.5</td>
<td>Prepositions and their governors (example)</td>
<td>170</td>
</tr>
<tr>
<td>5.6</td>
<td>The theoretical abstract adtree of C-correlatives</td>
<td>187</td>
</tr>
<tr>
<td>5.7</td>
<td>The reasonable abstract adtree of C-correlatives</td>
<td>187</td>
</tr>
<tr>
<td>5.8</td>
<td>C-correlatives in action (example 32af)</td>
<td>188</td>
</tr>
<tr>
<td>5.9</td>
<td>The abstract adtree of D-correlatives</td>
<td>189</td>
</tr>
<tr>
<td>5.10</td>
<td>Determiner correlatives in action</td>
<td>189</td>
</tr>
<tr>
<td>5.11</td>
<td>How to build adtrees with phrasal adpositions (example)</td>
<td>190</td>
</tr>
<tr>
<td>5.12</td>
<td>The adtrees of Pavlo (ne) scias... (129-130)</td>
<td>191</td>
</tr>
<tr>
<td>5.13</td>
<td>Esperanto question clauses (example 32)</td>
<td>192</td>
</tr>
<tr>
<td>5.14</td>
<td>The adtree of Kaj Liza kaj Paulo legas libro (128)</td>
<td>193</td>
</tr>
<tr>
<td>5.15</td>
<td>The adtree of a short text (example 128a, unexploded)</td>
<td>194</td>
</tr>
<tr>
<td>5.16</td>
<td>Adpositional trees of the word raportilo</td>
<td>200</td>
</tr>
<tr>
<td>5.17</td>
<td>Determiners of numerals in Esperanto and in English</td>
<td>221</td>
</tr>
<tr>
<td>5.18</td>
<td>Determiners of numerals in Italian and Polish</td>
<td>222</td>
</tr>
<tr>
<td>5.19</td>
<td>Determiners of numerals in Japanese and Croatian</td>
<td>223</td>
</tr>
<tr>
<td>5.20</td>
<td>The adtree of Sekvo el... (145, main phrase)</td>
<td>225</td>
</tr>
<tr>
<td>5.21</td>
<td>The adtree of Sekvo el... (145, clauses)</td>
<td>226</td>
</tr>
<tr>
<td>6.1</td>
<td>The adtree of static determined invariable groups (ex. 145)</td>
<td>243</td>
</tr>
<tr>
<td>6.2</td>
<td>The abstract adtree of O-groups</td>
<td>244</td>
</tr>
<tr>
<td>6.3</td>
<td>The useless adtree of kvarent tridekope</td>
<td>247</td>
</tr>
<tr>
<td>6.4</td>
<td>The reasonable adtree of kvarent tridekope</td>
<td>247</td>
</tr>
<tr>
<td>6.5</td>
<td>The adjective group foje bongustaj</td>
<td>248</td>
</tr>
<tr>
<td>7.1</td>
<td>Separating the input string in words</td>
<td>259</td>
</tr>
<tr>
<td>7.2</td>
<td>Composing words</td>
<td>260</td>
</tr>
<tr>
<td>7.3</td>
<td>Removing mute separators</td>
<td>261</td>
</tr>
<tr>
<td>7.4</td>
<td>Transforming words into tokens</td>
<td>262</td>
</tr>
<tr>
<td>8.1</td>
<td>The machine translation of The Lord of the Rings (specimen)</td>
<td>336</td>
</tr>
<tr>
<td>8.2</td>
<td>The MT sentence in Esperanto (example 46)</td>
<td>337</td>
</tr>
<tr>
<td>8.3</td>
<td>The MT sentence in English (example 46)</td>
<td>337</td>
</tr>
<tr>
<td>8.4</td>
<td>Metataxis: from Esperanto to “Chinese-anto” (example 46)</td>
<td>338</td>
</tr>
<tr>
<td>8.5</td>
<td>The MT sentence in Chinese (example 46)</td>
<td>339</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Macro-levels of analysis in adgrams (specimen)</td>
<td>29</td>
</tr>
<tr>
<td>2.1</td>
<td>Pragmatic analysis of the cross-lingual example</td>
<td>81</td>
</tr>
<tr>
<td>3.1</td>
<td>Encyclopaedia and dictionary in comparison</td>
<td>98</td>
</tr>
<tr>
<td>3.2</td>
<td>Two stativation and verbification signatures in Hebrew</td>
<td>100</td>
</tr>
<tr>
<td>3.3</td>
<td>English homophones of *s</td>
<td>102</td>
</tr>
<tr>
<td>3.4</td>
<td>The fundamental moduli</td>
<td>103</td>
</tr>
<tr>
<td>3.5</td>
<td>Tensénière levels of analysis and adgrams in comparison</td>
<td>104</td>
</tr>
<tr>
<td>3.6</td>
<td>How transference works for λ-lexemes in different NLs</td>
<td>105</td>
</tr>
<tr>
<td>3.7</td>
<td>An example of suppletive transference</td>
<td>106</td>
</tr>
<tr>
<td>3.8</td>
<td>Specimen of the transference λ:E in English and Italian</td>
<td>109</td>
</tr>
<tr>
<td>3.9</td>
<td>The correspondence between actants and adtypes</td>
<td>116</td>
</tr>
<tr>
<td>3.10</td>
<td>The morphemic classes in the dictionary</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>Homophones and equivalents of the English morpheme in</td>
<td>117</td>
</tr>
<tr>
<td>3.12</td>
<td>inform in the English adpositional grammar dictionary</td>
<td>120</td>
</tr>
<tr>
<td>3.13</td>
<td>magnify in the English adpositional grammar dictionary</td>
<td>121</td>
</tr>
<tr>
<td>3.14</td>
<td>sink in the English adpositional grammar dictionary</td>
<td>122</td>
</tr>
<tr>
<td>3.15</td>
<td>fall in the English adpositional grammar dictionary</td>
<td>123</td>
</tr>
<tr>
<td>3.16</td>
<td>fall in with in the English adpositional grammar dictionary</td>
<td>123</td>
</tr>
<tr>
<td>3.17</td>
<td>give in the English adpositional grammar dictionary</td>
<td>124</td>
</tr>
<tr>
<td>3.18</td>
<td>quote in the English adpositional grammar dictionary</td>
<td>125</td>
</tr>
<tr>
<td>3.19</td>
<td>often in the English adpositional grammar dictionary</td>
<td>126</td>
</tr>
<tr>
<td>3.20</td>
<td>forward in the English adpositional grammar dictionary</td>
<td>126</td>
</tr>
<tr>
<td>3.21</td>
<td>elephant in the English adpositional grammar dictionary</td>
<td>127</td>
</tr>
<tr>
<td>3.22</td>
<td>day in the English adpositional grammar dictionary</td>
<td>127</td>
</tr>
<tr>
<td>3.23</td>
<td>book in the English adpositional grammar dictionary</td>
<td>127</td>
</tr>
<tr>
<td>3.24</td>
<td>nice in the English adpositional grammar dictionary</td>
<td>129</td>
</tr>
<tr>
<td>3.25</td>
<td>blue in the English adpositional grammar dictionary</td>
<td>130</td>
</tr>
<tr>
<td>4.1</td>
<td>The official dictionary [Akademio de Esperanto, elaboration]</td>
<td>145</td>
</tr>
<tr>
<td>4.2</td>
<td>Size of selected Esperanto dictionaries [Fiedler, 2006]</td>
<td>146</td>
</tr>
<tr>
<td>5.1</td>
<td>General morphological classes</td>
<td>158</td>
</tr>
<tr>
<td>5.2</td>
<td>The special lexemes: transferers and transferees</td>
<td>158</td>
</tr>
<tr>
<td>5.3</td>
<td>The Esperanto alphabet</td>
<td>158</td>
</tr>
<tr>
<td>5.4</td>
<td>Signatures of the fundamental moduli</td>
<td>161</td>
</tr>
<tr>
<td>5.5</td>
<td>Symmetry of the proper adjective and stative signatures</td>
<td>162</td>
</tr>
<tr>
<td>5.6</td>
<td>Number and gender in the infinitive signature</td>
<td>163</td>
</tr>
<tr>
<td>5.7</td>
<td>Causal finalis in Esperanto</td>
<td>168</td>
</tr>
<tr>
<td>5.8</td>
<td>Verbal finals in Esperanto</td>
<td>169</td>
</tr>
<tr>
<td>5.9</td>
<td>The Esperanto preposition de and its class</td>
<td>171</td>
</tr>
<tr>
<td>5.10</td>
<td>The Esperanto punctual prepositions al and je</td>
<td>174</td>
</tr>
<tr>
<td>5.11</td>
<td>The Esperanto space and time prepositions</td>
<td>176</td>
</tr>
<tr>
<td>5.12</td>
<td>The Esperanto non spatial at prepositions</td>
<td>180</td>
</tr>
<tr>
<td>5.13</td>
<td>Other prepositions</td>
<td>181</td>
</tr>
<tr>
<td>5.14</td>
<td>The structure of correlatives [Szerdahelyi, 1989, extract]</td>
<td>183</td>
</tr>
<tr>
<td>5.15</td>
<td>Adjective correlatives (e-corr-group)</td>
<td>185</td>
</tr>
<tr>
<td>5.16</td>
<td>Causal correlatives (e-corr-group)</td>
<td>185</td>
</tr>
<tr>
<td>5.17</td>
<td>The five levels of analysis in Esperanto</td>
<td>194</td>
</tr>
<tr>
<td>5.18</td>
<td>The grammar character and the affixes (specimen)</td>
<td>197</td>
</tr>
<tr>
<td>5.19</td>
<td>The grammar character and the special affixes (specimen)</td>
<td>197</td>
</tr>
<tr>
<td>5.20</td>
<td>The rule of stative compounding (O-compound)</td>
<td>198</td>
</tr>
<tr>
<td>5.21</td>
<td>The rule of adjunctive compounding (λ-compound)</td>
<td>198</td>
</tr>
<tr>
<td>5.22</td>
<td>The rule of verbal compounding (I-compound)</td>
<td>199</td>
</tr>
<tr>
<td>5.23</td>
<td>The Esperanto adposition spec-atom (specimen)</td>
<td>199</td>
</tr>
<tr>
<td>5.24</td>
<td>Esperanto adverbs and transference (specimen)</td>
<td>201</td>
</tr>
<tr>
<td>5.25</td>
<td>The generic prefixes (λ-prefix class)</td>
<td>204</td>
</tr>
<tr>
<td>5.26</td>
<td>The generic suffixes (λ-suffix class)</td>
<td>205</td>
</tr>
<tr>
<td>5.27</td>
<td>The verbal prefixes (i-prefix class)</td>
<td>206</td>
</tr>
<tr>
<td>5.28</td>
<td>The verbal suffixes (i-suffix class)</td>
<td>206</td>
</tr>
<tr>
<td>5.29</td>
<td>The valence suffixes (I-valence-suffix class)</td>
<td>207</td>
</tr>
<tr>
<td>5.30</td>
<td>The structure of Esperanto participles</td>
<td>209</td>
</tr>
<tr>
<td>5.31</td>
<td>Esperanto circumstantial participles</td>
<td>209</td>
</tr>
<tr>
<td>5.32</td>
<td>Esperanto stative participles</td>
<td>210</td>
</tr>
<tr>
<td>5.33</td>
<td>Gender and endearment affixes</td>
<td>211</td>
</tr>
<tr>
<td>5.34</td>
<td>The Esperanto animate stative prefixes</td>
<td>212</td>
</tr>
<tr>
<td>5.35</td>
<td>The Esperanto animate stative suffixes</td>
<td>213</td>
</tr>
<tr>
<td>5.36</td>
<td>The Esperanto inanimate stative affixies</td>
<td>214</td>
</tr>
<tr>
<td>5.37</td>
<td>Pronouns in Esperanto</td>
<td>215</td>
</tr>
<tr>
<td>5.38</td>
<td>The Esperanto invariable determiners</td>
<td>216</td>
</tr>
<tr>
<td>5.39</td>
<td>The Esperanto variable determiners</td>
<td>217</td>
</tr>
<tr>
<td>5.40</td>
<td>The numerical suffixes</td>
<td>218</td>
</tr>
<tr>
<td>5.41</td>
<td>The numeral determiners</td>
<td>219</td>
</tr>
<tr>
<td>6.1</td>
<td>The parsing of λ-subgroups</td>
<td>234</td>
</tr>
<tr>
<td>6.2</td>
<td>The parsing of λ-proons</td>
<td>235</td>
</tr>
<tr>
<td>6.3</td>
<td>The parsing of je</td>
<td>235</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>6.4</td>
<td>The parsing of I-groups</td>
<td>226</td>
</tr>
<tr>
<td>6.5</td>
<td>The parsing of E-groups</td>
<td>226</td>
</tr>
<tr>
<td>6.6</td>
<td>The parsing of o-det-inv-groups</td>
<td>238</td>
</tr>
<tr>
<td>6.7</td>
<td>The parsing of o-det-inv-corr-groups</td>
<td>238</td>
</tr>
<tr>
<td>6.8</td>
<td>The parsing of o-det-pron-groups</td>
<td>239</td>
</tr>
<tr>
<td>6.9</td>
<td>The parsing of o-det-var-groups</td>
<td>239</td>
</tr>
<tr>
<td>6.10</td>
<td>The parsing of o-num-groups</td>
<td>240</td>
</tr>
<tr>
<td>6.11</td>
<td>The parsing of stative pronominal groups (o-pron-groups)</td>
<td>240</td>
</tr>
<tr>
<td>6.12</td>
<td>The parsing of i-groups</td>
<td>242</td>
</tr>
<tr>
<td>6.13</td>
<td>The parsing of o-emp-det-inv-groups</td>
<td>243</td>
</tr>
<tr>
<td>6.14</td>
<td>The parsing of o-emp-det-var-groups</td>
<td>245</td>
</tr>
<tr>
<td>6.15</td>
<td>The parsing of a-pron-groups</td>
<td>245</td>
</tr>
<tr>
<td>6.16</td>
<td>The parsing of e-adj-groups</td>
<td>249</td>
</tr>
<tr>
<td>6.17</td>
<td>The parsing of λ-groups</td>
<td>249</td>
</tr>
<tr>
<td>6.18</td>
<td>The parsing of a-swap-groups</td>
<td>250</td>
</tr>
<tr>
<td>6.19</td>
<td>The parsing of affixes within λ-subgroups (specimen)</td>
<td>250</td>
</tr>
<tr>
<td>6.20</td>
<td>The parsing of phrases (sentence level)</td>
<td>251</td>
</tr>
<tr>
<td>7.1</td>
<td>The characters acting as separators</td>
<td>258</td>
</tr>
<tr>
<td>7.2</td>
<td>The characters acting as mute separators</td>
<td>259</td>
</tr>
<tr>
<td>9.1</td>
<td>Translation of the most important keywords</td>
<td>356</td>
</tr>
</tbody>
</table>
Part I

Theory
Chapter 1

Introduction

How are the laws of human thought made? How can linguistic knowledge be formalised? These two questions were posed as two sides of the same coin first by Gottfried Wilhelm Leibniz in the 17th century. His answer to the first question was the *characteristica universalis*. After him, improvements were achieved by many others, among them George Boole with his calculus of logic, Gottlob Frege with his *Begriffsschrift*, Giuseppe Peano with his axiomatisation of arithmetic, not to mention Kurt Gödel’s theorem and the Church-Turing thesis, which is eventually the foundation of Computer Science.

In order to answer the second question, Leibniz proposed the *lingua generalis*. After him, this research path was also followed by Ludwik Leszczek Zamenhof Esperanto and again by Giuseppe Peano with his *Latino sine Flexione*. Zamenhof succeeded where Peano failed, i.e., to build a stable speech community for the newborn language. As a scientific object of study, Esperanto indirectly influenced linguistics since its very beginning. In fact, the mathematician René de Saussure was also a pioneer of Esperantology, i.e., the linguistic analysis of Esperanto — deeply influencing his brother Ferdinand, exactly during the years of his conception of linguistics and structuralism as sciences. After Ferdinand de Saussure, improvements were achieved by Noam Chomsky’s generative grammars and Lucien Tesnière’s *syntaxe structurale*.

Peano’s life and work, as well as Chomsky-Schützenberger’s hierarchy of formal grammars, both demonstrate that the intuition of Leibniz was correct — i.e., that these two questions are intertwined one with the other. Standing on the shoulders of giants, the aim of this dissertation is to take a step forward in this direction, which will be hopefully made by using the specific tool of adpositional grammars.

What are adpositional grammars?

Adpositional grammars (adgrams) are a novel grammar formalism that aims to give a general, cross-linguistical description of how human beings organise their linguistic mental spaces through the election of one or another particular morphological and syntactic construction. Hence, adgrams deal with morphology, syntax and semantics as well (in this dissertation, I will not deal with phonology, as I will take as linguistic data only written texts). Adgrams are a highly lexicalised approach to natural language (NL) analysis. I say ‘adgrams’ instead of ‘adgram’ as each NL system has its own autonomous adpositional grammar system. Here, NLs are considered synchronically, i.e., there is no treatment of how they develop and evolve.

The distinctive characteristic of adpositional grammars is that they are based on *adpositions*. For the moment, let us consider the term adposition merely as a hypernym of prepositions, postpositions and circumpositions, depending on the NL. For example, English or Italian have mainly prepositions while Japanese or Turkish have mainly postpositions. Thus, unlike other grammar formalisms, which are based on a single NL and then adapted to others, adgrams are a cross-linguistic model since the beginning.

The linguistic part presented in this dissertation is derived from research in the field of adposition by Fabrizio A. Pennacchietti for over 30 years. His explorations dealt mainly with prepositions of western and semitic NLs, and were often published in journals for semitists, which are difficult to access for the non-specialist. Moreover, the model was refined over the years, without reaching a systematic presentation which is valid in general, i.e., for every NL. The present work aims to describe such a model in a strong formal way. Particular attention has been given to the definitions of the technical linguistic terms, as they have been used in a rather peculiar way. Readers proficient in linguistics might be annoyed at such precision, even pedantic; please be patient, this dissertation should be readable by computer scientists, who are not familiar with linguistic technicalities. The same advice applies to computer scientists when I introduce the computational formalisms: they can be elementary to computer people, but they are not taken for granted by linguists.

The dissertation is structured as follows. In the first part, the general model of adgrams is presented, in the second and third parts a concrete instance of it will be given. Therefore, the first part is more oriented to the philosophical and linguistic aspects of adgrams, while afterwards the formal model is presented in a linguistic instance. While the general framework is derived from Pennacchietti’s work, the formal model is entirely mine, developed while working closely with Marco Benini. I have chosen the Esperanto language as the first instance of adgrams, for many reasons which I will discuss later. The second part also deals with a machine trans-
Chapter 1. Introduction

lation scenario, as I think that a reliable machine translation is the best way to prove formality and cross-lingual validity of the underlying language models.

Pennacchiotti has enriched and refined its model extracting concepts and data from very different sources: his great merit has been able to adapt tools and structures from everywhere so to build the adgram kernel, i.e., the analysis of each NL prepositional space (see below for details). I have grouped these sources in three major schools of linguistic research: (i) the Chomskyan school, (ii) the cognitive linguistic school, and (iii) various influences from structuralism and classic authors, in particular the school founded on Lucien Tesnière – the so-called dependency grammar school. This distinction does not mean that they do not have anything in common, I have grouped the various authors in these broad categories because I think it is the best way to present the literature under adpositional grammars. The rest of this chapter is devoted to clarifying how these sources influence adgrams, before presenting the adpositional grammar model.

A final proviso is needed before going on: all linguistic data and formalisations are mine, and any mistake or error is mine only. Hereafter, ideas may or may not be shared by Pennacchiotti, Benini, or whoever.

Adpositional grammars are formal

Each adgram encapsulates the language model in a self-contained system, i.e., a device which defines the set of well-formed sentences which constitute the NL. Most probably, grammar becomes automatized in learning through frequency of (un)successful of linguistic patterns, so to build syntagms and paradigms through contrastive collocation (see details below about these terms); however, this dissertation does not deal with issues about NL acquisition, so NLs are fictitiously considered as already acquired. In this sense, adgrams pay credit to Chomsky’s original purposes, as described in Syntactic Structures [Chomsky, 1957]: a language model can be formalised independently to the purposes for which speakers use NLs. Therefore, adgrams can be compared to other formal grammars, such as Combinatory Categorial Grammars (CCG), Tree-Adjoining Grammars (TAG) and Head-driven Phrase Structure Grammar (HPG). Adgrams aim to specify with maximum precision principles and rules which generate all and only the grammatical sentences of a NL. From a philosophical perspective, I agree with Chomsky about the belief that there exists an inbuilt structure in the mind which constrains linguistic variability. Adgrams aim exactly to describe this kind of constrictions. An immediate corollary of what said is that here NLs are neither approached as observed behaviours nor investigated in their sociolinguistic dimensions. Nevertheless, rich linguistic data used in this dissertation will be extracted from real corpora – in particular the multilingual parallel corpus of the international newspaper articles published in Le Monde Diplomatique.10

On the other hand, there are some assumptions in the Chomskyan tradition that have no place in this approach. First, the primitive categories of functions normally used in the chomskyan tradition, e.g., S, N, NP, PP, etc., are not considered valid in adgrams, as they have no immediate linguistic concreatisation in terms of morphemes.11

Chomskyan linguistics has become more and more abstract over time, as the postulated entities and processes that constitute grammar trees became more and more theoretic: for instance, the dichotomy surface/deep level, the X-bar theory, etc., are complex structures very far from the morphemic reality. In contrast, adgrams aim to strictly adhere to the morphological entities that are visible in linguistic productions. I will refer to this principle as the principle of linguistic adherence. Adgrams will give account directly of the logic underlying the production of morphemes in a sentence and their collocation (see below for details). As an immediate corollary, entities like ‘traces’ and ‘empty nodes’ have been kept to a minimum: only well-known linguistic phenomena as anaphora resolution or wh-movements will be used. In NLs like English or Italian, these phenomena are marked by a different collocation pattern or a specific morpheme devoted to mark the phenomenon itself. I am deeply convinced that linguists cannot claim that general rules govern linguistic structures while idiosyncratic and anomalous patterns are relegated to the periphery of the system, as ‘exceptions’. Adgrams give a highly general linguistic model which also gives very precise account of nuances and ‘strange’ linguistic patterns. More specifically, adpositional grammar trees (adtrees) give an account of linguistic phenomena often not accounted to the ‘periphery’ of language in the approaches based on chomskyan linguistics. Therefore, as the reader will see from chapter 2 onwards, adtrees are quite unlike any other linguistic tree published until now.

Adpositional grammars are computational

Since this is a computer science dissertation, and since it treats linguistic topics, it falls under the rubric of ‘computational linguistics’, and its subclass ‘natural language processing’ (NLP). I am deeply convinced that natural language engineering is, or should be, a testbed of general linguistic theory and formal NL descriptions – in brief, language models. In my view, language models should have cross-linguistic validity and should always be tested with a formal model that can be run on a computer – perhaps it is the only testbed we have. It is important to note by now, that computational efficiency of the language model is not a theme in this dissertation. Cognitive linguists have a point claiming that for the most part our linguistic production is rarely compositional, i.e., the output of rule-based computation (this is called the rule/list fallacy).12 We probably store...
Chapter 1. Introduction

in our mind well-practiced patterns of use both at morphosyntactic and semantic levels. We learn to play an instrument or to drive in a similar way: initially we have to apply consciously rules and our performance is controlled, slow, and full of errors. With practice, the sequence of applied rules become automatized, and performance becomes rapid and far less prone to errors. Something similar happens in learning NLS: we do not always need to apply fine-grained rules, as we automatize established patterns that we store and recall, that indubitably fasten computation time, i.e., they increase efficiency. This means that the rules per se can be computationally inefficient. For the purposes of this dissertation, adgrams describe fine-grained rules as if there is no storage and recall of results. The goal here is to demonstrate that a concrete adgram, which is an instance of the language model, is formal, computable, and linguistically feasible.

Another important limitation of the current model of adgrams is quoting and name-entity recognition, which I see as two faces of the same coin. Adgrams cannot “understand” sentences like Paris is a five letter word, nor correctly translate into Italian as Parigi è un parola di sei lettere (in Italian ‘set’ is ‘six’). Analogously, the English sentence Green Day don’t like Bush is completely out of scope, unless the name-entities ‘Green Day’ and ‘Bush’ are correctly tagged a priori – e.g., about which US president are we referring to? This kind of sentences need a lot of encyclopedic knowledge to be inserted into the machine mostly a priori, and adgrams do not compute common sense knowledge, but only linguistic-centred one (see later for details).

The formal model is modelled on a Von Neumann’s machine with an intrinsical non-deterministic parser. Non-determinism is simulated by the backtracking primitive well-known in Prolog, although the formalism is closer to the so-called logical frameworks, e.g., Isabelle [Paulson, 1990]. A fully-developed abstract machine is built on the primitive abstract machine. The lexical analyser parse the text in input and gives the appropriate adpositional tree(s) in output. See chapter 7 for details.

Last but not least, adgrams are in debt with research made in the 1960s in the Centro di Cybernetica e di Attività Linguistiche (Centre of Cybernetics and Linguistic Activities) lead by Silvio Cecco, in particular the formalism called Correlational Grammar (see details in chapter 2).

Adpositional grammars are cognitive

The term ‘cognitive’ is not free from controversy in linguistics. If we take the philosophical position of nominalism in its extreme form, linguistic entities are merely a matter of linguistic convention: the set of real-world entities which may be called ‘dogs’, or the colour values that are described as ‘red’ in English, have nothing in common with their name. According to nominalism, there is no intersection between linguistics and cognitive science. Note that the original position of Ferdinand de Saussure, the father of modern linguistics and structuralism, is essentially nominalist: for him, the language system (langue) is a system of signs where their only meaning (sens) is their sound patterns (image acoustique). If the position ‘using a word appropriately is simply an internal linguistic fact’ were true, Eliza, Weizenbaum’s famous computer program that mimics a natural-language dialogue between a Rogersian psychologist and its patient, would be intelligent as a human being. At the other extreme, linguistic entities are merely instances of pre-existing categories like Dog and Red. In other words, categories exist independently of NLS and their users. This position is called realism. The fallacy of realism is revealed by the argument of the multiplicity of NLS: why should the hyperuranus (i.e., the platonic place where real categories exist) be written in English and not in Italian, Chinese, or Tamil? Let me explain with a concrete example. The concept of BLUE can differ substantially if we change the NL in which we are describing it. For instance, in Rumanian BLUE is albastru, derived from the Latin albus, ‘white’. The ancient Romans probably saw the sky colour as a kind of ‘dirty white’, as the Italian word celeste show evidence of. In fact, the English word blue is of German origin. Hence, not only is it impossible to a priori decide which categories have the right to enter the hyperuranus, but it is also impossible to decide in which NL they have been formulated. Even if the inventory of phonemes of a given NL is limited and can be reasonably identified, the inventory of a priori semantic categories can not.

On the other hand, the very concept of NL is a (reasonable) abstraction for the continuum variance of idiolects, i.e., the linguistic habits belonging to each person. This fact undermines the very foundations of radical nominalism. If each person has his/her own linguistic convention without any further level of abstraction, it is very difficult to explain how we can (mis)understand one another in a given NL. Things go even worse when we accept the argument of multiplicity of natural languages: translation becomes a priori impossible. Of course, these problems vanish if the aim of linguistics is all and only describing each language system as a monad, i.e., as the unique entity which do not have any perception of the real or even mental world, as Ferdinand de Saussure seemed to believe, according to his famous Course. Following Saussure, thought is inherently shapeless and so there is no pre-linguistic concept. In its extreme form, nominalism transforms itself into relativism, a position ascribed to Edward Sapir and Benjamin Whorf: concepts are entirely determined by the NL in use, and therefore looking for universal aspects in linguistics becomes nonsensical. There is a third way, other than nominalism and realism, namely conceptualism. Cognitive linguistics take as a start point the philosophical position of conceptualism: between real-world entities (referents) and linguistic entities (sentences), there is a set of intermediate entities which re-
sides in our mind (concepts). Conceptualism has a number of advantages, and that is why I take this philosophical position for adgrams. First, it solves the problem of entities which have linguistic existence but not a real one, such as the mythical chimera: chimeras simply exist as concepts without having a clear referent in the real world. Second, this position lets people share concepts: where there is an agreement about the referents, i.e., there is a linguistic convention, people can use the same linguistic entity in order to indicate the same concept. Therefore, it makes sense to speak of ‘cognitive linguistics’ as the discipline which analyses the relation between linguistic entities and concepts.

Adgrams are cognitive in the sense that they are indebted to some results found in cognitive linguistics. Cognitive linguistics has for the last 25 years been an alternative to the Chomskyan approach. Its aim is for a cognitively plausible account of what it means to know a NL, how NLs are acquired, and how they are used. Cognitive linguists are careful to have sensible linguistic data to prove their theories, and that is why I take most examples from corpora of language-in-use, following the principle of linguistic adherence (see previous section).

Unlike Chomsky’s hypothesis that language is an innate cognitive faculty – known as the Language Acquisition Device (LAD) – cognitive linguists take as their start point that premise that language is not an autonomous cognitive faculty and consequently it is not separated from non-linguistic cognitive abilities. To put it differently, the representation of linguistic knowledge should be similar to the representation of other conceptual knowledge. This does not mean that a unique configuration of cognitive abilities devoted to language does not exist; it means that the language ability requires cognitive components that are shared by other cognitive abilities. In other words, an autonomous level of organisation does not necessarily entail modularity. NLs, cognitive linguists say, are driven by established facts about human cognition, not by the internal logic of the theory. Consequently, grammar is considered as a cognitive ability in all its parts – i.e., phonology, morphology, syntax, semantics and pragmatics. This holistic vision of cognition implies that cognitive linguistics take concepts and models from other disciplines – like psychology – to describe even the smallest, subtle difference between sentences. Using the words of Taylor [2002, 11]:

the very wording that we choose in order to linguistically encode a situation rests on the manner in which the situation has been mentally construed.

I will refer to this principle as the grammar as conceptualisation principle. As I understand the literature, cognitive grammar focuses on the following main areas: (i) categorisation; (ii) mental imagery and construal; (iii) metaphor; (iv) inferencing and automatisation. In the field of categorisation, a place apart is given to figure-ground organisation, whose prototype is visual perception. Figure-ground organisation inherits interesting characteristics from perception. In fact, perception is highly related to attention (e.g., you can focus your sight on this very word and, at the same time, focus on the periphery of your vision). Furthermore, figure-ground organisation can be reversed (e.g., you can look at this page as a complexly shaped white figure which obscures a black background). Finally, there are several levels of figure-ground organisation (e.g., if you are reading a paper version of this dissertation, your primary figure is the sequence of black letters while your primary background can be the desk you are sitting at; but there will be also a secondary figure against a wider background of the room where you are sitting in).

While cognitive linguists used the figure-ground organisation principle for semantics, adgrams use it to construct adtrees, i.e., for morphology and syntax, that I treat as two sides of the same coin (see chapter 2 for details). Therefore, the scene that is mentally construed by the speaker is encoded linguistically not only in terms of lexical choices but also by the morphosyntactic resources in charge. Let me explain with a couple of examples:

• (1a.) The farmer shot the rabbit.
• (1b.) The rabbit was shot by the farmer.
• (2a.) The roof slopes gently downwards.
• (2b.) The roof slopes gently upwards.

In example 1 the different figure-ground organisation is due to morphosyntax, while in example 2 it is due to lexical choices. In fact, 1a presents the scene in terms of the farmer as the figure, and the rabbit as the ground of the event shot, while in 1b the scene is reversed: the rabbit is the figure, and the farmer is merely a circumstance of the shot event, acting as ground. It is important to know at this point that the figure does not always coincide with the syntactic subject. In contrast, the difference presented in example 2 concerns how the speaker perceives the roof: in 2a it is mentally viewed from above, while in 2b it is mentally viewed from below. Adgrams give no cues about these pragmatic and semantic aspects as in example 2, but only about morphosyntactic phenomena like in example 1.

If Chomskyan grammars were attacked by cognitive linguists as ‘syntactocentric’, analogously adgrams can be rightly attacked as ‘morphocentric’, i.e., they give a central place to morphology. In fact, I argue that morphosyntax is also a key for semantics. Therefore, adgrams follow a semasiological perspective in the language-world approach: it goes from the language model to the world, asking ‘For this expression, what kinds of situations can be appropriately designed by it?’ Of course, linguistic
meaning cannot be reduced to a full compositional model, as it involves not only the construal, i.e., the process whereby concepts are structured in a given linguistic expression, but also the content evoked. In other terms, a linguistic expression can evoke the same content and nonetheless be different in meaning as it is construed in a different way. What I argue is that the construal is compositional, while content is encyclopedic in scope. Adtrees will give account of the choice of construals in terms of trajector/landmark alignment (see Chapter 2). It is right to say that adgrams are meaningful primarily in terms of construals: semantic structure is an inherent part of adgrams.

I have just used the term ‘concept’. With respect to concepts, adgrams borrow another expression from cognitive linguistics. According to cognitive grammar, each sentence forms a conceptual space. A conceptual space is formed by linguistic elements which are instances of concepts and their relations. The main point is that understanding is prior to judgements of semantic relations – such as synonymy, hyponymy, antonymy – and pragmatic relations analysed in terms of speech acts; an analysis which involves implication and presuppositions, e.g., which mental states are entailed in the each actant. To avoid confusion, I will adopt the term ‘actant’ from Tesnière, to indicate the semantic roles in each phrase, while the term participant will simply indicate the two leaves of a minimal adtree (see Chapter 2 for details). Semantic and pragmatic relations form content, while the conceptual space is construed (see Table 1.1). Each adtree aims to describe a conceptual space: content is included in the lexicon, i.e., in the leaves of the adtree (see Chapter 3 for the treatment of lexicon).

My understanding of the literature in cognitive linguistics is that semantics drives morphology and syntax, which are considered merely as parts of it. In my view, the main limitation in the current cognitive linguistics approach is the premature and prejudicial refuse to apply a formal methodology to their linguistic analysis. Most of this literature is not precise enough to be used in a language understanding or generation system. At the same time, cognitive linguists use conceptual spaces as starting points to describe semantics in terms of encyclopedic knowledge, an approach which raises many unsolved problems. In constrast, adgrams are driven by visible linguistic items – the morphemes – and they strictly follow the conceptual space described by each sentence, following the principle of linguistic adherence. Consequently, semantics is derived from the treatment of morphemes in a strict formal way.

Adpositional grammars are structural

The main problem with conceptualism is the mapping between references, concepts and linguistic entities. Do linguistic entities reflect some properties of the referents (mild realism) or simply reflect concepts in the mind (mild nominalism)? It seems quite odd to visualise concepts as ‘pictures in the head’, since it is impossible to depict the prototypical concept of TREE, not to mention the representation of concepts like LOVE or GOOD (that is why the allegories of figurative arts are so interesting). We can only visualise instances of the concepts, not their “real” properties. Therefore, we should consider concepts with a purely functional point of view: a concept is a principle of (flexible) categorisation, so that human beings can draw inferences. Following this line of reasoning, each morpheme – i.e., each linguistic element with a visible representation which is both atomic and meaningful – is a concept. In 1b these are the concepts involved: rabbit, farm, shot, you, by, the, -er. At a first glance, it can sound strange that a derivative morpheme like -er is treated as a concept. Let me explain through some more instances of example 1:

- (1a) The farmer shot the rabbit.
- (1b) The rabbit was shot by the farmer.
- (1c) The farm shot the rabbit.
- (1d) The farmers shot the rabbit.

The four sentences depict four different conceptual spaces. In example 1c, the farm is a very unlikely one, equipped with guns and maybe an A.I. the model of the world behind such a sentence could be a science-fiction novel! What is important is that there is no prior assumption about the model of the world: it is taken as axiomatic in this dissertation that it is always possible to find an appropriate world of reference if the sentence is morphosyntactically sound, i.e., I am agnostic about world models. Following Chomsky, if the sentence is morphosyntactically sound, it is well-formed, as in the famous example colorless green ideas sleep furiously. In example 1d, there are more farmers shooting at the rabbit. The presence or absence of -er show that the scene is construed in a totally different way; analogously, the adding of the morpheme -s again changes the meaning of the sentence.
Chapter 1. Introduction

The method I will follow in this dissertation is called the method of collocation and it is contrastive: two chains of linguistic entities will be offered, with only one difference, and the corresponding adtree will be given. Collocation is a morphosyntactic phenomenon. The method of collocation is typically structuralist: the syntagmatic axis shows the intra-relations, in the earlier examples the relations in lb between form and shot; the paradigmatic axis shows the inter-relations, i.e., if a different lexical item can be substituted with another one without further change in the syntagmatic relations. In the earlier example, the substitution:

- (1a) farmer → (1d) farmers

does not involve the other syntagmatic elements, while the substitution:

- (1a) farmer → (1c) form

involves the syntagmatic relation between form and shot: form has to change one of its moduli from [+animate] to [+animate] – for the notion of modulius, see section 3.1. However, note for now that the use of discrete units for semantics does not imply that semantics can be reduced to a truth-conditional correspondence with the world model, of which there is no a priori assumption. After a huge collocation analysis, we could induce that the couple farmer : farmers is an example of a typical plural marker.

That means that the paradigmatic axis is dependent on the syntagmatic axis. Finally, when precision will be needed, I will speak about substitution when collocation is applied on the syntagmatic axis, and about contrast when I use contrastive couples so as to let paradigms emerge.

Chapter 2 is devoted to make the concept of adposition clear, while the concept of group will be fully exploited in chapter 3. Finally, let me remind the reader that the first part deals with the model from a linguistic point of view, i.e., the rules that will be presented hereafter are language-independent. For a formalisation of the model, a concrete linguistic instance is needed and the reader is addressed to the second and the third parts of this dissertation.

Notes

1 For the logic of Leibniz, see Couturat [1901]. Boolean logics was published at first in Boole [1848], while Frege’s conceptual system in 1879 [Bynum, 1972]. Giuseppe Peano’s Formulario was completed in 1908 [Casalini, 1965]. For Kurt Grell’s theorem and the Church-Turing thesis, as well as other foundational papers by notable authors, see Davis [1965].

2 The lingua generalis was rediscovered and published by Couturat [1903].

3 Esperanto was launched in 1887 while Latino sine flexione in 2003 – see Gobbio [2005a] and Gobbio [2008a] in Boers et al. [2008]. For the forgotten pioneer René de Saussure, see Köchli [2001] in Fauser and Liu [2001].

4 The masterpieces of the three authors are: De Saussure [1970], Chomsky [1957], Chomsky [1960], Toondru [1959].

5 The model was published for the first time in Esperanto in Pennacchetti [1976], and Pennacchetti is still working on it, extending the analysis to new NLs. Nevertheless, the core of the model is solid so that a formalisation can be implemented.

6 Most of Pennacchetti’s research is about comparative analysis of Semitic NLs [Pennacchetti, 1974, 1978], Penncachi [1984] in Cagni [1984], Pennacchi [2005] in Bodaghi et al. [2005], and Pennacchi et al. [2008], while some papers deal with Esperanto Pennacchietti [1976] and Pennacchietti [2004] in Wandel [2008] and others with Italian [Pennacchetti, 2004b]. The most theoretical paper is Pennacchietti [1986], concerning mainly nominalisation, a grammaticalisation phenomenon (see Chapter 2). I extensively use the Pennacchietti’s work throughout the whole dissertation. For readability, I will not refer to the papers unless they touch a specific part of the model.

7 For example, Langacker declared that he feels a “considerable empathy” for Toulmin’s work, even if it is out of the cognitive grammar approach [Langacker, 1993] in Daeleblinger et al., 1999).

8 Ades and Studman [1982] proposed the type-shifting-operation, which lead to CCG. An introduction to CCG can be read in Studman and Baldridge [2007], to appear in Borsley and Borjans [2007]. For TAGs, see at least Juriksky and Martin [2000]. For HESG, there is a dedicated web-site at Stanford: http://hypostanford.edu.

9 The only exception that I have made is the brief introduction of Esperanto as a unique sociolinguistic phenomenon in section 4.3.2.

10 Essential, I’ve chosen this multilingual corpus because it contains 16 NLs plus the quasi-natural language (QNL) Esperanto. I will return to this topic later in the dissertation.

11 I will this crucial point in detail explain in the opening of chapter 2.

12 For a discussion, see Taylor [2002, 13-16].

13 The complex story of the famous colour – collected from the students’ lecture notes by colleagues of Saussure – does not permit us to say exactly what Saussure thought [De Saussure, 1970] for a critical edition]. In any case, I refer to the position of Saussureanism, i.e., the position that languages take strictly following Saussure. Saussureanism is still alive and well in continental Europe among linguists devoted to the studies of dead NLs like Latin or Sanskrit. See Taylor [2002] for a strong critic to Saussureanism from a cognitive linguistic perspective.

14 The debate raised by Elia was enormous – see at least Russell and Norvig [2002] for a general introduction to the epistemological problems raised by this program. Still, the original paper [Weizenbaum, 1966] is worth reading.

15 It is interesting to note that traditionally the answer to this question has been given by means of some external reference believed to be the receptacle of Truth, like for instance the Bible. Consequently, the Book of A Priori concepts should be in Hebrew. See Eo [1995] for a lot of interesting insights.

16 The problem of colour categorization is a classic example. For an account from the perspective of cognitive linguistics, see chapter 1 of Taylor [1989].
17 Note that even brilliant minds fell into this fallacy, like Leibniz, who tried to find the laws of thought in analogy to algebra [Eco, 1993]. More recently, Jackendoff [1995] and Pustejovsky [1995] fell into the same trap.

18 I think that the reason for this sharp position was the desire to protect the newborn discipline of linguistics from the more established disciplines at the time that Saussure gave his lectures.

19 Cognitive linguistics entered the arena of linguistics officially in 1987, when two important monographs were published. Langacker published the theoretical foundations of cognitive grammar, while Lakoff published a treatise on metaphor [see [Langacker, 1987, Lakoff, 1987]].

20 The hypothesis that language is not an autonomous cognitive faculty but ‘only’ a cognitive ability should not be understood as a denial of linguistic innateness, i.e. the fact that learning languages naturally is an innate ability, as clearly stated for the first time by Chomsky [1957].

21 This principle is referred to as the second hypothesis by Croft and Cruse [2004, 3-4] and it is shared among most members of the cognitive linguistic community. It was launched as a slogan of the cognitive linguistics movement in Langacker [1987].

22 ‘Cognitive grammar’ is the most developed cognitive linguistic framework presented by Langacker [1987]. I have rather simplified the overview offered by Taylor [2002, 1989] and the textbook by Croft and Cruse (2004).

23 Cognitive linguists take from the traditional psychological studies of the so-called “Gestalt school” in Germany. Some authors are Max Wertheimer, Kurt Koffka, Wolfgang Köhler, Rudolf Arnheim.

24 These examples are taken from Taylor [2002, 11], but my analysis is slightly different.

25 The complementary perspective is onomasiological, i.e., given a state of the world model, it asks what set of linguistic expressions can appropriately describe it. Onomasiological stance will be used in adigrams in the definition of the basic-level term in lexicon – see chapter 3. For a detailed discussion, see chapter 10 in Taylor (2002).

26 Cognitive grammar is the most structured framework of analysis within cognitive linguistics, originally proposed by Langacker [1987].

27 For the semantic relations, see Lyons [1977], who follows Gottlob Frege’s distinction between sense and reference, where the sense is the set of relations within the lexical system. For the pragmatic analysis, see at least the essay How to do things with words by Austin [Austin, 1963] (see also chapter 4 in Lyons [1995]). The term ‘actant’ was popularised in literary criticism by Greimas [1966].

28 Even so, cognitive linguists have to recall the notion of syntax as a discrete module in the treatment of idioms (e.g., fixed expressions, formulaic phrases, clichés, etc.) See chapter 27 of Taylor [2002] about this paradox.

29 Let us take the sentence John regretted signing the letter as an example. There is an expressed participant (John), an object (the letter) and a complex action (to regret signing). Those are the linguistic units involved which form the conceptual space, together with the speaker and the hearer as additional participants, who cannot be John. All these ‘frames’ [Fillmore, 1982, 1985] the experience so to build language understanding. Fillmore builds construals in terms of frames; other authors use different approaches. For instance, Langacker [1987] and Lakoff [1987], two pioneers of cognitive linguistics, describe the relations between construals as ‘profiles’ against ‘bases’ (Langacker) or ‘domains’ (Lakoff). For example, the conceptual axis, which denotes the concept RADIUS, profiles against the base CIRCLE. So, the meaning of a linguistic unit should be expressed in chains of profile-base formulae. Although this approach seems to be promising at a first glance, it has the great disadvantage of looking for construals out of the linguistic units, instead of within them. In fact, if things seem to be simple with the couple RADIUS/CIRCLE, as they refer to mathematical knowledge, which is highly formalised, they fail to give a convincing account in complex
Chapter 2

Adpositional trees

Adpositions are the tools that NLs use to indicate grammatically the relations between linguistic elements. How can we classify adpositions? Do adpositions form a system? The answer to this question brings us directly to the structure of adtrees, and therefore to the foundation of adgrams. It is well known that adpositions combine particular elements in very specific and determinate ways. Any formal grammar should give a precise specification of the elements connected to one another and how they are connected within a single NL. In other words, adpositions should form a system.

As Melčuk convincingly shows, the relationship between grammar elements can take one of the following two forms, or a combination of them: tertium non datur, i.e., there is no third possibility.1

The first form was started by Noam Chomsky. A constituent syntax groups adjacent words into abstract units until reaching the top, i.e., the sentence node. For instance, if we have three adjacent elements such as a (an article), blue (an adjective), chair (a noun), it will be grouped as a blue chair, i.e., as a single Noun Phrase (NP). Chomskyan linguistics treats prepositions as appendices to Noun Phrases: they derive a Preposition Phrase (PP) from the formula: PP = Prep + NP. For example, with becomes the head of the NP a blue chair. The great advantage of constituent-based grammars is their relatively easy description in algorithmic form. The second form was started, in modern times, by Lucien Tesnière. In this approach, the relation of blue and chair is expressed in terms of dependency: blue is the dependent, chair is the governor because in English adjectives depend on nouns. Tesnierian linguistics picks up word pairs establishing their dependency, and acts recursively until all words are related. The theoretical assumption is that “the syntactic structure of sentences resides in binary asymmetrical relations holding between lexical elements.” [Nivre, 2005, 6]. In this family of approaches prepositions are treated as modifiers of nouns, i.e., nouns are governors, prepositions are dependents, exactly as if prepositions were adjectives. There is no grouping of words, i.e., no “phrase” in Chomskyan terms. Compared to the Chomskyan one, the Tesnierian tradition respects cross-linguistic variety most, right from the beginning. In particular, it is more successful in describing NLs with a rich morphology, e.g., German or the Slavic ones. Generally speaking, dependency grammars were better received in continental Europe than in the Anglo-American world.2 Nonetheless, one of the problems of dependency grammars, derived from the original Tesnierian work, is exactly the vague-ness of the notion of dependency: it is not clear how to correlate the ‘deep’ relations of dependency with the surface morphological order. In fact, most dependency-based frameworks lack proper formalisation for parsing.3

Neither the Chomskyan tradition nor the Tesnierian one has succeeded until now in offering a valid description of this crucial point in any NL grammar. Adgrams are made with some concepts from both traditions, combined in a new and original way. From the Chomskyan tradition, linguistic elements are put together in groups, roughly corresponding to the Chomskyan notion of phrase. However, groups will be classified according to the grammar character of their head (see section 3.1 for the notion of ‘grammatical character’). Another element of originality is the fact that adgrams use the Tesnierian notion of valence without the notion of dependency. Linguistic elements will be strictly Analysed in pairs, but their relation will be described properly by adpositions.4 This is possible because the atomic unit of linguistic analysis is not the vague notion of “word” – as in every computational grammar I have seen by now – but the most robust notion of morpheme.

The rest of this chapter is devoted to explain how adpositions work in building NL grammars.

2.1 Brondal’s contribution to adpositional spaces

An interesting proposal to classify prepositions was published by the Danish logician Viggo Brondal, independently of any school of research in theoretical linguistics, and it is still unknown in the current linguistic debates, as far as I know [Brondal, 1940]. Pennacchiatti’s system is a derivative work of Brondal’s. Brondal considered two fundamental relations of logic in order to classify prepositions: transitivity and symmetry. Transitivity is the first axis that depicts Brondal’s prepositional space. For instance, the English preposition in is always transitive, because it is possible to construct a sentence like example 6, which is well-formed, although rather unlikely, while example 7 is completely ungrammatical.

- (6.) There are no more chairs in the room in the trattoria in the town in...
Chapter 2. Adpositional trees

- (7.) “They stopped at the trattoria at the town at...

Therefore, the English preposition in is transitive, while at is intransitive. Symmetry is the other fundamental axis for Brendal. A preposition is symmetrical when the semantic relation between the two participants is equal.

- (8.) They ate a Sicilian sea bass with a bottle of white wine.
- (9.) They ate a Sicilian sea bass without a bottle of white wine.

The English preposition with is symmetrical, as the relation in (8) from the Sicilian sea bass to bottle of white wine is symmetrical compared to the relation from the bottle of white wine to the Sicilian sea bass. Conversely, in (9), the case of without the relation between the sea bass and the wine is obviously asymmetrical. The two axes form Brendal’s prepositional space; if a preposition shows two different behaviours, it will fall into a neutral box (see Figure 2.1). However, the criteria proposed by Brendal cannot explain the whole set of prepositions of a given NL, but only the so-called ‘proper’ prepositions, as admitted by Brendal himself. Hence, Pennacchietti looked for a different criterion to classify adpositions following Brendal’s methodology. The criterion behind the new system is the dichotomy trajector/landmark.

2.2 The dichotomy trajector/landmark

Cognitive linguists give an interesting insight into prepositions. In fact, a preposition is viewed as an atemporal Gestalt (i.e., a pattern or model organised as a whole). In particular, Langacker [1987] describes a preposition as an atemporal relation between the participants in an utterance. These atemporal relations are asymmetrical. The most salient participant is in the focused position called the trajector (tr), indicated by a triangle (△). The trajector cannot be express without a reference point of observation: this is called the landmark (lm), indicated by a circle (○). The tr is the primary focal participant, while the lm functions as ground to the trajector. Furthermore, the lm can act as the secondary focal participant recursively, if there is a less salient lm to be referenced to. In spite of this promising premise, most efforts of cognitive linguistics are not concerning formalisation and therefore their observations are beyond the scope of adgrams. Nevertheless, this dichotomy can be used to form a linguistic system suitable for formal and computational treatment, as shown in sections 2.3 and 2.4.

2.3 Application adpositions, applicative landmarks

An example scenario will be used to show how NLs represent can represent the same content in different conceptual spaces. The scenario is made by a sequence of contrastive examples with a specific use of adpositions. The conceptual space behind the scenario has three participants: Mr. A, the Book B, and Mr. C. In example 10 the book B is the tr (△), while Mr. A and C are the lm (○). The verb is given in brackets because it can be omitted.

- (10-en.) △(A book) (is) ○(between two men).
- (10-it) △(Un libro) (é) ○(tra/fra due uomini).
- (10-tu) ○(i kn adam) △(arasında bir kitap).

Figure 2.2: The between relation (10, left) and the V O (11, right).
Chapter 2. Adpositional trees

Not all LMs are equal. When an adposition profiles the tr on the lm actively, I will say that the tr is applied on the lm. In other terms, the English between, the Italian tra (tra/fra) (which are equivalent), the Turkish da are adpositions profiling application. By now, in Figures like 2.2, the convention will be that the tr is always yellow, like sunlight, while the applicative lm, i.e., the lm defined by an applicative adposition, is always red, because the relation is active (think of red as an icon of ‘hot water’).

In example 11 I have exchanged the tr and the lm: A and C are now tr, while B is the lm (see also Figure 2.2, right). Note that this adposition marks the important role between the verb (V) and the object (O) in two different ways: English and Italian sign it by collocation, while Turkish uses a specific morpheme. If an adposition signs the relation by collocation it will be called a zero adposition. As the reader can see, I have updated the definition of adposition given in the Introduction: adpositions include prepositions, postpositions, circumpositions and also zero adpositions. Furthermore, adpositions profile relations to any kind of lexemes, not only nouns: for instance, the relation SV has been established within a stative, i.e., ‘nominal’, group and the verbal group; moreover, the function of some adpositions is to interrelate whole phrases (see the last section 2.10 of this chapter for details).

- (11-en.) Δ(Two men) hold ○(a book).
- (11-it.) Δ(Due uomini) tengono ○(un libro).
- (11-tu) Δ(O iki adam) ○(kitabi) tutuyorlar.

Action hold is the baseline where tr and lm can operate. Note that in English and Italian there is a zero adposition, which is part of the group the book because it signs its role as a syntactic object O.

The change from example 10 to example 11 implies a change in the nature in the relation. In fact, while the relation stated in example 10 is always in presentia, the relation stated by example 11 can be in absentia. Consider the following contrastive sentences:

- (11-en.) Δ(Two men) hold ○(a book).
- (12-en.) Δ(Two men) own ○(a book).

Figure 2.2 can apply or not apply to example 12, as the book (lm) is owned by the two men (tr) even if they do not hold it in hand. In contrast, the adposition between can never be used in absentia, even if the relation is abstract. For example, in the group the relationship between Liza and Paul, the adposition between states metaphorically that the relation is present and real between Liza and Paul.

2.3. Applicative adpositions, applicative landmarks

If an applicational adposition should always be applied in presentia, like between, that application is called dimensional; otherwise, that application will be defined as non-dimensional (expressions coined by Pennacchietti). I will refer to this step in the theory of adgrams as the first reflexion. The first description of the applicational adpositional space of English is represented in Figure 2.3. Applicative dimensional adpositions will be called

![Figure 2.3: A provisional applicative adpositional space of English](image-url)

Plus (+), while applicative non-dimensional adpositions will be called **Minus (−).** These are the lists of the main Plus and Minus prepositions of the English language:

- **Plus:** on, on, above, over, before, against, about, between, through, throughout, among.
- **Minus:** like, at, to, at, for, till, until.

SV relation for Plus and VO relation for Minus are marked in bold, as the prototypical adpositions of the respective subspaces. Furthermore, they do not belong particularly to English. In fact the prototypical Plus and Minus adpositions define the relations of the following language universals: subject (S), verb (V) and object (O).

However, there is a limitation in the current model of adgrams. They do not take into account the distance from the prototypical adpositions, nor do they use neutral boxes, unlike for example Pennacchietti (2006b). In other words, subspaces are not homogeneous: some adpositions represent better than others their own subspaces. Nonetheless, I treat adspaces not
as radial categories but as binary categories. In other words, in the actual state of adgrams, i.e., the one described in this dissertation, I use the classical approach to categorisation instead of a prototypical one, essentially to preserve elegance and clarity in the formalisation presented in the third part of this dissertation. The dimensional axis is the first one for defining adpositional spaces, and it corresponds roughly to Brenal’s transitivity. Prepositions with and without are put in Figure 2.3 as in Brenal’s prepositional space of English (Figure 2.1). In order to populate completely the adspace, the second axis is needed. This is the topic of the following section.

2.4 From applications to retroapplications

At a purely theoretical level, NLs can work only with applicative adpositions. For example, the following text is morphosyntactically well-formed:

Something is unimaginable. Something has happened. Something displeased Europe. Europe is arrogant. Europe thought Africa so poor. Africa would agree to anything. Africa has said no in pride. Pride is rebellious. Africa has said no to the the Economic Partnership Agreements (EPAs). EPAs are a straitjacket. Africa has said no to trade. Trade liberalised completely. Africa has said no to a pact. A pact has manifestations. Manifestations are latest. Manifestations are colonial.

Although well-formed, the text sounds odd: no NL uses only applicative adpositions to profile relations. This is the original article, taken from the English edition of Le Monde Diplomatique:

The unimaginable has happened, to the displeasure of arrogant Europe. Africa, thought to be so poor that it would agree to anything, has said no in rebellious pride. No to the straitjacket of the Economic Partnership Agreements (EPAs), no to the complete liberalisation of trade, no to the latest manifestations of the colonial pact.

Human beings have found strategies to present known relations between linguistic entities in a quicker way. For instance, the sentence Peter has a book is new information, while Peter’s book denotes the same information as known. In other words, the English saxon genitive case builds a non-active relation between Peter and his book. This kind of relations are called retnapplications by Pennacchietti: this term is appropriate because concepts come back (i.e., ‘retro’) from the lm to the tr – they are ‘retroapplied’.

In the evolution of a single NL, some patterns of use become standard because of their frequency, so that at last speakers perceive them as a single unit: this process is called grammaticalisation. Grammaticalisation is a complex phenomenon. Diachronically, adpositions are formed by grammaticalisation of lexical chains that eventually becomes adpositions. If an

adposition is made of a complex chain of signatures, e.g., some of them put at the left side in the syntagmatic axis and others at the right side, I call them lexicalised adpositional patterns, or, for brevity, patterns.

Usually, grammaticalisation involves a loss of syllables. For example, we can reconstruct the history of the Italian adposition riguardo from the series: per riguardo a > riguardo a > riguardo. Analogously, adpositions like ciononostante, invece, nientepopolpore are the result of grammaticalisation – they derive respectively from the morphemic series ciò non ostante, in vece, niente poco di meno. The Italian language even has a paradigm formed with -che of such adpositions; some examples: anziché (anzac che), poiché (poi che), perché (poi che), affinché (a fin che), altriche (altr che) and the archaic ones apparcerché (e per ciò che), improporph (in però che) used mainly in secento. English examples of analogous grammaticalisation phenomena can be adpositions like without (with out), however (how ever) or nevertheless (never the less). At most, grammaticalisation cuts off every morpheme: these are the zero adpositions.

Retroapplications are signatures of grammaticalisation: their profiled relation is no longer active. For this reason, I will adopt the convention that the retroapplicative lm is always blue, think of it as an icon of ‘cold water’. I will refer to this step in the theory of adgrams as the second reflexion. The second reflexion is applied to the whole axis, i.e., both to Plus and Minus subspaces. Therefore, retroapplicative adpositions can be either dimensional or non-dimensional. Now, it is possible to draw the

<table>
<thead>
<tr>
<th></th>
<th>non-dimensional</th>
<th>dimensional</th>
</tr>
</thead>
<tbody>
<tr>
<td>applicative</td>
<td>VO relation, ...</td>
<td>SV relation, ...</td>
</tr>
<tr>
<td>retroApplicative</td>
<td>[GENITIVE], ...</td>
<td>[+ SYMMETRIC], ...</td>
</tr>
</tbody>
</table>

Figure 2.4: The structure of adpositional spaces
whole structure of adpositional spaces, i.e., *adspaces*. Figure 2.4 shows the structure of adspaces. These are the lists of the main Slash and Times prepositions of the English language:17

- **Slash**: without, of, ’s, than, from, off, by.
- **Times**: with, beside, near, under, after, behind.

The prototype of Slash (\(\langle\)\)) is the relation marked in many NLs as the genitive. Slash adpositions are non-dimensional: for example, in *Peter’s book* the book belong to Peter even if he is not present, i.e., it is a relation in absentia. Most adjectival relations fall into the Slash subspace: adjectives, numerals, determiners, articles, some deictic expressions (see chapter 3 for details). The Slash subspace corresponds roughly to Bresnand’s intransitive non-dimensional box. For example, some English Slash adpositions are: off,17 than, from, without; they are all intransitive, in Bresnand’s terms.

In contrast, Times adpositions (\(\langle\)) are dimensional. We do not have a proper prototype, but we can extract the semantic feature of \([+\text{SYMMETRY}]\) from Bresnand’s taxonomy as the underlying characteristic of Times adpositions: near, with, and, are typical representatives of this category. Let me explain through an example.

- **(12-en.)** Two men (are) with a book.
- **(12-it.)** Due uomini (sono) con un libro.
- **(12-tu.)** Kitaplı iki adam.

![Figure 2.5: The 'with' relation in example 12 (left) and 13 (right).](image)

The relation instantiated in 12 by *with* (English), *con* (Italian) and *și* (Turkish) is equivalent: Mr. A and C are the tr, while the book B is the lm (Figure 2.5, left).19 This relation is also symmetrical, in Bresnand’s terms.

- **(13-en.)** A book (is) with two men.
- **(13-it.)** Un libro (è) con due uomini.

2.5 Primary and secondary landmarks

- (13-tu.) Iki adam ile bir kitap.

In example 13 trs and lms are inverted: the book B becomes the tr, while Mr. A and C become the lm (Figure 2.5, right). This inversion is impossible with Slash adpositions (*book’s Peter*), as well as in the case of Plas (*Two men are between a book*, see 10) and Minus (*7a book holds two men*, see 11).

2.5 Primary and secondary landmarks

Adspaces are like paradigms: they need to be instanced by lexemes in order to form conceptual spaces, i.e., to be put on the syntagmatic axis. From now on, the reader has been introduced to the technical terms, so that I can define collocation as follows:

collocation: a chain of lexeme pairs whose relation is expressed in terms of tr/\(lm\) and morphologically signed by an adposition.

The triple lexeme-adposition-lexeme forms a *syntagm*. This kind of formalisation was proposed at first by Silvio Ceccato, although he used a different terminology – i.e., Correlational Grammar.20 Therefore, we can rightly say that collocation is a chain of syntagms. However, syntagms are not at the same hierarchical level. Adtrees are the tool to represent the hierarchy of syntagms. An immediate corollary is that adtrees are formed by at least one syntagm.

Let me explain going directly to our example scenario. I will consider A, B, and C as three different agents: Mr. A is the agent, Mr. B is the beneficiary, while B is the vehicle of the benefaction. Let us see examples 14 and 15, with the following caveat: I give only a partial representation in immediate constituents for clarity; more specifically, in example 14 only the Minus adpositions are represented explicitly, signing the VO and the beneficiary relations, while in example 15 only the non-dimensional retroapplicational adposition \([\text{from}]/\text{da}/\text{dar}\) is made explicit. All other adpositions are omitted. Conventionally, zero adpositions are signed by the appropriate symbols, while non-zero adpositions show the adpositional morpheme(s) in brackets.

- **(14-en.)** Mr. A gives \(\ominus\) the book \(\ominus\) to Mr. C.
- **(14-it.)** Il Sig. A dá \(\ominus\) il libro \(\ominus\) a il Sig. C.
- **(14-tu.)** Adam baska bir adam \(\ominus\) kitap \(\ominus\) veriyor.

The conceptual space in example 14 is represented in Figure 2.6, left. Mr. A is the tr, while B and C are two different lms. Mr. C is dotted and not coloured because it is a *secondary lm*, subordinated to B. Unlike primary
Chapter 2. Adpositional trees

2.6 The structure of adtrees

Adtrees are the bread and butter of adgrams. The minimal adtree describes a single syntagm, i.e., a chain lemma-adposition-lemma. This order is the conventional one I adopt for adtrees, not necessarily reflected in collocation. It is noteworthy that an adtree is governed by the head, which is the node put "above the root", inherited from Ceccato’s intuition, that I call simply the hook. The hook carries three pieces of information:

1. the adtree type;
2. the arrow;
3. the adpositional morphemes.

The adtree type is one of the subspaces as defined before, i.e., Plus, Minus, Slash, Times. Adtrees are coloured. Colours are not strictly necessary, but they help readers figure out where tr and lm are, with the help of the arrows. The arrow is redundant: it is an aid to remind the reader whether we are dealing with applications, i.e., from the tr to the lm, or with retroapplications, i.e., back from the lm to the tr. The meanings of adtree colours, as well as the directions of the arrows, are explained in Figure 2.7. This kind of representation of adspaces has been proposed by Tosco [2006]. Adpositional morphemes (adp) bring the adpositional value onto the syntagmatic axis. The head of the adtree is the adpositional morpheme put "above the root". If there are more than one adpositional morphemes, they will be put following their collocation: morphemes attached to participants (i.e., leaves) at the left branch, at first, then the "proper" adpositional morpheme (if any), finally morphemes attached to participants at the right branch. Within the same branch, morphemes adjacent in collocation will be separated by a small dash (·), otherwise they will be separated by a single slash (/); e.g., the German circumposition in ge-spiel-t (‘played’) belongs to a verbal branch and so it will be signed as ge-f-t. A small left triangle (▲) indicates that the previous morpheme(s) have been extracted from the left branch of the adtree; vice versa, a small right triangle (◆) means that the following morpheme(s) have been extracted from the right branch. Finally, zero adpositions will be signed by the epsilon (ε). The examples that follow in this chapter will help the reader understanding the mechanism.

The taxonomy of adtrees derives from their type. Hence, we will have four types of adtrees: Plus, Minus, Slash, Times. I will always follow this counterclockwise order when presenting an adspace (see again Figure 2.7). Figure 2.8 show the abstract minimal adtrees. If needed, a minimal anony- mous adtree will be used, coloured in gray (Figure 2.9). Adtrees can be nested one into another: this structure is isomorphic to the one presented in Ceccato [1961b] (see Figure 2.10); the example means ‘fish and meat in (the) fridge since yesterday’.

2.6.1 The meaning of the two diagonal axes

Adtrees are built on two diagonal axes, which should not be confused with the axes of collocation, i.e., syntagmatic/paradigmatic. In fact, these axes are built on the four cardinal points: the branch at the left of each adtree is roughly southwest-northeast (SW–NE), while the branch at the right is roughly southeast-northwest (SE–NW). Both axes have their roots...
2.7. Valence and circumstantials

into known information, which is put in the south, while new information is built upon towards the north, according to the order presented in the constructive space.

Conventionally, within a single phrase, adtrees are built along the southeast-northwest (SE → NW) axis, while the relations between different phrases are rendered along the southwest-northwest (SW → NE) axis. Sometimes adtrees clash if a branch is not drawn longer; conventionally, I will lengthen the SE→NW axis to avoid clashing within a phrase, while the SW→NE axis will be lengthened between more phrases. Finally, when I have symmetric junctives, I lengthen both adtrees, so to put emphasis on the symmetry.

I use the term phrase to indicate a couple of syntags where the lm is a verb along with its primary tr, i.e., a syntactic subject S, usually expressed by a noun. In order to form a phrase well, the primary tr and lms should be filled. Phrases can be integrated as component structures of constructions. Constructions are open-ended until they resolve their composite structure: when this happens, a sentence is formed. The conventions of constructions will be given later in section 2.10.

Next sections 2.7, 2.9 and 2.11 will deal with the inner mechanisms of adtrees composed by a single phrase: there, I present the set of conventions to combine adtrees to describe correctly primary, secondary and tertiary lms. The question is: how to determine the inner hierarchy of lms? In order to give the answer, the concept of valence is needed.

2.7 Valence and circumstantials

In cognitive linguistic terms, adpositions profile atemporal relations, while verbs profile processes and hence events, building the scene behind the conceptual space. Therefore, verbs are central to define the hierarchy of lm. Unfortunately, no formal lexical information is provided in cognitive grammar, as authors programmatically do not distinguish between the dictionary and the encyclopaedia, i.e., the compositional part of semantics, which belongs to the inner structure of each NL, and the non-compositional part, which pertains the relation between the linguistic system and the world model. In the end, I turned myself again to the Tesnierness tradition.

Tesnière [1959] borrowed the term valence from chemistry, which expresses the chemical restrains in combining with other elements. Following the original work by Tesnière, also in adgrams each verbal lexeme has a valence value measured in the number of actants it can accept. Consequently, adgrams can be rightly considered a lexicalised grammar formalism: each lexeme owns a set of values like the grammar character and valence (see chapter 3 for details).
2.7.1 Valence and its actants

Linguistic terminology differs a lot in give account of the number of actants a verb can take: some authors speak of ‘intransitive vs. transitive vs. ditransitive’ verbs (Taylor), while others speak of ‘inaccusative vs. accusative vs. biaccusative’. I will treat verbal forms only on a valence basis. Groups can have valence zero (zerovalent), one (monovalent), two (bivalent) and three (trivalent). Valences cannot be more than three.25

Valence is a dimension that should be interpolated by the values of actants, which I present in order of ‘tractivity’, from the most prominent, to the less salient, i.e., chain of sms.26 Actants are the bridge between syntax and pragmatics (see again Table 1.1). Actants should be considered as a pragmatic layer appended to syntax, i.e., after the building of construal through the mechanism of adtrees.

- **Agent** (£): an entity which investigates or which provides the energy to the process, to affect the Patient for the sake of the Beneficiary.

- **Beneficiary or Experiencer** (£): an entity which is the locus of the process performed by the Agent.

- **Patient** (£): an entity which is affected by the process, generically in terms of a change in state.

££££ are the most important actants. For this reason, all nodes representing verb and its actants will be printed in bold. However, there is a further actant I need to explain the theory so far:

- **Instrument** (£): an additional entity used by the Agent to perform the event described in the process.

Actants are attached to the most salient tr of a group. A group can have at the most one actant (see section 3.5 for details). Actants are all binary categories, e.g. an actant is either an Agent or an Experiencer. The role of actants depends on the valence value.

2.7.2 Zerovalent and false monovalent verbs

Adtrees are Porphyrian trees.27 The simplest form is zerovalent. Figure 2.11 shows the abstract adtree. The symbol £ indicates the morphemic signature of the adposition, while ££££ indicate a lexeme used verbally, which valence value is zero. I will use greek letters as alpha (£) to indicate lexemes, i.e., morphemes put in leaves, while square brackets indicate arguments that are fixed, i.e., they are idiomatic forms. Verbal leaves are marked with ££££ where £ is the valence value, while leaves with different fundamental moduli will be marked with their actants. Let me explain through some examples.

In Italian, there is a class of selective zerovalent verbs defined by the semantic feature [+WEATHER], like *piacere* (‘to rain’), *nevicare* (‘to snow’), while in English they are monovalent:

- (16-it.) Piaccive
- (16-en.) It rains.
- (17-it.) Neva
- (17-en.) It snows.

![Figure 2.12: The adtree of (16-it) piaccive.](image)

In Figure 2.12 the reader can see a minimal zerovalent adtree. The lm of the syntagm is always indicated by the leaf at the right branch of the given Porphyrian tree, because conventionally it is the most known, or less salient, information, while the tr is put at the left leaf being the most prominent one. This is a general convention that is important for combining minimal adtrees (see later in this chapter). Finally, the head of the syntagm is inherited by the adposition, which gives the relation character to the tree itself.

Even with zerovalent verbs, the prototypical SV relation is activated. This happens because an adtree is always Porphyrian, i.e., it can never have only “one branch”. Let me explain through an example in Italian. The SV relation is marked in example 16 by the verbal morpheme £ and in example 17 by its equivalent signature ££££.28 The verb in the Italian examples (16) and (17) is put as the lm, while the tr is empty – see the box (£) in Figure 2.12. Non-Italian readers can figure out the scene as in some Japanese paintings, where there is only ground, and no figure emerges. The situation in the English sentence 16 is different. The syntactic subject it bears no role in terms of actants, i.e., it is purely syntactic, it has no semantic weight. There is no
2.7. Valence and circumstantial

information is the lexical information inscribed on the lexemes to blink, to

2.7.4 Bivalent verbs and their actants

Bivalent verbs are another class of verbs. The first valence marks the syn-

tactic subject S, exactly as in the monovalent verbs, while the second va-

lence usually marks the syntactic object O as a Minus adposion. I say

‘usually’ for two reasons. The first one is paying duty to the proviso of

a limitation of the current model of adgams, that is the nominative-accusative

schema, that excludes NLs like Basque. This does not mean that adgams

cannot be adapted to Basque: it means that it was not built with ergative-

assessutive NLs in mind. Nevertheless, the analysis of actants can give hints

to readers interesting in this topic. The second one is the existence of dif-

ferent types of second valences, that I will treat later as a special case study.

Figure 2.16 shows the abstract tree of bivalent groups. Let me explain

through some examples (21–24), that depict the same content in different

conceptual spaces (not all adpositions are exploited in inline description, for

readability, while adtrees are always complete).

• (21.) The \oplus {phone|bell} rang.
• (22.) Some-body \oplus rang \ominus(at) the \ominus {phone|bell}.
• (23.) Liza \ominus(was) called \ominus(at) the \ominus {phone|bell}.
• (24.) Some-body \ominus call-ed \ominus(at) the \ominus {phone|bell}.
• (25.) Some-body \ominus call-ed \ominus(me) \ominus(at) the \ominus {phone|bell}.
• (26.) Some-body \ominus call-ed \ominus(me) \ominus(with) a \ominus mobile.

actant at all, it is a void mask in the scene depicted by the conceptual space.

In fact, it is a priori fixed – see square brackets in Figure 2.13. That’s why I

call false monovalent English verbs like to rain.

2.7.3 Monovalent verbs

True monovalent groups are quite common, the first valence marks the syn-
tactic subject (S), which is always represented by a stative group whose

adposition is Plus. In terms of actants. Figure 2.14 shows the prototypical

abstract adtree of monovalent verbs.

In monovalent verbs, S can be either Agent, or Experiencer, or finally a

Patient. This value is written as a semantic feature in the lexicon (see

chapter 3). Let me show some examples.29

- (18) Carl \ominus {blinked|waved|coughed|meditated|yawned|smiled}.
- (19) Flowers \ominus {grew|budded}.
- (20) The wind \ominus {fell|rose}.

In all three cases the subject S bears Agenthood, while Patientivity and Ex-

perience are not exploited (Figure 2.15). It is important to note that valence

and actants are two sides of the same coin, i.e., the vehicle of this kind of

51
2.7. Valence and circumstantials

Initially example 22 is similar to 18. Now, the phrase is enriched with other elements. What happens if valences are already saturated? We have just seen how the notion of valence gives account of primary and secondary lips. However, NAs have strategies to specify situations beyond the internal arguments of the verb: these are called circumstantials, which acts as tertiary lips.31 Hence, as valences are already saturated, in order to enrich the phrase, the convention of circumstantials will be activated. I said 'convention' as it is an informal description for human beings, not necessarily correspondent to the formal rules I will introduce in the second part, which are machine-readable.

Convention for circumstantials: if the valences are saturated, the current phrasal adtree is extended upwards according to the tr branch signed by the adposition: non-dimensional (Minus and Slash) in the SE→NW axis, while dimensional (Plus and Times) in the SW→NE axis; attach non-dimensional circumstantials before dimensional ones.

Applicative circumstantials are solved before retransapplicative ones because they are more close to the phrase kernel, i.e., the verb and its valence(s). Conventionally, nodes of circumstantials adtrees are printed in plain, while nodes expressing valence actants are rendered in bold.

In example 22, the adposition at is Minus, therefore the adtree will be as shown in Figure 2.17 (right). The branch of the tr in the at adtree has been lengthened for readability – along the SE→NW axis, as example 22 is composed by only one single phrase.

2.7.6 Valence and diathesis transformation

The relation between valence and diathesis is a complex topic which was fully exploited by Tesnière [1959], and a full explanation is out of the scope of the present dissertation. I will give only a single example of the transformation from active to passive voice, and how this influences the valence of the verb. The adtree of example 23 is similar to the one of example 22, as was called is a passive voice. Note the small right triangle at the left of ed, which indicates that it is attached to the right branch participant call.

The diathesis transformation from active to passive decreases the value of valence of to call from two to one (Figure 2.18). Unlike ‘pure’ monovalent verbs, S in phrases governed by to be called has the value of Patient (Nv). It is also possible that S has the value of Nv: for instance, in the phrase Liza was entrusted the subject S has the value of Beneficiary. All these informations are put in the lexicon (see chapter 3 for details).

Figure 2.17: The dynamic adtree of Somebody rang at the (phone) (22).
2.7. Valence and circumstantialss in comparison

Examples 24, 25 are different, as called is bivalent. In order to saturate the second valence, the adtree is expanded below, according to the following convention.

Convention for Phrasal Adtree Specification (PhAdS): within a single phrase, the adtree is expanded downwards according to the main axis SE→NW: the current leaf node goes to the right, as it is already known, while the novel information goes to the left of the new adtree.

Figure 2.19 shows how the convention of PhAdS acts. Note that I have extended the SE→NW axis to avoid clashing between leaves. The Mimus adtree that governs the syntactic object (O) is formed, even if it is not expressed at all. The ‘zero’ indicates exactly that it was not expressed but it could be. This should not be confused with previous conventional symbols: square brackets indicate that the branch exists but it is blocked, either by a box (□), as already seen in Figure 2.12, or by a fixed morpheme like it, as in Figure 2.13.

If the O is filled by a morpheme, like in (25), the ‘zero’ will be replaced by the proper morpheme (Figure 2.19, right). As a side note, PhAdS governs determiners too, and it was already applied to solve the [phone/bell] group of example 22.

Example 26 clarifies the second part of the convention for circumstantialss. In fact, the adpositional value of with is Times, and the adtree will be built accordingly (Figure 2.20). The different direction of the Times arrow construes the scene in a very different way compared to example 25. In fact, in example 25 the information provided by the syntagm at pertains the antecedent of the current phrase and it is active, new, therefore it should stay on the left. Vice versa, in example 26 the information provided by with is retroapplicational, i.e., non-active and it is a result of nominalisation. More
specifically, with the (phone/bell) corresponds actively to a whole phrase like ‘Someone used a [phone/bell]’, and applied back – “retroapplied’ – to the main phrase Somebody called me, which is considered as a whole tr. Finally, Figure 2.21 shows the whole picture: the two saturated valences are the core of the phrase, i.e., Someone called be, while the two circumstantials are parsed following the convention presented above.

2.7. Trivalent verbs

Lucien Tesnière was the first grammarian to distinguish clearly between bivalent and trivalent verbs. An verb is trivalent when it marks morphosyntactically the Agent, the Patient and the Beneficiary, i.e., all primary lms. Typically, in NLs with the morphology of case, the third actant N_t is expressed by the dative or by a second accusative: for instance, in Latin *Antonius docet pueros grammaticam* (‘Antony teach grammar to the pupils’) and in German *das Buch kostete mich einen Taler* (‘the book cost me a Taler’). Interestingly, in these examples the Experiencer is expressed by the leftmost accusative, which is closer to the verb and more prominent than the other one. Figure 2.22 shows the abstract trivalent adtree. The symbols means the following: j, i, k are signatures of adpositions; S is the syntactic subject; O is the syntactic object; N_a, N_p, N_t are the three actants; V^3 indicates a trivalent verb. As the third actant N_t is cognitively more prominent than the second actant N_p, it will be put conventionally at a higher position in the adtree.

A proof of trivalence is given by the diathesis, e.g., the transformation
from the active to the passive voice. In fact, two transformations are possible, as stated in the following example 28, where the actants are put in evidence.34

- (28a.) $N_v(A)$ gives N_v(a book) N_v(to Charles).
- (28b.) $N_v(A)$ book is given N_v(by Al) N_v(to Charles).
- (28c.) N_v(Charles) is given N_v(a book) N_v(by Al).

Example 28a shows the trivalent verb *give* at the active diathesis (Figure 2.23, middle), while in examples 28b (Figure 2.23, up) and 28c (Figure 2.23, down) the verb *is given* is bivalent. Therefore, the Agent N_v should be expressed by a tertiary lm, i.e., a circumstantial external to verbal valences. Note that 28c is structurally impossible in NL like French or Italian.35 This means that the dictionary entry of the root *give* in the English adgram will have more transfers than the correspondent roots in Italian or French (see section 3.2 about the concept of ‘transfer’ and ‘transference’).

2.8 The most complex phrasal adtree

Figure 2.24 shows the most complex abstract tree having only one verbal node, i.e., consisting of a single phrase. In particular, it shows how to apply the convention for circumstantial with a saturated trivalent verb. In other words, it shows how tertiary lms are ordered – the names of abstract adpositional morphemes follow the order of construction: i, j, k indicate the valences, while l, m, n, o indicate the tertiary lms. Conventionally, arguments X and Y denote applicative circumstantial while W and Z denote retroapplicative ones – the name of the leaves following the same order of the adpositional morphemes.36 Of course, there can be more than one circumstantial per type; however, n is usually a small natural number, very rarely more than three, otherwise the phrase would be hardly intelligible, whatever the NL. In this schema nested adtrees are not considered, i.e., adtrees dependent from other adtrees, typically modifiers of stative groups (see chapter 7 for details about this topic).

2.9 Some case studies of adtrees

In this section, I will give some case studies of unusual adtrees. At the end of this section, the reader should have a clear idea how adtrees work in different NLs, even in complex cases.37
2.9. Some case studies of adtrees

2.9.1 Prepositional bivalent lexemes. False adpositions

In section 2.7.4 I have affirmed that there are bivalent verbal forms whose second valence is not a syntactic object O. In NLs like English or Italian, these second valences are introduced by prepositions. Therefore, adgrams should treat these prepositions not as normal adpositions but conversely as part of the lexeme. For instance, an idiomatic form like fall in love shows that the lexeme fall is bivalent: the English adpositional dictionary should register to fall and to fall in with as two different verbs: the first one is monovalent while the second one is bivalent. Note that not every preposition governed by to fall opens a new valence. Let me explain through an example.

- (29-en.) Liza fell on her knees.
- (29-it.) Lìsa è caduta sulle ginocchia.
- (30-en.) Liza fell down at school today.
- (30-it.) Oggi Lìsa è caduta a scuola.

In example 29, both English and Italian have a monovalent verb to express the action: (on her knees) sulle ginocchia is a circumstance of the falling (Figure 2.25). Vice versa, the Italian sentence 30 does not need a preposi-

![Figure 2.24: The most complex abstract phrasal adtree.](image1)

![Figure 2.25: The English and Italian adtrees of Liza fell [... knees](29).](image2)
closed by the morpheme *down* itself. Figure 2.26 shows that example 30 is a purely applicative sentence: a couple of circumstantials determine the boundaries of the falling of Liza. Note an intrinsic limit of adgrams: the English example 30 could also be *Today Liza fell down at school* (30a-en), for the purposes of this dissertation, there is no way to distinguish these two English conceptual spaces through adtrees. It is possible that this kind of nuances are not needed at all, as it is hardly even for a native speaker to distinguish semantics of English examples 30 and 30a. This limitation is even more important in NLs with more freedom in collocation, like Italian: *Ogni a scuola Lisa è caduta* (30a) and *Lisa è caduta a scuola oggi* (30b) are substantially equivalent, in my perception, being a native speaker of Italian. However, in this dissertation, adgrams do not distinguish these constructions of the same conceptual space. There are many form in English that are analogous to example 30, as for instance *to fall off*: the important fact is that they are fixed, i.e., the Minus adtree of *down* in example 30 cannot be extended further. In contrast, sometimes English verbal forms introduce a full second valence, like *to fall in*. Let me explain through a contrastive example:

- (31-en.) Carl falls in(to) the manhole cover.
- (31-it.) Carlo cade nel tombino.
- (32-en.) Carl smokes in the manhole cover.

2.9 Some case studies of adtrees

- (32-it.) Carlo fuma nel tombino.

The English and Italian adtrees 31 are quite similar: in English the only difference is an additional application of the convention for PhAdS to solve *manhole cover* (Figure 2.27). It is noteworthy that the preposition *(in|ne-)* introduces a second valence, hence it takes a Minus value, even if the adposition should take a Plus value. In other words, in 31 *(in|ne-)* is a **false adposition**. Hence, there is no circumstantial and all nodes are printed in plain. Now, let us take a look at Figure 2.28. Like in example 24, here the second valence is empty: it is not important what Carl is smoking (a cigarette? a pipe? a joint?). In fact, in example 32 the concept depicted by the conceptual space is about Carl who may be hiding for his smoking, therefore the *manhole cover* is cognitively a circumstantial.

2.9.2 To be or not to be? Stative and verbless phrases

In NLs like English or Italian, there are phrases that predicate a description or identification of the subject, usually called ´predicate adjectives´ like the following ones:

- (33.) Liza is blonde.
Chapter 2. Adpositional trees

2.9. Some case studies of adtrees

Analogous constructions are known as ‘predicate noun’ (in: Liza became a mathematician) or ‘subject complements’ (in: Liza is a mathematician). I call this collectively **stative phrases**, because they share the same structure in term of adtrees.\(^{39}\) In fact, in this kind of phrases the verbal forms like is or become are bivalent instead of monovalent, as seen until now. Incidentally, this means that to be form a whole family of adpositional morphemes when used as an auxiliary verb and a family of lexemes when used as a ‘proper’ verb.

This happens exactly for the presence of the predicate noun/adjective or subject complement. The additional valence is treated as a second valence: semantically, it is ‘as is’ Liza is an Agent and the mathematician is the Patient. The adtree will be construed accordingly – see Figure 2.29.

![Figure 2.29: The adtree of Liza is blonde (33).](image)

Sometimes stative phrases can be a bit harder to be identified. Let me explain through an example.

- (34) The sky above us.

In example 34 there is an implicit verb is signed by the box (□). Note that in this case the implicit verb is not auxiliary, and therefore it takes an additional valence: like in example 33, the preposition above is a false adposition – see Figure 2.30. What if there is no verbal form at all? Let us see an ex-

![Figure 2.30: The adtree of The sky above us (34).](image)

ample in Chinese Mandarin.\(^{39}\)
Chapter 2. Adpositional trees

(35) shù hén gui (‘books are very expensive’).

Example 35 is built morphologically as follows:

\[
\begin{array}{c}
\text{shù} \\
\text{hén} \\
\text{gui} \\
\text{book} \\
\text{very} \\
\text{expensive}
\end{array}
\]

Figure 2.31: The adtree of the Chinese sentence shù hén gui (35).

The lexeme gui is monovariantly verified by collocation, while hén modifies the verified adjective, as the Slash adposition attests. I call this kind of phrases verified phrases. In conclusion, two distinct subcases of verbless phrases can be found: stative phrases and verified phrases.

2.9.3 Mirroring

NLs with a relatively high degree of freedom in collocation put interesting problems in complex stative groups, i.e., groups head by a noun with adjectives, numerals and determiners nested in. In fact, the position of adjective in respect of nouns can mark the situation at a pragmatic level, in terms of knowledge and beliefs of the actants involved. The English language shows a low degree of freedom in collocation, and therefore it uses other strategies, such for instance cleft sentences, so I will explain this phenomenon through some examples in Italian, a NL which shows a higher degree of freedom in collocation than English.

The Italian language distinguishes two strategies very clearly with a different collocation of adjectives in respect of noun. Let us draw mentally the following situation. In example 36 there are two Agent, Liza and Bea, who are looking to handsome and not to handsome young men (the Patients).

- Lisa: Quale ti piace? (‘Which one do you like?’)
- (36) Bea: Quello alto. (‘The tall one’)

The sentence 36 is a shortcut of Quello che è alto (lit. ‘the one who is tall’), which depics two concepts: there is a young man and he is taller than the other. Hence, we have two verbless phrases which have lost any lexeme save one. The lexeme alto (‘tall’) is verified by collocation, i.e., put at the very right of the phrase, like verbs. That’s why Figure 2.32 put it on the right. Normally, the SV relation is expressed by the Plus relation but here the tv is alto while quello is the lm: the novel information is the fact that the guy is tall. For this reason, the Plus relation is mirrored and becomes a Minus relation. I call this phenomenon mirroring, because the verified lexeme stays on the right but nonetheless it is the attention focus, i.e., the tv.

Let us see a more complex example, which is constrastive. Suppose that two guys, Al and Paul, are talking about common friend.

- Al: Di chi parli? (‘Who are you referring to?’)
- Paul: (37.) (io parlo) del mio vecchio amico. (‘to my old friend’)
- Paul: (38.) (io parlo) del mio amico vecchio. (lit. ‘to my friend (became) old’).

In example 37 Paul’s friend is specified by mio (my) and vecchio (old) as a single piece of information – in fact adtrees apply the convention for PhADs recursively – while in example 38 the novel information is that he is became vecchio: in this lexeme a cleft sentence like quello che è diventato vecchio (‘the one who became old’) is summarised. Therefore, mirroring is applied (see Figure 2.33 contrastively; in brackets the unexpressed verbal form and the syntactic subject).

2.9.4 Presentatives as mirrors. Overvalence

Mirroring is not a prenegative of stative groups. The following example 39 is in Italian:

- (39.) (quiro/odomani) piove
- (approx. ‘[here/now/tomorrow] it [‘it’s raining/will be raining’]).

According to Figure 2.12, seen previously, which shown the adtree of piove, the additional argument (quiro/odomani) is a circumstantial and the adtree should be constracted accordingly (Figure 2.34, left). But, for the effect of mirroring, valence value is augmented by one and the Plus tree is mirrored to a Minus tree (Figure 2.34, right). This augmentation caused by mirror-

ing is called overvalence. More examples in other NLs of mirroring are offered, where the adtrees are just like example 39:

Figure 2.32: The adtree of the Italian sentence Quello alto (36).

very right of the phrase, like verbs. That’s why Figure 2.32 put it on the right. Normally, the SV relation is expressed by the Plus relation but here the tv is alto while quello is the lm: the novel information is the fact that the guy is tall. For this reason, the Plus relation is mirrored and becomes a Minus relation. I call this phenomenon mirroring, because the verified lexeme stays on the right but nonetheless it is the attention focus, i.e., the tv.

Let us see a more complex example, which is constrastive. Suppose that two guys, Al and Paul, are talking about common friend.

- Al: Di chi parli? (‘Who are you referring to?’)
- Paul: (37.) (io parlo) del mio vecchio amico. (‘to my old friend’)
- Paul: (38.) (io parlo) del mio amico vecchio. (lit. ‘to my friend (become) old’).

In example 37 Paul’s friend is specified by mio (my) and vecchio (old) as a single piece of information – in fact adtrees apply the convention for PhADs recursively – while in example 38 the novel information is that he is became vecchio: in this lexeme a cleft sentence like quello che è diventato vecchio (‘the one who became old’) is summarised. Therefore, mirroring is applied (see Figure 2.33 contrastively; in brackets the unexpressed verbal form and the syntactic subject).

2.9.4 Presentatives as mirrors. Overvalence

Mirroring is not a prenegative of stative groups. The following example 39 is in Italian:

- (39.) (quiro/odomani) piove
- (approx. ‘[here/now/tomorrow] it [‘it’s raining/will be raining’]).

According to Figure 2.12, seen previously, which shown the adtree of piove, the additional argument (quiro/odomani) is a circumstantial and the adtree should be constracted accordingly (Figure 2.34, left). But, for the effect of mirroring, valence value is augmented by one and the Plus tree is mirrored to a Minus tree (Figure 2.34, right). This augmentation caused by mirror-

ing is called overvalence. More examples in other NLs of mirroring are offered, where the adtrees are just like example 39:

Figure 2.32: The adtree of the Italian sentence Quello alto (36).

very right of the phrase, like verbs. That’s why Figure 2.32 put it on the right. Normally, the SV relation is expressed by the Plus relation but here the tv is alto while quello is the lm: the novel information is the fact that the guy is tall. For this reason, the Plus relation is mirrored and becomes a Minus relation. I call this phenomenon mirroring, because the verified lexeme stays on the right but nonetheless it is the attention focus, i.e., the tv.

Let us see a more complex example, which is constrastive. Suppose that two guys, Al and Paul, are talking about common friend.

- Al: Di chi parli? (‘Who are you referring to?’)
- Paul: (37.) (io parlo) del mio vecchio amico. (‘to my old friend’)
- Paul: (38.) (io parlo) del mio amico vecchio. (lit. ‘to my friend (become) old’).

In example 37 Paul’s friend is specified by mio (my) and vecchio (old) as a single piece of information – in fact adtrees apply the convention for PhADs recursively – while in example 38 the novel information is that he is became vecchio: in this lexeme a cleft sentence like quello che è diventato vecchio (‘the one who became old’) is summarised. Therefore, mirroring is applied (see Figure 2.33 contrastively; in brackets the unexpressed verbal form and the syntactic subject).

2.9.4 Presentatives as mirrors. Overvalence

Mirroring is not a prenegative of stative groups. The following example 39 is in Italian:

- (39.) (quiro/odomani) piove
- (approx. ‘[here/now/tomorrow] it [‘it’s raining/will be raining’]).

According to Figure 2.12, seen previously, which shown the adtree of piove, the additional argument (quiro/odomani) is a circumstantial and the adtree should be constracted accordingly (Figure 2.34, left). But, for the effect of mirroring, valence value is augmented by one and the Plus tree is mirrored to a Minus tree (Figure 2.34, right). This augmentation caused by mirror-

ing is called overvalence. More examples in other NLs of mirroring are offered, where the adtrees are just like example 39:
Chapter 2. Adpositional trees

Figure 2.33: The adtrees of Del mio {vecchio amico/amico vecchio} (37,38).

Figure 2.34: The adtree of {qui/ora/domani} piove (39).

2.9. Some case studies of adtrees

- (40-la) ecco homo. (‘here the man’)
- (40-en) now you, then him.
- (40-it) ecco-lo: è arrivato un bastimento carico di...

In the Italian example 40 we have two subsequent presentatives: the lms are *ecc-*, (approximately, ‘here’) and *è arrivato* (‘it’s come’), while the trs are -lo (‘him’) and *un bastimento carico di*... (‘a ship loaded with...’). Note that both English and Italian put the trs in “fossil cases”, i.e., cases that are no longer productive. In fact, English uses dative-accusative him, while Italian uses the pronominal accusative -lo. As a proof, both *then he* and *ecco egli* are ungrammatical.

Mirroring and overvalence solve apparently ‘strange’ sentences which otherwise could not exist, according to the conventions described until now. Let me explain furtherly through an additional couple of examples:

- (41-en) it’s raining cats and dogs.
- (41-it) piovono sassi. (lit. ‘it’s raining stones’)

Let us start from Italian. The collocation shows that *sassi* is not *S* of *piovono*: a proof is that *sanni piuveno* is ungrammatical. Hence, there are two concepts here: the first concept is *qualcosa che piove* (41a-it) ‘something which is raining’, that eventually becomes *piovono*, while the second concept is *sanni sono* (41b-it) ‘this something raining is stones’. The first component (41a) gives the final lm, while the second one (41b) forms the final tr. Figure

Figure 2.35: The adtrees of *qualcosa che piove* (41a) and *sanni sono* (41b).

2.35 shows respectively the two components. In the left one (41a), there is a node *t* meaning ‘trace’, which marks the use of the Italian lexeme *che*, which introduces a relative clause. In adgrams, relative clauses are like big adjectives, with the important feature that they solve a valence. Finally, note that the node *piove* in the first part (41a) is a (red) lm, while the node *sanni*...
in the second one (41b) is a tr: this fact is respected by the final adtree (41).

Figure 2.36: The adtree of qualcosa che piovere sono sassi (41ab).

Figure 2.37: The adtree of piovere sassi (41).

final, simplified adtree. Note the transformation piovere (singular) > pioverono (plural): agreement is needed, as Italian is a highly inflective NL.

The English example 41 is similar. The first component it's raining is the Im (Figure 2.38, left), while the second one cats and dogs is the tr – Figure 2.38, right; and is symmetrical, hence it is Times.\[42\] Here there is mirroring without overvalence: the behaviour of the tr is like the one of circumstantial, i.e., it is attached above the current adtree (in fact, it cannot be attached anywhere else, because there is only the verbal node raining which is semantically non-empty). For mirroring, the Plus node becomes a Minus node: the two syntagms it's raining and cats and dogs are two different phrases, so they are attached in the way depicted by Figure 2.39. It is noteworthy that morphosyntactic structures like the ones presented in example 41 are often freezeed, i.e., they are idiomatic expressions, so they will be perceived as a single, unique block. I will come back to this topic later.

2.10 Phrasal adpositions or junctions

When I have put together the two parts of the previous Italian example (41ab) adpositions have been used in a way I did not present yet, i.e., the connector of two different phrases qualcosa che piovere and sono sassi. In fact, until example 40 the reader have been shown only simple sentences, i.e., sentences with only one phrase. What if there are more than one verb in a single sentence? Most language-in-use is made of this kind of sentences, which are usually called \textbf{complex sentences}.

In adgrams, the mechanism of adtree functions equally well for the \textbf{basic level}, i.e., the structure of the single adtree, and for the \textbf{phrasal level}, i.e., how adtrees are joined together. Some adpositions are devoted only to adtrees junction; these are called \textbf{phrasal adpositions or junctions}. When I will need to distinguish phrasal adposition to 'ordinary' ones, I will talk about "basic-level adpositions". Some phrasal adpositions in English are \textit{but}\textit{however}\textit{still}\textit{nevertheless}, which are all Slash, as the second participant is more relevant than the first one.\[43\] Other examples of phrasal adpositions are \textit{how}, \textit{while/whilst}, and the \textit{ub} series.\[44\] Note that there is a class of adpositions that can be applied at both levels: two good examples are \textit{and} and \textit{that}.\[45\] Let me explain through a series of examples number 42, all concerning the same situation.
Chapter 2. Adpositional trees

- (42a-en.) Al knows that book.
- (42a-it.) Alfredo conosce quel libro.
- (42b-en.) Al knows that Carl is studying.
- (42b-it.) Alfredo sa che Carlo sta studiando.

The *that* in example 42a is simply an adjective of *book*, i.e., an element of the lexicon put in a leaf, as clearly shown by Figure 2.40. The English and Italian adtrees of examples 42a and 42b are perfectly symmetrical. However, the English example 42b shows a completely different *that* compared to the one in example 42a: *that* is a phrasal adposition. In fact, in other NLs, such as Italian, two different morphemes play these roles: *quel* : *che* – compare Figures 2.40,2.41. More specifically, the second *that* introduces

![Diagram](#)

Figure 2.40: The English and Italian adtrees of *Al knows that book* (42a).

Italian adtrees of examples 42a and 42b are perfectly symmetrical. However, the English example 42b shows a completely different *that* compared to the one in example 42a: *that* is a phrasal adposition. In fact, in other NLs, such as Italian, two different morphemes play these roles: *quel* : *che* – compare Figures 2.40,2.41. More specifically, the second *that* introduces

![Diagram](#)

Figure 2.41: The adtree of *Al knows that Carl is studying* (42b).

2.10. Phrasal adpositions or junctives

A whole phrase which is a syntactic object O, so it is expressed as the second valence argument. Finally, note that the phrasal adposition that : *che* introduces the adtree that saturates the second valence of *knows : conosce*.

Phrasal adpositions can be placed in the adspace according to the dichotomy tr/lm. If I need to refer only to the placement of phrasal adposition in the adspace, I will talk about *phrasal adspace*. As phrasal adpositions are the result of grammaticalisation, they are all retroaplicative (as explained in section 2.4), therefore phrasal adspace will be only discriminated by the dimensional axis. More specifically, phrasal adpositions can be either Slash or Times. Let me explain through a multilingual example (only trs are signed, through the big triangle).

- (43a-en.) $\triangle (Al$ can pay), because he is rich.
- (43a-fr.) $\triangle (Alfred peut payer), parce que il est riche.$
- (43b-en.) $\triangle (Alfredo può pagare), (perché/ poiché) è ricco.$
- (43b-fr.) Al is rich, hence (therefore) $\triangle (il$ can pay).
- (43b-fr.) Al peut payer, donc $\triangle (il$ est riche).

French *parce que*, Italian *poiché, perché*, or English *because* mark the first group as the tr and the second one as the lm, while Italian *dunque, pertanto*, French *donc* and English hence, therefore work in the opposite way: the first element is lm, while the second one is tr. I will not give a complete taxonomy of French, English, or Italian phrasal adspace because it is out of scope of this dissertation. However, it is important to distinguish the basic and phrasal levels of adpositions since now.

In the sequel of this chapter, I will delve into two important phenomena related to phrasal adpositions: splitting and zero junctives.

2.10.1 Splitting

A place apart is given to the phenomenon of splitting, brought by some symmetric adpositions – therefore, they are Times – which can be applied both at basic and phrasal levels. In English, the most important are (*both... and and (neither)... (nor. They are pragmatically very important, because they permit to have more than one actants in the same role at the same time, without valence transformation. Let me explain expanding the previous example:

- (42c.) *Al and Carl study in the library.*
- (42d.) *Al studies in the library and Carl plays home.*
Chapter 2. Adpositional trees

- (42c) Al studies in the library and is sad.

In example 42c Al and Carl are two first actants, i.e., two Agents, within a single verbal form study: the adposition is applied at the basic level of the first valence S, while the second one is zero at the top there is an applicative dimensional circumstantial (Figure 2.42). In contrast, the same adposition in example 42d connects the two phrases, hence it is applied at a phrasal level (Figure 2.43). Finally, in example 42e Al is a single Agent for two different phrases, and the presence of and permit the use of the trace\(^{\epsilon} \) (Figure 2.44). I call this kind of adpositions split adpositions exactly because they let the semantic role be split into two different referents – or more, if applied recursively.\(^{47}\)

2.10. Phrasal adpositions or junctives

As previously explained for the basic level, some adpositions do not have a morphemic realisation – they are called zero adpositions. Similarly, there are some junctives with no morphemic realisation. Let me use an example from the classics.

- (44) \(\text{vēnīt} \) \(\text{vīsit} \) \(\text{vēnīt} \)

Example 44 is a complex sentence meaning ‘I came, I saw, I conquer’, pronounced by Julius Caesar after a great victory, according to historians Plutarch and Suetonius. The three words are selective verbs, so that each one forms a phrase (Figure 2.45). The word-phrases are simply juxtaposed:

Figure 2.42: The adtree of Al and Carl study in the library (42c).

Figure 2.43: The adtree of Al studies in the library and... (42d).

Figure 2.44: The adtree of Al studies [...] and is sad (42e).

75

76
2.0. Phrasal adpositions or junctives

in Latin the syntactic subject S is put before the syntactic verb V, so the syntactic subject S will be the tr and V the lm. The adposition t bring different semantic features: person (first), number (singular), tense (past as time, completeness as aspect), so the tr is not expressed. Note that the way in which adtrees are built rightly put in evidence that the last element in juxtaposition is more salient than the others, as the SW—NE axis starts from the known and grows with the new: this textual strategy is known in rhetorics as 'climax'.

Unlike basic-level adpositions, zero junctives can also be marks of punctuation like commas, semicolon, etc., at least in NLs written in some Roman alphabet. Let me show an example in Italian.

- (45) Si scatenò un finimondo: urla, insulti, scherni, ingiurie.

Example 45 means 'Bedlam broke loose, (and) shouts, insults, mockeries, affronts'. Unlike previous example 44, in example 45 (Figure 2.46) there is a single phrase, so the adtree is built on the SE—NW axis. This is a presentative form, so the adtree is mirrored, and tr is on the right, as explained before, governed by the highest Minus.

The inner Minus of the verbal group Si scatenò solves the second valence: this Italian verb is reflexive. Verbal reflection is a verbal phenomenon falling under the rubric of the diathesis paradigm. Adgrams represent it as follows: a bivalent verbal form solves its second valence with a fixed morpheme that acts as a trace of the first valence. In the case of Italian, this fixed morpheme is the proclitic pronoun Si. The first valence is expressed by un finimondo; all the rest is circumstantial.

Figure 2.45: The adtree of *veder stalf delf* (44).

Figure 2.46: The adpositional tree of *Si scatenò un finimondo...* (45).
2.10.3 Phrasal adpositions in different natural languages

The presence of phrasal adpositions is a language universal, but different NLs use different adspatial strategies to construe conceptual spaces and hence render the same content. Let me explain through a multilingual example.89

- (46-en.) The library where I often study literature is far away.
- (46-ital.) La biblioteca dove studio spesso letteratura è molto lontana.
- (46-zh.) wǒ chǎng xué xué wéi de tūn hū guǎn lǐ zhí bèi yuǎn.
- (46-jp.) watashi ga bun gaku wo benkyoo suru toshokan wa tooi desu.

English and Italian adtrees are symmetrical, save the fact that Italian can omit the syntactic subject S, as the verbal final -a marks the person (first) and the number (singular), as Romance languages often do (Figure 2.47). In order to see a different strategy, we should turn to NLs out of the Indo-European family. In Chinese, there is a pro forma question marker which can govern every type of groups, rendered morphologically as de.80 The two main phrases are wǒ xué xué (‘I study literature’) and tūn hū guǎn (‘the library is away’). At the intra-phrasal level, note that zhè hú ‘far’ lit. is ‘from here’, so it should be considered as a circumstantial, unlike Indo-European languages like English or Italian. At the inter-phrasal level, there is a specialised Slash adposition to express the relation without touching the collocation of the components: no overvalence or other strategy is needed (see Figure 2.48, down). Japanese has a phrasal adposition similar to Chinese, suru (see Figure 2.48, up). Adpositions ga and wa indicate the SY relation, but they are not synonyms: for the purposes of this dissertation, it is enough to know that they are both Plus.81 There is no use of circumstantial in this Japanese sentence.

2.11 A cross-linguistic example

NLs differ in organising conceptual spaces. In order to understand well how adpositional spaces influence the way people organise content, let us see a cross-lingual example in parallel. More specifically, this will be given in English, Italian and Turkish.82 The conceptual space is populated by three actants:

- Actant A: a man, the Agent (N_a);
- Actant B: an unknown book, the Patient (N_p);
- Actant C: man’s hands, the Instrument (N_i);

Figure 2.47. The English and Italian adtrees of The library where I... (46).
Chapter 2. Adpositional trees

2.11 A cross-lingual example

- Action: reading.
- Table 2.1 shows some lexemes for the actants involved in the examples present in the following sections.

2.11.1 A patientive trajector with two different landmarks

Figure 2.49: The Patient as tr with a red lm and a blue lm (example 47).

The conceptual space 47 is shown in Figure 2.49. B is the tr, C is a red lm, i.e., introduced by an applicative adposition, while A is signed retroapplicatively and non-dimensionally. The in-line examples evidenciate the most interesting adpositions, while adtrees show the whole structure of the phrase, as in previous examples.

- (47-en.) A book is (in) the hand-s (of) a man.
- (47-it) Un libro è (ne-ll-e) man-i (di) un uomo o.
- (47-tu) Kitap adam-(in) el-in-(de=)-dir.

Figure 2.50 shows that the English and Italian adtrees are identical – save for the leaves. In contrast, the Turkish adtree shown in Figure 2.51 is different. This is the main adspace of Turkish (the brackets are put according to the vowel harmony rules of Turkish):55

- Plus: -de.
- Minus: -siz, -tel, -te.
- Slash: -den,-Bell.
- Times: -siz, -le, -yapma.

Example 47 is built morphologically as follows:

kitap adam-ı in el-ı in- de- -dir
book man of hand his in to be

The verb -dir (‘to be’) is bivalent, while the main noun el-ı is specified twice by Adam-ı and -in. The adposition -de is a false one, so to govern the second valence. The rest of the adtree is analogous to the English and Italian ones.
2.11. A cross-lingual example

Figure 2.51: The adtree of Kitap adamın elindedir (47).

2.11.2 A patientive trajector with two similar landmarks

Figure 2.52: The Patient as the trajector and two red landmarks (48).

Now, let us see the conceptual space of example 48 drawn in Figure 2.52: the book B is still the tr, while the Agent and the Instrument are both red lms.

- (48-it) Un livre-o è ô(e) un homme-o.

It seems that only Italian can construe this mental space, as far as I know.34

2.11.3 Red vs. blue landmarks

In Figure 2.54, the Agent A becomes the tr, while the Patient B is depicted retroprojectively but in the same spatiotemporal situation, i.e., dimensionally. There is no mention of the Instrument (more precisely, it is part of the Agent). How is this conceptual space expressed in English, Italian and Turkish?
Chapter 2. Adpositional trees

Figure 2.53: The adtree of *Un libro è in mano a un uomo* (48).

Figure 2.54: The Agent is trajector while the Patient is a blue landmark (49).

2.11. A cross-lingual example

- (49-en.) *A man is with a man*.
- (49-it) *Un uomo è con un libro*.
- (49-tu) *O kitap adam-dir*.

Again, in example 49 the English and Italian adtrees are very similar (see Figure 2.55). Adpositions with *con* are false, as the bivalent verb is *to be*

Figure 2.55: The English and Italian adtrees of *A man is with a man* (49).

with : essere con, a situation already explained in section 2.9.1. In contrast, the Turkish adtree is far more simple (see Figure 2.56). Example 49 is built morphologically as follows:

- O kitap-adam-dir
- That book his man is

Interestingly, the Turkish language use the determiner *O* as the syntactic subject *S*, instead of the Agent *adam-* , which is part of the second valence, unlike English and Italian.

2.11.4 The relation of possession

Let us see how the convention for PhAdS acts in NLs like Italian and English, while in Turkish is not so heavily needed. In conceptual space 50, the
book B is the tr while the man A is its owner, i.e., the Agent A is in a non-dimensional retroapplicative relation with B (in fact, it is the owner even in absentia). In this case, the three NLs use different strategies:

- (50-en.) The man’s book.
- (50-it.) Il libro di quell’uomo.
- (50-tur.) Adamın kitabı.

Example 50 is shown in Figure 2.57. The strategy of English is shown in Figure 2.58 and the strategy of Italian is shown in Figure 2.59.

2.11. A cross-lingual example

Figure 2.59: the adtree of Il libro di quell’uomo (50).

Figure 2.60: the adtree of Adamın kitabı (50).

2.11.5 The diathesis transformation active-passive

The transformation from active to passive voice is very important. In example 51 the Agent is tr, the Patient is tn, and the action is expressed actively – see Figure 2.61. There are no circumstantial, so there is no need

Figure 2.61: A standard V/O sentence, the verbal form in active voice (51).
Chapter 2. Adpositional trees

of bold in adtree drawing. Vice versa, in example 52 the same content will
expressed passively (Figure 2.62). Here, the Agent will be expressed by a
circumstantial, therefore its nodes will be printended in plain. The three NLs
express example 35 as follows:

- (51-en.) The man read-s @ the book.
- (51-it.) L’uomo legg-e @ il libr-o.
- (51-tu.) Adam kitab-ı oku-yor.

Figure 2.62: A standard VO sentence, the verbal form in passive voice (52).

2.11. A cross-lingual example

Figure 2.63 shows how English put concept in the conceptual space: the
verbal form reads is rightmost, as it is known, while the man (Agent) is left-
most, as it is the new information. Finally, the book is below the man being
the second valence. Italian conducts analogously, except for the explicit
marker in the Plus relation. Vice versa, the Turkish adtree is simpler, as it
needs no determiners (i.e., there are no Slash relations, see Figure 2.64).

Example 52 shows the same phrase in the passive diathesis (Figure 2.62).
The first step is to define the valence of the verb at passive: in all three NLs
the lexemes became monovalent (this information is available by
dictionary). Therefore, tertiary lms (i.e., circumstantial) should be pro-
vided if we want to express explicitly Agent A.

- (52-en.) The book is read ◁(by) the man.
- (52-it.) Il libr-o è lett-o ◁(da) l’uom-o.
- (52-tu.) Adam ◁(-m) oku-duş-u ◁ bir kitap.

Example 36 is similar to example 23 (see the previous section). In English,
the Nv is moved as the Sv at the immediate of V, while Nw became a
circumstantial with a Slash adposition, which is opposite to Plus. Now, the
Plus relation is head by the auxiliary verb is (see Figure 2.65). The adtree
of Italian is identical to the English one, except for the leaves. The case
of Turkish is different (see Figure 2.66). Example 52 in Turkish is built mor-
phologically as follows:

adam ◁(-m) oku ◁ duş ◁(-m) bir kitap

The relative phrase Adamm okudugu (literally, ‘man write’) is a circumstan-
tial of the verbless phrase bir kitap (literally, ‘one book’), compare with the
Chinese Mandarin 背古 seen in example 35, Figure 2.31). The complex
morpheme ‘duş’ introduces a relative clause and at the same time modifies
the verbal node oku.

Figure 2.63: The English and Italian adtrees of The man reads the book (51).

Figure 2.64: The adtree of Adam kitabı okuyor (51).

The book of read ◁(by) the man.

Figure 2.65: The adtree of Adamm okudugu (52).
Chapter 2. Adpositional trees

Figure 2.65: The English and Italian adtrees of The book is read by...

Notes

1. I am partly following section 2.2 of Schubert [1987] for the dichotomy constituency-dependence.
2. See Chapter 3 of Schubert [1987] for the reception of Tesnière’s work.
3. However, an interesting proposal for an efficient dependency-based parser is Topological Dependency Grammar (TDG) proposed by Debussche [2001], which addresses exactly this kind of problems.
4. This intuition is taken from Silvio Cecatto’s works, in particular Cecatto [1963a] and Cecatto [1963b]. The main difference between adgrams and Cecatto’s approach is the typology of possible relations. In fact, Cecatto used a semantic network where arcs are tagged with the appropriate relation. Consequently, the number of possible tags increased enormously. In contrast, adgrams have only four types of relations, as I will present in the following sections.
5. The English preposition without is clearly formed by within and out; nonetheless, the degree of grammaticalisation is so high that a morphological analysis is useless (see section 2.4 for details about nominalisation and grammaticalisation phenomena).
6. The examples in Figure 2.3 are taken from the Italian translation Brondal [1967, 1967–204], as the original Brondal [1940] is very difficult to find.
7. Semantically, readers can easily remember the abbreviation ‘tr’ – the first two letters of both ‘trajector’ and ‘triangle’.
8. Under a phonological perspective, the tr often is revealed by a more relevant pitch than the lm. This line of reasoning is of maximum interest, however, it is out of the scope of the present dissertation.
9. According to Langacker, the dichotomy trajector/landmark is conceptually distinct from the figure/ground distinction, as the first pertains the focus of attention, while the second one pertains the foreground/background perspective (see Croft and Cruse [2004, 58, note 5]). However, this nuance is not important in adgrams.
10. For examples, cognitive linguists put themselves questions like: why in Italian we an-iamo del dottore (lit. ‘we go from the doctor’) when in English we go to the doctor (Udiamo al dottor in Italian)? Those questions can be interesting for the encyclopedic scope of (lexi- cal) semantics, but they fail completely to build a coherent system. This kind of differences belong to the non-compositional part of the semantic structure, i.e., they belong to content, not to the conceptual space (see Introduction). As argued by Ferdinand de Saussure, each NL is an autonomous system in respect of its phonological and morphosyntactic relations. Therefore, it makes no sense to analyse prepositions cross-linguistically prima facie, i.e., without having established previously a robust linguistic system.
11. The example scenario is made by sentences and pictures kindly given by Pennacchietti.
12. See, for instance, Pennacchietti [2006] for an alternative explanation in Italian of the same line of reasoning.
13. For the purposes of this dissertation, adgrams are made on nominative-accusative NLs, i.e., ergative-absolutive NLs like Basque are out of the framework.
16. When referring to single NL grammars, I will use terms from the grammarian tradi- tion when they are well-established. In my view, traditional grammar is often cleaner in defining morphosyntactic phenomena than new proposals. Of course, these terms cannot be generalised, i.e., applied cross-linguistically, without taking great care.
17. I am following Stumpf for giving me this (unpublished) classification of English.
18. When it is used prepositionally, she rolled off the bed, is neither as in the preceding is off nor be ran, where it is used as a circumstantial, see section 2.9 hereafter for details.
This treatment of the English preposition in as an oversimplification. In fact, in a sentence like The farmer shot the rabbit with a slingshot the role of in is far different (more precisely, it is a Slash (\)). I will discuss this case speaking about the adpositional space of Esperanto in the second part, which distinguishes clearly between the two roles of in, in NLs like English or Italian these cases can be solved only by collocation.

Cecatto [1981b] talked about correlazioni, correlazioni, for what I call dispositions, and trace correlate ‘first correlate’ and second correlate ‘second correlate’ the two groups involved by the adposition. Cecatto’s program of research has been presented in Italian in Cecatto [1981a]. His major English contribution is Cecatto [1963c] in Cecatto [1981d]. After the famous report by ALPAC [1966], this research program ceased. For an evaluation of Cecatto’s Correlational Grammar, see Glaeser [2001] in Hutchins [2001].

More precisely, example 15 entails example 14, because '14 is true whenever 15 is true. Consequently, 14 and 15 are synonymous, even if their conceptual spaces differ, they evoke the same content. See Chapter 3 for the notion of entailment and synonymy.

In reality, the angle is a bit less than 45 degrees, for typographic needs which will be obvious when adverbs will become very complex.

It is important not to identify groups with the chomskian Noun Phrase (NP) or Prepositional Phrase (PP). In fact, any minimal adverb has an adposition as head – it can be a zero adposition if it is signed by collocation only; nonetheless, it is an adposition. Hence, any minimal adverb should be called a Prepositional Phrase in Chomskyian terms, and this is clearly useless.

As said in the opening of this chapter, I will retain the tenorian notion of valence; readers should care that cognitive linguists use the term ‘valence’ in a different sense (see the glossary in Taylor [2002]). Note also that Anna Wierzbicka is a notable exception: she distinguishes dictionary and encyclopedia. See at least Wierzbicka [1988].

The analysis of adverbs is important to perform what Tesnière called ‘metataxis’, i.e., the set of rules necessary to transform adverbs, for example for translation purposes. I will come back to this topic in the third part.

I will partly follow the taxonomy offered by Taylor [2002], section 21.3, partly the used by Penneucci, who adheres to the original model proposed in the classic contribution by Fillmore [1968] in Bach and Harms [1986]. In particular, I consider Agenthood as a category both with animate and inanimate entities, because they are functionally equivalent. An immediate corollary is that an Instrument can be animated as well as inanimat.

Finally, I do not consider the ZERO category proposed by Taylor [2002] really useful for my purposes.

Purpury was a third-century scholar who wrote an evocative of Aristotle’s notion of genus and species, pauryye. In this work was introduced a taxonomy with the aim of classify any entity, from God to nature. Its taxonomy is structured as a binary tree which deeply influenced Western philosophy. If the reader wants to delve into the topic, I suggest starting from Eco [1993]. Note that Tenesian trees are not Purpurytan at all; they resemble the trees used by the German philologist Karl Lachmann, mostly used in semantics [Timpau 1990].

In Italian, there are three different paradigms of ‘weak verbs’, signed by the so-called ‘prepositional in’ in the infinitive: ‘-esse, ‘-ere, ‘-essere. The signatures of the three different paradigms of weak verbs are equivalent as the three paradigms are symmetric.

In the case of circumstantial adverbs, it is the adposition which give the right character. In examples 22-26, it is a punctual locative adposition, so the correspondent semantic role will be Place, following the taxonomy by Taylor [2002]. However, for the purposes of this dissertation, adverbs play a role mainly to clarify how valence works, so I will not delve into the complex and debated topic of the ‘right’ or ‘universal’ taxonomy of semantic roles. In my view, these should be applied only when they are needed to disambiguate nuances beyond morphophrasis, i.e., I use Ockam’s razor about the taxonomy of semantic roles.

In Penneucci’s terminology, primary and secondary ions are collectively defined as ‘inferior circumstantial’, while circumstantial are called ‘superior circumstantial’. These terms are appropriate if the reader looks at the structure of adverbs. However, I prefer to speak about primary, secondary and tertiary ions. A

Notes

This is the famous (Markov) model of probabilistic sequencing. It was first described by Markov [1913].

In probabilistic sequencing, the events are assumed to be independent.

The Markov assumption is that the probability of a future event depends only on the present event and not on the past events.

The Markov model is widely used in natural language processing, particularly in speech recognition and text generation.

Computational models of language are based on the assumption that the language is generated by a probabilistic process.

The Markov model is one of the simplest models of language, and it is often used as a benchmark for more complex models.

The Markov model is a simple and powerful tool for modeling language. It can be used to predict the next word in a sentence, given the current word.

The Markov model is a useful tool for understanding language, and it has been widely used in research.

The Markov model is a simple yet powerful tool for modeling language. It can be used to predict the next word in a sentence, given the current word.

The Markov model is a useful tool for understanding language, and it has been widely used in research.
Again, if some native speaker or language expert of English or Turkish can find a relevant example, please drop me an email.
Chapter 3

Dictionary and lexicon

The lexicon is the set of meaningful units of a given NL. In cognitive grammar, while adpositions give the co-text grounding, the meaning belongs to lexemes. In other words, even if every morpheme is a brick of the language building, only lexemes are specialised in conveying meaning. Chapter 2 showed adtrees, the scaffolds of meaning, while in this chapter the building will be completed, presenting how the lexicon is made and how it is put into adtrees.

Adgrams fully endorse the conceptualist approach already presented in the introduction: i.e., contra Dewey, Wittgenstein and Quine, there is more to the meaning of an expression than the overt use that we make of the expression.1 I argue that language – even considered only as a skill – cannot be reduced to a mere observation of behaviours: human beings are more intelligent than Weizenbaum’s Eliza. It is true that there are semantic and pragmatic aspects that can be solved only in terms of encyclopaedic knowledge, and I will fully acknowledge the limits of adgrams in that sense. The error made by the philosophical line followed by Quine is that encyclopaedia can explain every linguistic knowledge, i.e., language (or, at least, meaning) is strictly reduced to use – we could call it a ‘panencyclopaedic’ approach to language. Within the cognitive grammar approach, only Wierzbicka [1988] insists to distinguish encyclopaedia versus dictionary, which have different properties – see Table 3.1. This distinction is still valid in adgrams. As said in the introduction, semantics cannot be captured by a semantic metalanguage that evaluates meaning in terms of truth and falsity: adgrams are agnostic with respect to world models. Encyclopaedia does not need to be compositional. Meaning is made by the encyclopaedia and the dictionary, but adgrams deal only with the latter – except of valence and actants. Therefore, each dictionary is language-dependent: in this chapter I will give examples from different NLs.

Lexical semanticians often adhere either to the monosemous analysis, starting from De Saussure [1970], or to the polysemic analysis [Katz and Fodor, 1963]. For example, in the polysemic approach, the different meanings of the lexical entry bachelor, such as ‘an unmarried adult man’, ‘a person who has taken a first university degree’, and ‘knight serving under the banner of another knight’, are viewed as disjoint, while in the monosemous method a more abstract meaning, ‘unfulfilled in typical male role’ is found, being the prototypical meaning – see Korsal [2008, 488-489] for details. Following the principle of linguistic adherence presented in the introduction, adgrams are inclined to the monosemous approach, at least within a single NL. In fact, it is perfectly coherent and obvious to separate the different meanings of a single lexical entry like bachelor when performing a translation. For instance, in Italian the prototypical use is rendered as celibato while the holder of a BA degree is usually translated to diplomato – see chapter 8 for more details.

But how is this inventory of meaning structured? The dictionary is made by the lexicon and the adspace. While the adspace – the set of adpositions of a given NLS – does participate into the construal process of meaning building, the lexicon as a whole is vehicular of semantics. The lexicon is made by the infinite set of lexemes and the finite set of affixes. Traditionally, morphemes are divided into free morphemes, like farm, rabbit, roof, slope, gent, down, up, which can stand alone in the linguistic chain, and bound morphemes, which should be always attached to free ones, like -er, -s, -ly, -wards.

I have just talked about ‘lexical entries’, which is synonym of ‘lexeme’ where I refer to the structure of the dictionary. For the moment, I call lexeme a no further analysable free morpheme. For instance, farm is a lexeme while farmer is a word made by two morphemes: the free morpheme farm and the affix -er (more precisely, the suffix -er). In adgrams a word is simply a given combination of two or more morphemes.

The dichotomy free versus bound is very useful and functional for morphology, so I will retain it, but it is not sufficient for depicting a good inventory. Linguists often consider the core of the lexicon made by free morphemes, while the various grammar relations should belong only to bound morphemes. But there are a lot of morphemes, like the, us, by, which are free and clearly have grammar functions (the morphemes used as exam-
3.1 Grammar character, moduli and signatures

We need general, cross-linguistic criteria to find the inner structure of morphemes. Looking to the linguistic research into universals of language, there are two ‘conceptual archetypes’ (Langacker) that can be found in any NL things and events. Of course, each NL shapes in its own way things and events, that traditionally are signed with the grammatical categories of ‘noun’ and ‘verb’, which are two opposed poles. The main problem of traditional grammatical categories like noun, verb, adjective, adverb, passive voice, etc., is that they are usually considered ‘fixed into the lexeme’, because they derived from classical tradition, i.e., from ancient Greek and Latin grammarians.

In what follows, I will argue to solve the problem of grammatical categories, partially following a proposal by Whorf, almost completely neglected by theoretical linguistics, as far as I know. Whorf refers to the familiar ‘parts of speech’ of most European NLs as selective grammar characters, i.e., their membership is fixed contrasted with the opposed polarity, without any regard to collocation. For example, in English, there are some words that are selective verbs, such as reduce, survive, perplex, magnify, re-create, while other words are selective nouns, as instrument, elephant. I call ‘noun’ and ‘verb’ only lexemes whose grammar character is clear by selection. In fact, in such cases, an English speaker does not need to collocate them into the co-text, i.e., on the syntagmatic axis, in order to know their role in the phrase: he or she knows it by selection.

However, most English words cannot be marked selectively as verbs or nouns without co-text. Some examples are: head, hand, stand, walk, exchange, sight, skin, waste, dog, surrender, manage. In these cases, we should to talk about modulus of stativation, when the morpheme acts as a noun, and modulus of verbalization, when it acts as a verb. For instance, I can say that walk can be stative in let’s take a walk and verbalized in I walked across the street. Therefore, it is better to talk about ‘grammar character’ instead of ‘grammatical categories’, as the term ‘character’ refers to a property, which implies that it can be present or absent, while ‘category’ refers to something

In example 53a the presence of the article a denotes that a single, particular fish was seen, while in 53b the absence of the article (marked by the sign: e) denotes plural. In 53c, the signature the of the [-PLURAL] modulus is overtaken by the selective adjective plentiful. If in 53a the signature of the [-PLURAL] modulus is overt, in 53b and 53c the signature is covert. There is always a covert signature when there is no visible signature, i.e., no morpheme specialised for that syntactical function. Alternatively, it is possible to say that plurality is signed by a zero morpheme.
3.1.2 Equivalence, synonymy and homonymy

Equivalence and synonymy refer to the paradigmatic axis. Sometimes there are two different signatures with the same collocation, i.e., they can be substituted without affecting meaning. In English, the series don’t, doesn’t, can’t, can be substituted with do not, does not, can not. For these cases, I will say that these signatures are equivalent. When signatures or lexemes are equivalent, I call them synonyms: adverbs, synonymy is defined only in terms of language-internal relations within a single NL, without invoking semantic notions like entailment (see Taylor [2002, 190] for this last approach).

Perfect synonymy is very rare indeed: mostly, there is a specialisation, i.e., one signature can be collocated in some cases while the other cannot, as for instance in the signatures of the English plural -s and -es. In Italian, I have found only two pairs of perfect synonyms: Tracy: -a (two signatures of the same preposition, approximately ‘between’) and termosifone: calorifer (‘radiator’: the first word is made through Greek morphemes, the second one through Latin ones, and they are exactly symmetrical). What it is important is that their collocation should be the same, i.e., they can be substituted in every instance of the syntagmatic axis. In case of imperfect synonymy, the substitution can happen only in certain cases: a collocation analysis should be performed, in order to find the moduli involved that permit and block the substitution. It does not matter if the two signatures do not affect meaning; as in the example of English plurals, the reason behind the specialisation can be phonological. In other words, the moduli involved in blocking the substitution are phonological in nature. Adverbs do not take into account the causes of these blocks: the dictionary will register it when describing transfers (see below for details).

Finally, as we will see in chapter 8, collocation will be used not only for synonymy but also for cross-linguistic equivalence, i.e., for (machine) translation.

As we have seen before, the English morpheme -s is a signature of the modulus [+PLURAL] and it inherits instantiation: i.e., -s can only be attached immediately after a stative lexieme. However, not every English morpheme -s is a plural marker, as shown in Table 3.3, based on the recent dictionary of English affixes by Stein [2007], the English final -s can sign very different moduli. These five morphemes -s are signature of five different moduli: they are homonyms. Homonymy is the complementary phenomenon of equivalence. Normally, in order to achieve a good mastering in the target NL, a lot of cognitive effort is spent in solving homonyms, through collocation analysis.

In Table 3.3, the signs E=O and O=E indicate transfers (see below for a detailed explanation of transference). For the moment, let us concentrate on the last construtive couple: Monday : Mondays. What I want to is to show how synonymy can exist not only between a single pair of lexemes, but also between groups of lexemes of the same type (again, see below for a detailed description of grouping). I will do it through example 54.

- (54a.) The restaurant is opened (MONDAYS).
- (54b.) The restaurant is opened (on Mondays).
- (54c.) The restaurant is opened (each Monday).
- (54d.) The restaurant is opened (Monday evening).
- (54e.) (The last Monday of each month) the restaurant is opened.

The same construal can be built through a lot of different linguistic strategies see circumstantial lexemes in brackets). Mondays, on Monday, each Monday in examples 54a-c are equivalent in the sense given above, while example 54d and 54e present the construal with more details.

If there is no clear signature, i.e., no morphemes attached to Monday, we should turn our attention to collocation to see which is the grammar character of the lexeme Monday. In fact, in example 54d the collocation of Monday next to evening and immediately after the verb opened allow us to conclude that it is circumstantial, while in example 55e Monday is preceded by the article the and so it retains its original stative modulus. Example 54 showed that morphology and syntax are two sides of the same coin. NLs have complex ways of performing these modifications, and this is why years of learning are needed to acquire an acceptable level of performance in any NL.

3.1.3 The fundamental moduli

Another important property of moduli is inheritance: some moduli can be activated only within a hierarchically superior modulus. For instance, in English, the modulus [+PLURAL] can be activated only if the modulus STATIVATION is active. In contrast, in Italian the modulus [±PLURAL] must be
activated within both the modulus STATIVATION and VERIFICATION. When a modulus is spread out over the boundaries of the fundamental moduli we have agreement, which is the phenomenon complementary to inheritance. For example, in the Italian sentence *quella bella ragazza ballava bene* (‘that nice girl danced well’) the final morpheme *-a* in *quella* and *bella* is a signature of gender and number agreement between the selective adjectives and the selective noun *ragazz-a*, which also ends in *-a*.

Which are the hierarchically highest moduli? As we have seen previously, the polarity between STATIVATION and VERIFICATION is a language universal. Similarly, there are always two symmetrical moduli whose function is to modify, specify, or concretise, stativation and verbification. I call adjunction the modulus which modifies things.\(^5\) Paraphrasing Tesnière [1959], who did not talk explicitly of moduli, I will call the modulus which modifies the events circumstantialisation. Lexemes where the adjunction modulus is applied either by selection or by collocation will be called adjuncts. Adjuncts include adjectives like yellow, big, and determiners like a, the, every. In contrast, if the circumstantialisation modulus is selective, that lexeme will be called a verb; vice versa, if the circumstantialisation modulus is applied by collocation, that lexeme will be called a circumstance.\(^6\) This choice is due to the fact that “true” adverbs are very rare, at least in the NLA I know, and so I prefer to dedicate this term to a restricted set of particular lexemes.

Of course, each NL has its own strategies to mark these moduli by one or more covert signatures: they are language universals because at least one strategy per moduli exists in every NL. Hereafter, I will refer to these four as fundamental moduli. Typographically, fundamental are signed in small capitals without square brackets, unlike the other moduli. All other moduli are hyponyms of the fundamental ones and they are language-dependent. The fundamental moduli give the grammar character to each lexeme and to groups of them: the grammar character is the cognitive representation of a given set of lexemes put onto the syntagmatic axis in order to construe the scene of meaning in the mind.

Since fundamental moduli will be extensively used, I will use the shortcut originally by invented Lucien Tesnière in his French work *Elements of structural syntax*, as in Table 3.4, already in Gobbo [1998, 60]. Readers can

<table>
<thead>
<tr>
<th>Table 3.4: The fundamental moduli</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIVATION → O</td>
</tr>
<tr>
<td>ADJUNCTION → A</td>
</tr>
<tr>
<td>CIRCUMSTANTIATION → E</td>
</tr>
<tr>
<td>VERIFICATION → I</td>
</tr>
</tbody>
</table>

think metaphorically at O and I as two poles, and at A and E as their respective magnetic field.

3.2 Transference

It is worth remembering how Tesnière [1959, 387] distinguish the three levels of analysis of structural syntax, and how they are interpreted in adgrams (see Table 3.5). The basics of the Tesnierian approach is dependency. Tesnière put “connexion” (literally ‘connection’) at a word level, i.e., connection is the morphosyntactical relation between words, the mechanism of determination of hierarchies being dependency. I have shown in Chapter 2 how adspaces solved the syntactic problem of dependency through the dichotomy trajector/landmark, taken from cognitive linguistics, and that adpositions can be applied at two levels: basic-level and phrasal – see section 2.10.

What I want to introduce at this point is a further aspect of the Tesnierian “connexion”, called in French “translation” – in English “transference.”\(^10\) Transference is a very important phenomenon that explains the inner structure of the lexicon. The phenomenon of transference refers to grammar character change: it is the interface between adspaces and the lexicon. Put it differently, transference answers the question: how do lexemes change their fundamental modulus? It is impossible to give a complete answer to this question, because a full list all moduli of every single would be needed. Here, I limit myself to explain the methodology, while in the second part I will give a broader instance, which will be implemented in the third part. In the following example I give the table of correspondence of NL couples, which also is an example for (machine) translation purposes – see chapter 8.

The first step is to identify the fundamental modulus of the lexeme. This identification can be done through the collocation analysis, with a special regard to the bound morphemes at which it is attached. In fact, bound

<table>
<thead>
<tr>
<th>Table 3.5: Tesnière levels of analysis and adgrams in comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesnierian proposal</td>
</tr>
<tr>
<td>translation du premier degré</td>
</tr>
<tr>
<td>junction</td>
</tr>
<tr>
<td>translation du second degré</td>
</tr>
</tbody>
</table>

103
morphemes, as well as free morphemes crystallised in idiomatic expressions, often have only the function of grammar change markers. In case of doubt, a cross-linguistical analysis would help the identification.

The fundamental modulus of the English lexeme long is adjunction. An equivalent expression to say that is: 'long is an A-lexeme', which is more concise. This identification is not obvious, as in *Liza has long red hair* the lexeme long is an adjunct, while in *it rained all day long* the same lexeme is a circumstance. A hint can be found by the fact that long as a circumstance is marked by the modulus [+TIME], while – as an adjunct – it can be marked by the modulus [+SPACE], as in the previous example, or hence by the modulus [+TIME], as for instance in a long career. Table 3.6 shows how transference works in different NLs in comparison. Italian and French are Romance languages, English and German are Germanic (at least morphologically), while Turkish is not Indo-European: this should offer a broad example in terms of typological variety. The German and English strategies of the transference A→O is ablaut, while English transfers A→I with a mixed strategy of ablaut and derivational suffix. Italian are quite similar, using suffixes for the transfers A→O and A→E, while for A→I they use circumfixes, like German. Note that, unlike the other NLs under exam, the German long is marked as [+SPACE, +FAR, +TIME], while long-nong is reserved for the complementary [−SPACE, −FAR, −TIME] (as a side note, [+FAR] is activated only within its hierarchical superior modulus [+SPACE], and this is the reason why they have been grouped within the same square brackets). Turkish is different, as scatOn is derived from scatOn, which is O in a character, meaning extension cable. This means that two different paradigms are involved: each NL has its own semantic map, which is not necessarily burdened in the same way; the more structurally and typologically distant, the more semantic maps are distant indeed. Nonetheless, interestingly, Turkish has a suffix for the transference A→O, -luk, like the Italian -ezza.

Table 3.6: How transference works for A-lexemes in different NLs

<table>
<thead>
<tr>
<th>Transf. English</th>
<th>Italian</th>
<th>French</th>
<th>German</th>
<th>Turkish</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>long</td>
<td>lung-o</td>
<td>long</td>
<td>uzun</td>
</tr>
<tr>
<td>A→O</td>
<td>length</td>
<td>lung-ezza-o</td>
<td>longu-er</td>
<td>uzun-luk</td>
</tr>
<tr>
<td>A→E</td>
<td>long</td>
<td>lung-amente</td>
<td>longu-emente</td>
<td>uzun</td>
</tr>
<tr>
<td>A→I</td>
<td>length-en</td>
<td>al-lung-are</td>
<td>(ral)-long-er</td>
<td>uzun-luk</td>
</tr>
</tbody>
</table>

3.2 Transference

<table>
<thead>
<tr>
<th>Transf. English</th>
<th>Italian</th>
<th>French</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>calm</td>
<td>calm-o</td>
</tr>
<tr>
<td>A→O</td>
<td>calm</td>
<td>calm-a</td>
</tr>
<tr>
<td>A→E</td>
<td>calm-ly</td>
<td>calm-amente</td>
</tr>
<tr>
<td>A→I</td>
<td>calm (down)</td>
<td>calm-are</td>
</tr>
</tbody>
</table>

Table 3.7: An example of suppletive transference

<table>
<thead>
<tr>
<th>English</th>
<th>Italian</th>
<th>French</th>
</tr>
</thead>
<tbody>
<tr>
<td>sudden</td>
<td>sudden-ly</td>
<td>substane-o</td>
</tr>
<tr>
<td>high</td>
<td>high-ly</td>
<td>alt-o</td>
</tr>
<tr>
<td>tranquil</td>
<td>tranquil-ly</td>
<td>tranquill-o</td>
</tr>
</tbody>
</table>

3.2.1 Suppletion and idiomatic expressions

The most expensive strategy, in cognitive terms, is suppletion: whenever a NL has a block in one of its paradigms, it should fill the gap with a suppletive lexeme. In the linguistic literature, the concept of suppletion is usually kept into the verbal domain: the classic example is that the lexeme want is suppletive of the past form of the verb to go, i.e., it supplies *good*. Given the role of transference, adigrams make an extensive use of suppletion. Let me explain through an example, where an A-lexeme is transferred in each other fundamental modulus, i.e., stativation, circumstantialisation, verbalisation. Table 3.7 shows how subtle differences operate even in NLs which are siblings, like Italian and French. Note that Italian has a block in its paradigmatically transference strategy A→E ‘add -amente to the A-lexeme’ only with the lexeme calm, – in other cases highly productive – see a specimen in Table 3.8. Instead, Italian should use an idiomatic expression, con calma. Let me clarify this point using some lexemes presented above in an example.

- (55a-en.) Suddenly Liza walked calmly.
- (55b-en.) Suddenly Liza calmed her walk.
- (55a-it.) Subtitanamente Lisa camminava con calma.
- (55b-it.) Subtitanamente Lisa calmò la sua camminata.
This means that *con* (literally, ‘with’) in example 55 is a false adposition, because it has the same grammatical role of the English morpheme *-ly*. In fact, the expression *con calma* is completely crystallised, i.e., it cannot be changed, e.g., for gender and number: *con calmi,* *con calme* are ungrammatical. Alternatively, the Italian speaker can choose an imperfect synonym, like for instance *tranquillamente*, with the problems of collocation already seen. **Idiomatic expressions** are special lexic chains which have been crystallised because of some need, in most cases a need of supplementation. In adgrams they are treated as a whole, even in their representation in adtree.

3.3 Actants and adtypes

Figure 3.1 shows the adtrees of example 55 with the new information made explicit. By now, colours will be omitted being redundant: the signs for Plus, Minus, Slash, Times mark the adtree type (adtype), and the arrow remembers the direction of the relation trajector/landmark – the adverted reader can refer to Figure 2.8 in chapter 2. The results of the adpositional transfers – i.e., the grammar character changes performed by the adpositions – are signed below the lexemes. Now it is possible to define again adpositions with a lexical definition, by contrast.

Adposition: a morpheme which does not have any grammar character per se but it gives the correct adtype (Plus, Minus, Slash or Times) to the current adtree.

In many cases, derivation is the result of a long process of grammaticalisation (see again section 2.4 if needed). Now, it is possible to trace a grammaticalisation degree, based on grammar characters:

$$I \rightarrow E \rightarrow O \rightarrow A$$

This means that the fundamental grammar character of a lexeme determines its level of grammaticalisation. However, transference can always change the grammar character of a given lexeme, with some precise limits. These limits give the correspondence between actants and adtypes, shown in Table 3.9. The table is ordered along the grammaticalisation of the grammar character, i.e., its characterisation. It is noteworthy that the original grammar character being transferred – indicated with z – is not relevant. The final characterisation can be the result of a complex chain of transfers, performed by derivational morphemes (see next section 3.4 for details).

3.3.1 Verbal adtypes

Lexemes with a verbal modulus active are always applicative: they can be either Plus, if the phrase is non-marked, or Minus, if the phrase is marked.

Figure 3.1: Some adtrees of *Liza, walk* and *calm* (55ab).
3.3 Actants and adtypes

In this last case mirroring is applied – see again section 2.9.3 for details. Let me explain through an example in Italian:

- (56a.) Carlo è arrivato (‘Carl has arrived’).
- (56b.) È arrivato Carlo (‘It is Carl, who arrived’).

![Diagram of Adtree](image)

Figure 3.2: The adtrees of Carlo è arrivato / È arrivato Carlo (56ab).

Figure 3.2 shows the adtrees of example 56: in example 56a (left) the sentence is non-marked, while in example 56b (right) mirroring was applied.

3.3.2 Circumstantial adtypes

Circumstantials require only a shallow analysis, as they are clearly applicative related to the phrasal verb. For example, the presence of the English adposition -ly clearly states the circumstantial, even if the lexeme to which the adposition is nonsensical, like in the following example.

- (57.) He conducts muggily.

![Diagram of Adtree](image)

Figure 3.3: The adtree of He conducts muggily (57).

The lexeme muggly does not exist in English; nonetheless, the syntactic relation is quite clear thanks to the suffix -ly.\(^{11}\)

3.3.3 Static adtypes

Actants are always attached to the trajector of their own adtree. As seen before in section 2.7, actants are related to valence. Now it is possible to say that actants related to valences are either nominal per se (\(V\) stays

Table 3.9: The correspondence between actants and adtypes

<table>
<thead>
<tr>
<th>final characterisation</th>
<th>transference</th>
<th>actant</th>
<th>adtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbal</td>
<td>(y = 3)</td>
<td>(V) ({}^{1\text{st}})</td>
<td>(\oplus)</td>
</tr>
<tr>
<td></td>
<td>(y = 2)</td>
<td>(V) ({}^{1\text{st}})</td>
<td>(\circ)</td>
</tr>
<tr>
<td>circumstantial</td>
<td>(x > y = \mathcal{E})</td>
<td>(X_{1\ldots n})</td>
<td>(\circ)</td>
</tr>
<tr>
<td>stative (full)</td>
<td>(x > y = \mathcal{O})</td>
<td>({ N_a</td>
<td>N_{a}</td>
</tr>
<tr>
<td></td>
<td>(x > y = \mathcal{O})</td>
<td>({ N_a</td>
<td>N_{a}</td>
</tr>
<tr>
<td></td>
<td>(x > y = \mathcal{O})</td>
<td>({ N_a</td>
<td>N_{a}</td>
</tr>
<tr>
<td>stative (void)</td>
<td>(x > y = \mathcal{O})</td>
<td>(W_{1\ldots n})</td>
<td>(\circ)</td>
</tr>
<tr>
<td></td>
<td>(x > y = \mathcal{O})</td>
<td>(W_{1\ldots n})</td>
<td>(\circ)</td>
</tr>
<tr>
<td></td>
<td>(x > y = \mathcal{O})</td>
<td>(Z_{1\ldots n})</td>
<td>(\circ)</td>
</tr>
<tr>
<td>adjunctive</td>
<td>(x > y = \mathcal{A})</td>
<td>(X_{1\ldots n})</td>
<td>(\circ)</td>
</tr>
<tr>
<td></td>
<td>(x > y = \mathcal{A})</td>
<td>(W_{1\ldots n})</td>
<td>(\circ)</td>
</tr>
</tbody>
</table>
for ‘nominal’) or they have acquired a nominal, or better, a stative value. For example, pronouns like English he in example 57 have a stative value even if they are not selective nouns, but anaphoric placeholders. Pronouns like he and determiners like this can act as placeholder of actants. More precisely, they can be either anaphoras, if they stand for a previous stative lexeme in the co-text, or cataphoras, if they stand for a later stative lexeme. They are indicated with the sign t, which stands for ‘trace’.\footnote{12}

It is noteworthy that adverbs do not deal with anaphora and cataphora resolutions, at least in this dissertation: a whole apart dissertation should be dedicated to this important topic. This is a limit of the current model of adverbs.

Some determiners also are placeholders. For example, read in example 58 and this in example 59b have both a stative value because of transference – in contrast, this in example 59a have not. Finally, note that this in example 59b acquires both stivation and an anaphoric or cataphoric value – i.e., it is a placeholder.

- (58) Reading is enjoyable.

\begin{center}
\begin{tikzpicture}
\node (root) at (0,0) {Reading};
\node (I) at (-1,-1) {I};
\node (O) at (1,-1) {O};
\node (N) at (0,-2) {N};
\draw (root) -- (I);
\draw (root) -- (O);
\draw (root) -- (N);
\end{tikzpicture}
\end{center}

(58) Reading is enjoyable.

- (59a) This book is mine.

- (59b) This is mine.

Figure 3.5 shows the adtrees of example 59ab. A complete description of transference has been provided; note the actant values of the proper verb to be, i.e., the bivalent verb, which are syntactically symmetrical with the verb to have. In fact, examples 59a and 59c depicts the same construal.

- (59a) N_Y (This book) is N_I (mine).

- (59c) N_Y (I) have N_I (my book).

Stative actants can depend of adtrees belonging to any adtree type. Furthermore, if a stative lexeme does not bring an actant value, it will be filled with a void actant. For the most adverted reader, void actants have been

3.3. Actants and adtypes

\begin{itemize}
\item (59a) This book is mine.
\item (59b) This is mine.
\end{itemize}

Figure 3.5: The adtrees of This (book) is mine (59ab).

already shown in section 2.8, without any explanation. However, void actants strictly depend on the adtree type; in other words, they have no pragramtic value, i.e., they are void (see Table 3.9, for the one-to-one correspondences).

In fact, in adverbs there is no use of actants for so-called ‘thematic roles’ like cause, goal, path, measure, etc. In my opinion, one of the most evident limit of such an approach is the lack of agreement of the inventory of these categories.\footnote{13} Moreover, it does not respect the principle of linguistic adherence already presented. In fact, these thematic roles are not actants, but phrasal arguments which are interpreted here as adtypes, depending on their adpositions. The four actants in use here – i.e., Agent, Experiencer, Patient, directly related to valence, plus Instrument – are very general and they are accepted by most linguists as cross-linguistically valid.

The void actants X and Y corresponds to the applicative (hot) relations, which normally are near the phrasal verb, i.e., the I-lexeme, while W and Z concern the retroapplicative (cold) relations. The numbers indicate the order of that adtype within the current adtree branch. They are used for building the construal and hence the adtree. For instance, in the English example 54a the order is as follows: Liza walked — Liza walked calmly — Suddenly Liza walked calmly. In fact, the sentence Suddenly Liza walked evokes a completely different content: in this last case, perhaps Liza was sitting, or maintaining an upright position without moving, etc.

3.3.4 Adjective adtypes

Adjuncts can be use as attributes or predicative: the first use is retroapplicative (Slash) while the second one is applicative (Minus). The English strategy of distinguish the two uses is collocation: the attributive use is put
before the stative lexeme while the predicative one is put thereafter.

- (60a.) That water is hot.
- (60b.) That is hot water.

Figure 3.6: Predicative (left) and attributive (right) uses of adjuncts (60ab).

Figure 3.6 shows the two uses: example 60a shows the applicative use, while example 60b shows the retroapplicative. Note that the adjunct that in example 60b brings the patientive actant value brought by water in example 60a; moreover, that can be a trace, so there can be more than one lexeme in the same phrase carrying on the patient, as in example 60b.

As shown by Taylor [2002, 454], sometimes predicative uses are ungrammatical: an utter fool is perfectly acceptable in English, while in contrast a fool is utter is not. Hence, the predicative use can be blocked, according to the lexeme involved: this block in the lexical entry utter in the dictionary (see below).

Finally, there are some cases where it is simply impossible to determine if the adjunct is used attributively or predicatively.

- (61ab-it.) Paolo ha trovato il telefono rotto.

Figure 3.7 show two different construals belonging to example 61ab, which are equally valid: the left one shows the attributive use, the right one the predicative use.
3.4 The dictionary

Adpositions are the scaffolds or meaning, while the lexicon gives the an-
chorage to the world model. How do they relate one to the other? More-
over, the lexicon is made not only by lexemes but also by affixes and some
adpositions can be involved in transference. For instance, in example 58
(Figure 3.4) the adpositions -ing and -able are the morphemes which mark
respectively the stativation of read and the adjunctivation of enjoy. Both
morphemes read and enjoy are free, while in contrast the two adpositions
are not; nonetheless, some adpositions can be free morphemes too, like for
every the English preposition across.

What we need is the correspondence between morphemic freedom, ad-
positions and the lexicon, in order to give the inner structure of the dictio-
nary as a whole. It is not possible to describe every class of morpheme in
English such as English or Italian within a doctoral dissertation. Nonetheless,
there are some general classes of morphemes, i.e., language-independent,
that are necessary to build the dictionary. Here I am presenting these gen-
eral classes while an extensive case study – namely, Esperanto – will be
provided in the second part of this dissertation.

3.4.1 The double face of derivation

Some derivational morphemes are adpositions, while others are lexemes.
In example 54, the English -ly and the Italian -mente shows that the set of ad-
positions comprehend not only prepositions and the like, but also a subset
of what is traditionally known as derivational morphology. A derivational
adposition is still an adposition as it does not have a grammar character
but nonetheless it is involved in transference.

derivational adposition: a particular adposition which does
not have any grammar character per se but it transfers the gramæ
mar character of the lexeme(s) it is applied to.

I call standard adpositions proper adpositions in contrast, when precisa-
tion is needed. Derivational adpositions are also called transfers.

Adpositions can be free or bound morphemes; in this last case they are
affixes. The vice versa is not necessarily true. In fact, not every affix is
an adposition; some affixes do not participate in the process of the con-
struction of the adtree. Hence, they are lexemes. Nor they participate in
transference: their only function is to add semantic moduli to the applied
lexeme. I call these morphemes derivational lexemes.

derivational lexeme: a particular lexeme which is applied to
a proper lexeme only under certain grammar character restricæ

Derivational lexemes stand alone in an adtree leaf. They perform a derive-
tion through the adding of semantics, without transference, i.e., without
touching the grammar character of the lexeme(s) that govern that adtree
leaf. I call derivational lexemes transfers. Transfers can be applied
only at certain conditions, i.e., their application can be restricted to some
grammar characters.13

The bricks of the language building are now complete. Table 3.10 shows
the general structure of the dictionary.

<table>
<thead>
<tr>
<th>Proper adposition</th>
<th>Proper lexeme</th>
<th>Derivational adposition</th>
<th>Derivational lexeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>adposition</td>
<td>lexe</td>
<td>transfer</td>
<td>transfer</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Table 3.11: Homophones and equivalents of the English morpheme in

<table>
<thead>
<tr>
<th>morpheme</th>
<th>class</th>
<th>character</th>
<th>freedom</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>adposition</td>
<td>±</td>
<td>⊥</td>
<td>4E5ME</td>
</tr>
<tr>
<td>in</td>
<td>lexeme</td>
<td>x >E</td>
<td>⊥</td>
<td>4E5ME</td>
</tr>
<tr>
<td>in-</td>
<td>transferer</td>
<td>A< y</td>
<td>⊥</td>
<td>A<5ANTONYM</td>
</tr>
<tr>
<td>in-</td>
<td>transferer</td>
<td>A< y</td>
<td>⊥</td>
<td>A<5ANTONYM</td>
</tr>
<tr>
<td>in-</td>
<td>transferer</td>
<td>A< y</td>
<td>⊥</td>
<td>A<5ANTONYM</td>
</tr>
<tr>
<td>in-</td>
<td>transferer</td>
<td>O< y</td>
<td>⊥</td>
<td>O<5PRESENCE</td>
</tr>
<tr>
<td>in-</td>
<td>transferer</td>
<td>O< y</td>
<td>⊥</td>
<td>O<5PRESENCE</td>
</tr>
<tr>
<td>in-</td>
<td>transferer</td>
<td>O< y</td>
<td>⊥</td>
<td>O<5PRESENCE</td>
</tr>
</tbody>
</table>

3.4.2 Transferees and homophony

Let me explain how transferees work through an example of a very small fragment of English. Some prepositions can be free or bound, like for instance the highly productive in, which is present in a lot of Romance languages, as well as NLS come into contact with Latin, such as English or Germain. In such cases, each use should be considered as a different modulus: these moduli have homophonous signatures. Moreover, the single modulus can have different signatures: in has some equivalent signatures essentially for phonological reasons. Table 3.11 shows how the English morpheme in is represented in the dictionary. First, the difference between free and bound morpheme is taken into account; second, the right class has been found. The adposition in has been presented through examples 31, 32, 47 in chapter 2.

The lexical use is at the opposite spectrum of grammaticalisation, compared to the adpositional one. In the case of in, you can find it lexically in sentences like come in, Liza and Paul were locked in, the car got in. All these examples show that a modulus [MOVEMENT] was activated, which inherits the modulus SPACE.

The adjectival transferees in is bound and it has a lot of equivalent signatures, depending on phonology for example, in-liberal becomes illiberal, and in-impossible becomes impossible. In all these examples, in has been applied to adjectives, a subset of the adjective class, and the semantic transformation is antonymous, i.e. the applied modulus is [ANTONYM]. In fact, illiberal is the opposite of liberal, and impossible is the opposite of possible, and so on. When different affixes are equivalent signatures of the same modulus, they are called allomorphs.

3.4. The dictionary

In constrast, the stative transferees in- denotes a lack of presence: in-adversee is a lack of adversee, in-appreciation is the lack of appreciation. Note that it is not an antonymiser. In fact, in-truth is a lack of truth, not the opposite of truth, i.e., falsity. Interestingly, in this case there is an additional equivalent signature, i.e., in-, that breaks the symmetry between the allomorphs of the adjectival and the stative transferees in-

The variable y indicates the result of the transferees, i.e., the final characterisation, while the variable x indicates the beginning of the transferees. They have been used in Table 3.9 yet. For example, the stative transferees in- shown in Table 3.11 would be marked as O: y in an adject primer description, y being the set of moduli brought by the morpheme, and O the final value of x after transferees.

3.4.3 Transferers in action

An example of transferer in English is the morpheme -ly, which transforms an adjucnt in a circumstantial, i.e., A>E. Now, let me show the conventions how transferees solve transferees through example 65.

- (62.) Liza speaks informally.

The description of adtree leaves is now complete until the last detail. Only the semantic modulis, like for instance [ANIMATE] for Liza, for readability and consciusness: readers can append them below the respective adtree leaves.

The word informally is made by four morphemes: in-form-at-ly. The lexical base is form, which is stative. This is adjectified by the transferer -al with a Slash adposition. The antonymiser transferees in- can be applied only now – resulting in internal. A proof of this is the fact that in-form does not exis, as it collides with the selective verb to inform (see also below). Finally, the final transferees -ly has been applied, so the final word informally has a circumstantial character, instead of being an adjunct, resolving the transfeer chain O>A>E. The adtree of example 62 shown in Figure 3.8 depicts the process just explained. It is noteworthy that here grammaticalisation is at its maximum level, so all adpositions are retroapplicative and non-dimensional (Slash). As said before, actants can be attached only to trajectories, i.e., selective nouns or verbs, colloqational O-lexemes or T-lexemes, or finally statified or verbised lexemes: that is why Yx is attached to form.

Lexemes are the lexical heads of the adtree, and they are all free morphemes. They are always the rightmost participant in the current adtree, and the actant is placed there. Of course, a single node can be an adtree as well: in example 58, read and enjoy are both heads of respectively a stative subtree and a adjunct subtree. I will come back over this topic in section 3.5.

117
Chapter 3. Dictionary and lexicon

In the sequel, I would give some examples in English of dictionary entries according to the fundamental grammar character of the basic morpheme. In fact, unlike other approaches, in adgrams each dictionary entry gives all the conventions for transfers, including suppletive ones – see again Table 3.7, if needed.

3.4.4 Verbal lexemes

The verbal characterisation is the most rich and important in the dictionary, because it gives the basic structure of each phrase. In particular, actants are individuated according to valence and the lexical entry. For this reason, a whole section in each lexeme is devoted to this crucial aspect. Table 3.12 shows how is treated the lexical entry inform. First, it is verbal in character: transfers are ordered according to grammaticalisation degree by convention, even if the transference to circumstantial should pass through stativation and adjunction before, as in this case.

Second, the verbal form to inform refers to the rules of variation according to parameters like diathesis, time, aspect, tense, gender and number. The analysis of words like inform-ation-al-ly refers to the adtree needed for this transfer. As already said in the introduction, adgrams describe how to build a grammar cognitive and computationally sound as if there would not exist any storage strategy in the mind. Of course, this is not true: it is very unlikely that an English native should build each time ex nihilo the adtree of frequent words like informally (rule/list fallacy), most probably, there is an adtree pattern such as inform-al-ly stored and quickly activated, as only the lexeme α should be filled, while the adtree structure is already known – see again Figure 3.8.

It is noteworthy the different strategies for valence reduction and augmentation. The lexieme inform can reduce either invoking the paradigm behind the morpheme oneself, which is another lexical entry in the dictionary, or it can follow a complete suppletive strategy, invoking the verbal instance of inquire – the arrow → means ‘leads to’ and it is a pointer to another lexical entry in the dictionary. In contrast, the augmentation invokes the pattern to make α as a mapping (→ means ‘maps to’): valence values are shifted, and the Experiencer gets the first valence of this kind of complex structure. An analogous phenomenon happens when verbal diatheses are applied, with the modals reflexive and passive. Note that reflexion does not hurt the valence value, but the referentiality of the actant, i.e., in the encyclopediaw they are the Agent is also Patient, although in the syntagmatic axis Patientivity is carried out by the paradigm activated by oneself. The valence column ‘extra’ indicates if other actants, typically the Instrument, can be expressed or not within the same phrase in arguments external to verbal valences. In adtrees, extra actants are printed in plain, while valence actants are printed in bold.

Table 3.13 is similar. Note that the proper lexeme is magnify in the dictionary, while -y is only adposion. Let us turn our attention to valence. The meaning of magnify in valence reduction is changed, even if the form did not. In terms of adgrams, \(V(\text{magnify}) \) and \(V(\text{magnify}) \) are homonymous.

For example, in the sentence these binoculars magnify well the subject S is Instrument, while in the risk magnifies the opportunities the subject S is Patient, both having magnify as a monovalent verb. In contrast, in sentences like Paul magnifies Lisa’s Virtue the verb is bivalent, the subject S is an Agent, while the object O is an Instrument, being Lisa the Patient.

The choice between Instrument and Agent is made according to the modulus \(\text{animate} \) brought by the O-lexeme in charge. The augmenta-
Table 3.13: magnify in the English adpositional grammar dictionary

<table>
<thead>
<tr>
<th>verb IF.</th>
<th>circum.</th>
<th>adjunct.</th>
<th>stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I->E</td>
<td>I->A</td>
<td>I->O</td>
</tr>
<tr>
<td>to magnify</td>
<td>magnify-al-ly</td>
<td>magnify</td>
<td>magnify-ic</td>
</tr>
</tbody>
</table>

Table 3.14: sink in the English adpositional grammar dictionary

<table>
<thead>
<tr>
<th>verb IF.</th>
<th>circum.</th>
<th>adjunct.</th>
<th>stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I->E</td>
<td>I->A</td>
<td>I->O</td>
</tr>
<tr>
<td>to sink</td>
<td>⊥</td>
<td>-- sunken</td>
<td>sink-ing</td>
</tr>
</tbody>
</table>

Table 3.15: fall in the English adpositional grammar dictionary

<table>
<thead>
<tr>
<th>verb IF.</th>
<th>circum.</th>
<th>adjunct.</th>
<th>stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I->E</td>
<td>I->A</td>
<td>I->O</td>
</tr>
<tr>
<td>to fall</td>
<td>⊥</td>
<td>of the fall</td>
<td>fall-ing</td>
</tr>
</tbody>
</table>

3.4. The dictionary

The dictionary entry for *magnify* includes information about its verb form, circumlocation, and the presence of adjectives or verbs. The dictionary entry for *sink* includes information about its verb form, circumlocation, and the presence of adjectives or verbs. The dictionary entry for *fall* includes information about its verb form, circumlocation, and the presence of adjectives or verbs.

The entry for *magnify* is similar to that for *inform*, as seen above. Table 3.14 shows the entry for the lexeme *sink*. Adgrams treat NLs synchronically, not diachronically: even if the attributive adjective *sunk* derives from the past participle *sunk* of the verb *to sink*, it has its own entry in the dictionary (see below for details). In this case valence reduction is nonsensical, while augmentation causes another shift of the actants’ values, as shown in example 63. Each variant shows different levels of detail concerning the same construal.

- (63a.) \(N_p \) (The ship) sank.
- (63b.) \(N_c \) (The torpedo) caused \(N_p \) (the ship) to sink.
- (63c.) \(N_v \) (The admiral) caused \(N_p \) (the ship) to sink \(N_c \) (with a torpedo).

How to treat lexemes rich in idiomatic forms? Table 3.15 shows the basic forms of the lexeme *fall*. As already shown in section 2.9.1, this lexeme changes meaning according to the preposition which specifies the idiom, like in “Lisa fell in love with Paul and Paul fell about Lisa’s imitations of the teacher,” therefore it will have an entry for each form. Let me take a rather extreme example of phrasal verb, to fall in with, exemplified by example 64.

- (64.) \(N_v \) (The lecturer) caused \(N_p \) (Lisa) to fall in \(N_c \) (with the political views) of Kant.

Table 3.16 shows how to fall in with is represented in adgrams. Note that this phrasal verb is bivalent, unlike most phrasal verb with fall as the lexical head. Of course, in this case both *in* and *with* are false adpositions.
Table 3.16: fall in with in the English adpositional grammar dictionary

<table>
<thead>
<tr>
<th>verbif.</th>
<th>circum.</th>
<th>adjunct.</th>
<th>stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>to fall</td>
<td>⊥</td>
<td>of the fall-ing</td>
<td>fall-ing</td>
</tr>
<tr>
<td>in with</td>
<td>⊥</td>
<td>in with</td>
<td>in with</td>
</tr>
</tbody>
</table>

modali [±FALL] ⊥ [±FALL] [±FALL, +CHANCE, +INVOLVE]

<table>
<thead>
<tr>
<th>valence</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>N_p</td>
<td>⊥</td>
<td>⊥</td>
<td>with {N_3/N_e}</td>
</tr>
<tr>
<td>2 + 1 = 3</td>
<td>to cause</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to fall in with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N_p → {N_3/N_e}</td>
<td>N_p</td>
<td></td>
<td>(N_3/N_e) ⊥</td>
</tr>
</tbody>
</table>

Table 3.17: give in the English adpositional grammar dictionary

<table>
<thead>
<tr>
<th>verbif.</th>
<th>circum.</th>
<th>adjunct.</th>
<th>stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>to give</td>
<td>⊥</td>
<td>giv-ing</td>
<td>gift, present,...</td>
</tr>
</tbody>
</table>

modali [±GIVE] ⊥ [±GIVE, +BESTOW] gift, present,...

<table>
<thead>
<tr>
<th>valence</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>N_p</td>
<td>N_p</td>
<td>⊥</td>
<td>to N_p</td>
</tr>
<tr>
<td>PASSIVE1</td>
<td>3</td>
<td>N_p</td>
<td>⊥</td>
<td>by N_p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to N_e</td>
</tr>
<tr>
<td>PASSIVE2</td>
<td>3</td>
<td>N_p</td>
<td>⊥</td>
<td>by N_p</td>
</tr>
</tbody>
</table>

3.4. The dictionary

Table 3.18: quite in the English adpositional grammar dictionary

<table>
<thead>
<tr>
<th>verbif.</th>
<th>circum.</th>
<th>adjunct.</th>
<th>stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E>1</td>
<td>E</td>
<td>E>1</td>
<td>A>0</td>
</tr>
<tr>
<td>quite</td>
<td>quite</td>
<td>quite</td>
<td>⊥</td>
</tr>
<tr>
<td>[±QUITE, [±QUITE] +AGREE], +AGREE]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>valence</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

Table 3.17 shows the entry of the lexeme give, when not used as a phrasal verb, i.e., without false adpositions. Note that the adposition -ing is different from the one seen previously, e.g., read-ing, as the following test can clarify: Paul is giving and supportive. For stitivation, the case of give : gift is analogous to the case of sink : sunken seen before. Suppletive strategies are always possible, as in the case of present. Example 28 – whose adtrees have been depicted in figure 2.23 – has already shown the two different passive diathesis transformations.

It could be a good exercise to write down the table of a phrasal verb like give away. This is left to the reader.

3.4.5 Circumstantial lexemes

Circumstantial lexemes are very rare, and most of them are circumstances, i.e., they do perform some grammar character transfer, usually along the adjunction line (only attributive, i.e., Slash). Some examples are: quite, there, seldom. Let me show a couple of examples: quite, which is a circumstance, and often, which is an adverb, i.e., it does not perform transference at all.

Table 3.18 shows how quite is represented in the dictionary. In sentences like I quite like it it modifies the verb, hence it acts as a circumstantial, while in sentences like She is quite young it modifies the adjectival young, hence it acts as an adjunct. At least in Britain, quite can also be used as a single word sentence, to express a complete agreement, like in example 65: this is a verbified use:

- Liza: I don’t want to talk about him now!
- (65) Be: Quite (so)!

In terms of adtrees, example 65 would be represented through mirroring, as a marked syntactic construction, like presentative verbs – see Figure 3.9.
Chapter 3. Dictionary and lexicon

Figure 3.9: The adtree of Quite (65).

Table 3.19: often in the English adpositional grammar dictionary

<table>
<thead>
<tr>
<th>verb</th>
<th>circum.</th>
<th>adjunct</th>
<th>stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E>1</td>
<td>E</td>
<td>E>A</td>
<td>A>O</td>
</tr>
<tr>
<td>often</td>
<td>+[OFTEN]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>moduli</th>
<th>valence</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>extra</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The case of so is very interesting. For instance, in sentences like I think so it modifies the verb, hence it is E in character; however, most often it is A in character. The interesting part is that it can be applied at whatever grammar character: in sentences like I feel so good it modifies the circumstantial; in sentences like I am so jealous it modifies the adjunct; last, in the idiomatic expression so what? it modifies a static placeholder. In all cases, so is a derivational transvere, i.e., it adds semantic moduli to what is applied, without changing the grammar character.

Table 3.19 shows the very simple table of a circumstantial by selection, i.e., the adverb often. It is quite unusual to find morphological paradigms within circumstantial lexemes. An example can be the series formed by forward(s), to-forward(s), on-forward(s), for-forward(s), backward(s), rightward(s), leftward(s), upward(s), downward(s), etc. Series like this should be listed apart, analogously to the case of to fall in with. Table 3.20 shows the case of forward. The modulus FORWARD is an hyponym of the modulus SPACE by definition, so it can be omitted. It is noteworthy that two equivalent signature exist for the E-lexeme, i.e., forwards and forwardly, and three different specifications. As a noun, forwards can be used in SPORT, like basket, hockey, or football, meaning an attacking player, or in finance, meaning forward contract. These two special meanings would be activated if the moduli are activated within the phrase – see chapter B for details. If the abstractive derivational adposition -ness is applied, the third meaning will be automatically activated.

3.4. The dictionary

Table 3.20: forward in the English adpositional grammar dictionary

<table>
<thead>
<tr>
<th>verb</th>
<th>circum.</th>
<th>adjunct</th>
<th>stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E>1</td>
<td>E</td>
<td>E>A</td>
<td>A>O</td>
</tr>
<tr>
<td></td>
<td>for-w</td>
<td>for-w</td>
<td>for-w</td>
</tr>
<tr>
<td></td>
<td>-ard(s)</td>
<td>-ard(s)</td>
<td>-ard(s)</td>
</tr>
<tr>
<td></td>
<td>forward-ly</td>
<td>forward-ly</td>
<td></td>
</tr>
<tr>
<td>moduli</td>
<td></td>
<td>+[FORWARD]</td>
<td>+[FORWARD]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+[SPORT]</td>
<td>+[FINANCE]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+[ABSTRACT]</td>
<td></td>
</tr>
<tr>
<td>valence</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.21: elephant in the English adpositional grammar dictionary

<table>
<thead>
<tr>
<th>verb</th>
<th>circum.</th>
<th>adjunct</th>
<th>stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O>1</td>
<td>O</td>
<td>O>A</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>th-an</td>
<td>th-an</td>
<td>th-an</td>
</tr>
<tr>
<td></td>
<td>elephant-ine-ly</td>
<td>elephant-ine</td>
<td>elephant</td>
</tr>
<tr>
<td>moduli</td>
<td></td>
<td>+ELEPHANT</td>
<td>+ELEPHANT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ELEPHANT</td>
<td>+ELEPHANT</td>
</tr>
<tr>
<td>+bil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>valence</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>extra</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4.6 Static lexemes

In the English language there are some nouns, i.e., static lexemes by selection, as seen previously in section 3.1. Table 3.21 shows the entry elephant. Example 59a already explained how actuats work with the proper verb to be – see again Figure 3.5.

Some static lexemes, like day, apparently do not perform verbal transference. Table 3.22 shows the dictionary entry of day. It is noteworthy that the circumstantial is more prominent than adjunctivitation. The case of book, shown in Table 3.23, is more complex. First, the verificatation does not even have the modulus BOOK active. The moduli RESERVE and ACCOMOD are written along the correspondent dictionary entries: e.g., accomod-ate: accomod-ation, reserve-e: reserv-ation.

125

126
3.4. The dictionary

- (66a) \(N_2(\text{Bea}) \) has booked \(N_3(\text{them}) \) \(N_4(\text{a table}) \) at the restaurant.

- (66b) \(N_3(\text{a table}) \) was booked \(N_2(\text{for them}) \) \(N_4(\text{by Bea}) \).

Lexicalisation and stative compounds

What to do in words with two stative lexemes, like book-nut-er? Should they fall under the rubric of book or under the rubric of make? In reality, these words are the result of a heavy grammaticalisation occurred diachronically, as the meaning became more and more specific and fixed: the maker of books → the maker of books → the bookmaker. I call this particular grammaticalisation lexicalisation. As English is morphologically a Germanic language, the head is the second stative lexeme, while the tail is the first one. The adtree will be built accordingly, as shown in example 67.

- (67) The bookmaker paid out the winning.

\[\text{bookmaker paid out the winning} \]

Figure 3.10: The adtree of The bookmaker paid out the winning (67).
3.5 The notion of grouping

I postponed to notion of grouping to the end of the first part as readers should be familiar to adtrees, adtypes and actants before to approach this concept. In fact, the theoretical basis of groups is far different from the one proposed by the Chomskyan tradition, although the very concept of grouping is due to Chomsky himself. This is the definition of group:

group: a group is formed by one or more adtrees, *i.e.*, a set of syntagms, where a syntagm is a triple lexeme-adposition-lexeme. Its head is always lexical, and it coincides with the lexeme bringing the actant value, either full or void. Groups can be nested one into the others.

In adgrams, the concept of grouping is complementary of the concept of adtrees: while adtrees shows the adpositional structure behind lexemes, transferers and transferees, groups are a way to put together adtree parts in semantically coherent parts, like what is usually done in the Bloomfieldian immediate constituent analysis (perhaps in a more readable way, as there is no so heavy bracketing). Eventually, the concept of group coincides with the notion of syntagm.

Hereafter there are some rather complex examples of groups, taken from already analysed examples: the most interested reader can retrieve the adtrees and compare the two notations. It can be useful also to check again section 2.8.

- (27) N_p(Somebody) V(called) N_p(me) X_1(at the phone) Z_1(with a mobile).
- (31) N_p(Carlo) V(cade) N_p(nel tombino).

Table 3.24: *nice* in the English adpositional grammar dictionary

<table>
<thead>
<tr>
<th>verbif.</th>
<th>circum.</th>
<th>adjunct.</th>
<th>stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A>1</td>
<td>A>E</td>
<td>A</td>
<td>A>0</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>nice</td>
<td>⊥</td>
</tr>
<tr>
<td>moduli</td>
<td>⊥</td>
<td>⊥ [+NICE]</td>
<td>⊥</td>
</tr>
<tr>
<td>valence</td>
<td>1°</td>
<td>2°/°1°</td>
<td>3°/°2°/°3° extra</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

Figure 3.10 shows the adtree of example 67. The meaning of brackets in lexemes like *win(n)*- or *make(s)* is due to a phonological variation of English in morphological composition: this will be rendered with ad hoc, very specific rules. The phrasal verb *to pay out* has an additional internal argument (out) which does not carry any actant, and in fact it is fixed in advance. The adtree is complex, compared to the number of words involved. Most probably, the rule/list fallacy is valid here too: a paradigm of stative compounds governed by *mak-er* is certainly active, with common words like *shoe-maker* and *cabinet-maker*.

Finally, note that foreign compounds borrowed in English should not be decomposed, as the average speaker is totally unaware of its structure, and in fact they are no longer productive. For instance, *blitzkrieg* and *kriegspiel* are single lexemes in English, while in German they retain their productivity: *Blitzkrieg*, *Blitz-aktion* (literally, ‘flash-action’), *Blitz-schlag* (literally, “flash-lightning”, *i.e.*, ‘love at first sight’), and also *Krieg-spiel*, *Kriegs-film* (war film), *Kriegs-ge-fang-en-e* (prisoner of war), etc.

3.4.7 Adjunctive lexemes

Adjuncts comprehend all adjectives, both attributive and predicative (see again section 3.3.4), and a lot of so-called ‘functional words’, like determiners (*this, these*) and articles (*a, the*). Analogously to the other types, some adjuncts are selective, while others are not. For example, *nice* is a selective adjective (Table 3.24), while *blue* is collocational (Table 3.25). In fact, in sentences like *I feel blue* the morpheme *blue* modifies the verb *feel*, hence it is circumstantial, while in the *blue sky* is deeper in Norway than in Italy the morpheme *blue* is clearly an attributive adjective. Note that the stative use of *blue* coincide with the explicitly abstractive *blue-ness*.

Table 3.25: *blue* in the English adpositional grammar dictionary

<table>
<thead>
<tr>
<th>verbif.</th>
<th>circum.</th>
<th>adjunct.</th>
<th>stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A>1</td>
<td>A>E</td>
<td>A</td>
<td>A>0</td>
</tr>
<tr>
<td>to</td>
<td>blue</td>
<td>blue</td>
<td>blue</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>moduli</td>
<td>[+]</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>valence</td>
<td>1°</td>
<td>2°/°1°</td>
<td>3°/°2°/°3° extra</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
Chapter 3. Dictionary and lexicon

- (32) N_1(Carlo) V(tuma) Y_1(nel tombino).
- (33) N_2(Liza) V(is) N_0(blonde).
- (39) X_1(Domani) V(pisove).
- (42) X_0(Ali) V(studies) Y_1(in the library) \otimes(and) N_4(Carl) V(plays) X_1(home).
- (43) X_1(Alfred) V(peut X_2(payer)) \otimes($parce que$) N_0(il) V(est) N_4(riche).
- (45) V(N_0(Si) scateni) N_0(un finimondo) \otimes($i()) Z_1(urla) \otimes($i()) Z_2(insulti) \otimes($i()) Z_1(schermi) \otimes($i()) Z_2(linguiste).
- (46) N_0(The library) \bot($where$ N_0(I) X_1(often) V(study) N_0(literature))) V(is) N_0(W_1$(far) away).
- (54) N_0(The restaurant) V(is opened) X_2(Monday X_2(evening)).
- (55) X_1(Suddenly) N_0(Liza) V(calmed) N_0(W_1$(her) walk).

Especially if the final adtree is very complex, grouping is a compact notation to enlighten some phenomena over others, compared to adtrees. It is noteworthy that a each group is equipollent to (a set of) adtree(s).
The terms 'transfere' and 'transfene' are not directly used by Tommo [1959], but they can be derived from the Itonian concept of tranference. In French, 'transfere' would be rendered as _translater_, while 'transfene' would be translated as _transferé_, using two different lexemes: _transf_ and _fer_. In contrast, Italian would use only one lexeme, _transferente_ for 'transfere' and _trasferito_ for 'transfene'. A possible translation in Esperanto can be the couple _transigilo_, 'transferer', and _transigilo_, 'transfene' (also see the Appendix).

That is why it was marked as [→ PRESENCE] instead of [→ ABSENCE], which would have been wrong.

The limits of the morphological analysis is synchronic. It is of no use in adgrams to point out the Latin morphemes _-er_ and _-ser_ in words like _inf-er_, _sup-er_, _int-er_, _dec-er_, _min-er_, _ser_, clearly made by two morphemes, and transmitted as fossil in a lot of actual NLs. Analogously, the entry of _alter_ will not be put into relation with _out_ - _ser_, even if diachronically the two words are related: _alter_ is a contraction of _out*-ser_.

The immediate constituent analysis (ICA) was introduced in modern linguistics by Bloomfield in 1933, but its roots are at least in the Italian grammarians of cinquecento – see Percivall [1976] in McCawley [1976].
Part II

Application
Chapter 4

The translation game

What ‘machine translation’ does exactly mean? First, I call translation a process of rendering a text, i.e., a coherent chain of grammatical sentences written in a given NL, from a source language (L_s) into a reliable text written in a target language (L_t). If L_s = L_t is true, the term paraphrase will be used. ‘Reliable’ means that:

1. the text in L_t is syntactically correct on reading, i.e., without any further editing;
2. the original meaning in the L_s Spanish is preserved in the L_t version, i.e., both texts evoke the same content, even if the construals are entirely different.

Second, note that I use the restricted sense of ‘translation’, referring only to asynchronous written texts. I use the term ‘interpretation’ for synchronous oral discourse translation, as it is used in the current EU language policy literature [Phillipson, 2003]. It is noteworthy that interpretation is out of the scope of this dissertation.

For machine translation (MT) I simply mean a translation carried out by a computer, without any human aid. There are three main theoretical paradigms in MT research: the direct paradigm; the interlingua paradigm. The direct paradigm is the oldest; the system is a series of bilingual dictionaries, and the translation is performed word-by-word. No linguistic analysis is performed. They are the less accurate. The transfer paradigm is a rule-based system: there is a set of rules for each couple of NLs and a translation arrow (L_s \rightarrow L_t). A detailed morphosyntactic analysis is performed. Finally, there is the interlingua paradigm, where the machine performs a pragmatic and semantic analysis of the source language L_s – usually using a longer list of acts and, perhaps some form of case-based reasoning – then the same procedure is applied to the target language L_t. No morphosyntactic analysis is performed.¹

4.1. The default machine translation scenario

Until the 1990s, MT systems were top-down – i.e., linguistic corpora were annotated with information with supervision, by human informants – regardless of the theoretical approach. Then, existing linguistic corpora were starting to be used, often parallelised, either on a text or sentence level. Machine learning methods, usually based on statistics, are used nowadays. Interestingly, the first MT systems driven by corpora followed the direct paradigm, while since year 2000 all systems follow the transfer paradigm.

If translation is performed by a computer and then revised by a human being, the acronym CAT (computer-assisted translation) will be used. CAT includes the use of translation memory (TM) tools as a special case. A TM tool is a knowledge base where translation chunks are stored, so that when a human translator encounters an analogous chunk of text the system proposes the correspondent translation already approved. This approach proved to be highly effective in domains where a controlled, standardised language is adopted, such as technical manuals. TMs can be considered an explicit and technical answer to the rules/list fallacy argument.

Why should computational linguistics care about MT? This question is twofold, the first one being computational, the second one linguistic. They are logically independent one the other, so I will treat their answers separately.

The computational side of the answer is simpler than the linguistic one. For MT people generally mean the scenario presented in the next section, that I call the ‘default MT scenario’. In this chapter I propose an alternative scenario, that I consider more appropriate to the linguistic purposes of adgams and, more generally, for computational linguistics as a research area. I describe each scenario as a Gedankenexperiment, i.e., a thought experiment.

4.1 The default machine translation scenario

Alice is a native speaker of a L_s, let it be Spanish, and she wants a written document of hers, e.g., a newspaper article, to be read by Bob, who does not understand anything in Spanish. Bob is a native speaker of the L_t, let it be Tamil. The double arrow (\rightarrow) indicates that a translation is performed; the input is the first element on the left, while the output is the second element on the right of the arrow. The greater (>) means “writes” while the lesser (<) means “reads”. Inf formula:

\[A > L_s \rightarrow B < L_t \]

As it is neither simple nor cheap to find human professional translators from L_s to L_t, Alice decides to put her text into a machine – i.e., a computer program – that is supposed to give a reliable translation in Tamil.

¹
Chapter 4. The translation game

As so described, MT is a linguistic task that simply cannot be done non-computationally.

4.1.1 The problem of machine translation evaluation

The linguistic side of the answer is less trivial. I argue that MT should be the testbed of language models, i.e., instances of general language descriptions and formal linguistic theories, which aim to have at least a cross-linguistic validity – perhaps it is the only genuinely computational testbed we have. More clearly stated, a reliable MT is a proof of validity of the underlying model. But a major problem arises in this scenario in order to reach this goal: how to evaluate a MT task?

The most often used method in current research is to compare the MT output with a gold standard translation from which researchers extract features to train automatic metrics. However, as convincingly shown by Callison-Burch et al. [2006], automatic metrics such as BLUE are very useful to improve MT systems during their development but they may strongly differ from human evaluation and in any case they cannot replace them.

On the other hand, human evaluation is subject to a great variability which is not easy to control or measure. Furthermore, the fact that human evaluators know that the outputs are made by machines and not by human translators deeply influences, if not invalidates, their final evaluation. To solve this problem, which is of the greatest importance, I propose here an alternative scenario.

4.2 The translation game scenario

Suppose that Charles is the Spanish-Tamil MT designer, who enters the default scenario. Charles asks Alice not to write directly in her mother tongue but in a special controlled language, meaning not a domain control but a fully controlled language system, i.e., a quasi-natural language (QNL) as defined by Lyons [2006]. A QNL is non-natural without necessarily being unnatural, i.e., it is non-natural in a very different way compared to predicate calculi or computer programming languages such as Pascal, C, Prolog, Smalltalk or ML. A QNL shares all the basic properties of a NL, the most important being the double articulation, i.e., the divisions either in phonemes or in morphemes. Furthermore, a QNL has the following properties:

1. it is highly regular in morphology.
2. As a direct corollary, homophony and suppletion are less used lexical strategy compared with NLs.
3. Part-of-speech tagging is easier as there is almost no allomorphy.

4. Lexemes normally are highly productive, i.e., lexical paradigms as shown in chapter 3 normally do not have arbitrary blocks.

QNLs are not restricted in semantics, i.e., they have the same expressive power of NLs. It is noteworthy that both non-pathological child languages and planned languages belong to this category.

For example, QNL has a subclass Quasi-English, one of whose memebers is like English in all respects except that it is inflectionally regular, all plurals of nouns being formed with the -s suffix (child, sheep, goose, etc.), all past-tense forms of verbs with -ed (got, ran, had, etc.), and so on. This is a language part of which children construct of themselves (as then in part deconstruct – if I may so express it at) at a certain stage in the normal (natural) process of acquiring English.

It is also the language into which English would presumably have developed under particular environmental conditions which maximized the effect of what is traditionally referred to as analogy [Lyons, 2006, 69-70].

Coming back to our Gedankenexperiment, let assume this QNL being the Entry language (\(L_e\)) of the MT system used by Alice. The \(L_e\) will generate the texts in both the \(L_e\) and in the \(L_t\) at the same time. The \(L_e\) should simply not only Charles’ work, but also Alice’s. In fact, not only Alice’s text in the \(L_e\) will be rendered simultaneously both in Spanish and in Tamil, but she can also compare her text with the Spanish MT and hence adjust it, learning how to improve her text and her use of the MT system simultaneously.

In particular, the system has a TM tool which proposes second or third choice alternative translations. In fact, when Alice judges the Spanish MT to be satisfactory, she will push an "ok, I’m satisfied" button. From that moment, the system will keep track of Spanish and Tamil texts as TMs – eventually adapting the generation rules according to the satisfactory version, so to have a better proposal of Spanish next time. In the background, the Tamil generated text will be adapted too, according to their respective generation rules. In formulae:

\[A \setminus L_e \Rightarrow A \setminus L_e \cap S \supset L_t \cap B < L_t \]

I argue that there are two compensation for Alice’s additional work in writing in the \(L_e\) instead of in her native tongue Spanish, although I admit this is highly debatable. First, Alice will work bidually: the comparison between the input text in the \(L_e\), and the text in the \(L_t\), will improve the clarity and conciseness of her text. Second, the system should be improved by the increase of TMs and the adaptation of the generation rules from each language pair.

Adgrams should solve the problem of NL understanding, as it covers the model for morphosyntax and semantic description of the single NLs as
well as the rules for MT. However, it is noteworthy that adgrams work as if there is no TM involved. Following the classification of MT systems, the system proposed here is basically a rule-based transfer system [Hutchins and Somers, 1992]. An apart role is given to the L_r, as it generates both texts in the L_s and L_r respectively, so the implementation of L_r should be more fine-grained. Moreover, the notion of grammar character can be interpreted as a sort of interlingual level. Finally, the structure of the dictionary, as described in chapter 3 can be viewed as a collection of examples, i.e., “machine translation by example-guided inference, or machine translation by the analogy principle” [Nagas, 1984, 4].

A detailed description of the MT architecture following the translation game scenario is postponed to chapter 8, as an instance of the L_r is needed.

4.2.1 A new evaluation test

From Bob’s point of view, nothing changes between the two scenarios. He may be totally unaware of all this process, all he needs is to be sure about Tamil text reliability – in the sense given above – of Alice’s Spanish original. The main advantage in the translation game scenario is in the test we are going to perform, which is not possible in the default scenario.

Suppose now that Dave is a native bilingual speaker of L_s and L_r: he can read both Spanish and Tamil texts with a reading mastery (C2) level, according to the classification used in the Common European Framework of Reference for Languages. Dave is neither a computer scientist nor a linguist, but he is a professional translator. He knows neither Alice nor Bob and cannot access the text written in L_r by Alice.

Charles, the MT designer, asks to Dave if the text in Spanish and the text in Tamil are reliable translations one of each other. It is important that Charles does not specify the translation arrow – i.e., which is the L_r and which the L_s – nor the fact that Dave is evaluating machine system outputs. What really matters is the reliability of the texts. The key question is: are the texts in Spanish and Tamil a translation one of the other? To what extent?

This test leads to a neutral evaluation, without any prejudice due to the fact that a machine, not a human, had produced both texts. In fact, unlike the default scenario, Dave is evaluating two really comparable documents, instead of a human-produced document versus a machine-produced one.

I consider that the test would be passed if Dave will find the same amount of translationese – i.e., translation-specific linguistic signals that reveal a document being a (human or not) translation – in both texts. In the optimal case, Dave would not be able to decide whether the Spanish is the original version or not.

Finally, it is noteworthy that this test does not prejudice any use of automatic metrics: it is simply an additional test fulfilled instead of the default human evaluation tests.

4.3 Esperanto as the entry language

4.3.1 The quest for the international auxiliary language

Since the end of the 19th century up to the first half of the 20th century, the quest for a definitive form of the international auxiliary language (IAL) was a hotly debated issue among linguistic scholars and amateurs. In fact, about 1,000 language projects were proposed in that period, especially in Europe: the strongest effort for cross-cultural communication ever made. An IAL is a QNL for a specific purpose, “oral and written use between people who cannot make themselves understood by means of their mother tongues”, as clearly stated by Otto Jespersen in 1931. IALs are a special kind of planned languages: fully linguistic systems – langue, in Saussurean terms – launched by an author through a book (or a web site, in more recent times), containing grammar and the basic vocabulary. When launched, a IAL is a langue but not a parole; i.e., there is no linguistic behaviour performed by the speech community members, simply because there is not any speech community – note that this definition excludes the so-called a priori languages as pasigraphies, such as John Wilkins’ Real Character, or François Sudre’s Solresol. Therefore, the first step in the analysis of a planned language is to detect the very moment the language gets published. Crucial issues as standardisation, graphisation and reform become in fact very different after the primitive contract is settled, as stated by Ferdinand de Saussure:

The primitive contract gets confused with everyday’s language life. A system of signs as a language is received passively by the next generations. In any case the system of signs have the property to be transmitted by laws of their own, independent from the ones that settled the original contract (even if there is an explicit agreement, as in the case of Esperanto). The moment the contract is accepted, no one is

5 Section 4.3 updates and summarises some publications of mine: Gobbo [2008a], Gobbo [2008b] in Borbone et al. [2008], Gobbo [2005a], Gobbo [1998].
the translation game

4.3. Esperanto as the entry language

the most popular IAL at that time, Volapük, so they turned their support to Esperanto. Initially the language was used in written form: a lot of discussions were about grammar. Zamenhof followed a precise language policy: supporters were free of using the language for whatever goal (and that meant that new words should enter as neologism, as in NLs), while they should adhere strictly to the 16 basic grammar rules of the language, which should act as a barrier to language variability. Zamenhof was true, as the primitive contract was established among the Esperanto community; nevertheless, people were proposing a lot of structural reforms (e.g., changing the way to form plurals). Therefore, in 1894, a referendum was imposed to the readers of the first journal, La Esperantisto, about the possibility of remaining loyal to the original system or to shift to a new one, which collected the most frequent remarks. The voting resulted favourable to the original system, and the possibility of structural reforms were declared out of the Esperanto community; this was declared again in the first congress occurred in Boulogne-sur-Mer (France) in 1905: since that moment, Esperanto became a full used language, also in speech, with a relevant public life. We can say that, since 1905, Esperanto became a QNL in Lyons’ terms.

Of course, the debate about the definitive form of the IAL did not cease in 1905. A lot of offsprings, reforms, alternative projects, were launched after that date. Only a couple of them, i.e., Ido and Interlingua, are still in used nowadays. However, no other IAL succeeded to develop at such a level as Esperanto: the community has succeeded to survive two world wars – in spite of the persecutions by Nazis and Stalinists. Hence, Esperanto succeed to build a non-ethnic international culture of its own, with an apart attention to original literature [Sutton, 2008]. Realistic estimates are of 50,000 members of the Esperanto speech community, i.e., people that actually use the language in their life. In minimal part, Esperanto is also acquired by children in multilingual families. This is a known and studied Linguistic phenomenon, sometimes compared with the revitalisation of Modern Hebrew. However, it is still debated if it is acquired really as a first language, as there is no truly monolingual speaker of Esperanto, and Esperanto is always in the weak position in bilinguism, as there is no Sprachraum, language area, belonging properly to that QNL.

The speech community evolved and so the language: some forms became archaisms, while others are constantly invented, most notably in the field of computer science. There are some idiomatic expressions, exactly as in NLs [Fiedler, 1999]. This means that Zamenhof’s ideas, views, and use of Esperanto are still important to understand the kernel of Esperanto, but contemporary Esperanto is no more Zamenhof’s language from a lot of time: in some cases the speech community made emerge linguistic phenomena that Zamenhof could not be aware of. Table 4.1 shows how the official dictionary of Esperanto has grown in more than a century, accord-

the owner anymore. A language is like a goose brooded by a hen.

After that moment, a language enters its semiological life, and it is impossible to get back (emphasis by me). The primitive contract involves the fact that a QNL cannot be re-planned – i.e., touched in the language core: phonetics, morphology, syntax – even if a single author is identifiable, as the QNL creates its own mystique of apperterance and permanence while entering its “semiological life” – that is, when a speech community produces the parole (Figure 4.1). Most IALs never succeed to establish a speech community: Esperanto is the most notably exception.

4.3.2 Esperanto and its evolution

Esperanto was launched by Ludwik Lejzer Zamenhof (1859-1917), an Ashkenazi intellectual, follower of the Jewish Enlightenment (Haskalah) and early Zionist. Moving from the debate about the possible solutions of the Jewish Question, Zamenhof spent his life along a twofold project: a ‘neutral-human’ language and a ‘neutral-human’ culture and nonclerical religion, that could serve as an enlightened bridge equally for Jews and non-Jews. The language should be the main tool for that non-ethnic culture. Initially he turned his attention to Yiddish, and wrote the first grammar of that language ever; then, after the fall of the American option for Zionism, he turned his attention not to Jews only but to mankind: every people could take part this non-ethnic culture through the non-ethnic language. His ideals formed the so-called interno ideal, internal idea, the kernel of the esperantic philosophy. He started in 1887 from the language, publishing a book in Russian, with the grammar, some literary texts (original and translated) and the basic dictionary. Thereafter, the same book was published in Polish, French, German, English and Swedish. Zamenhof signed the book under the pseudonym ‘Doktor Esperanto’, which eventually became the name of the new IAL. The language core of Esperanto – i.e., phonology and morphosyntax – is heavily influenced from Zamenhof’s mother tongues, Yiddish and Belarussian, while the lexicon is made of Romance, Germanic and Slavic morphemes, in this frequency order (see chapter 5 for details).

At the end of the 19th century there was a certain amount of groups and societies supporting the idea of a IAL, and they were unsatisfied by

Figure 4.1: The life of a planned language [Gobbo, 2008a, 28]
Chapter 4. The translation game

Table 4.1: The official dictionary [Akademio de Esperanto, elaboration]

<table>
<thead>
<tr>
<th>Year</th>
<th>Morphemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1905</td>
<td>2,766</td>
</tr>
<tr>
<td>1909</td>
<td>3,574</td>
</tr>
<tr>
<td>1915</td>
<td>4,161</td>
</tr>
<tr>
<td>1921</td>
<td>4,364</td>
</tr>
<tr>
<td>1927</td>
<td>4,484</td>
</tr>
<tr>
<td>1934</td>
<td>4,492</td>
</tr>
<tr>
<td>1935</td>
<td>4,513</td>
</tr>
<tr>
<td>1958</td>
<td>4,244</td>
</tr>
<tr>
<td>1974</td>
<td>4,744</td>
</tr>
<tr>
<td>2007</td>
<td>4,955</td>
</tr>
</tbody>
</table>

4.3. Esperanto as the entry language

Table 4.2: Size of selected Esperanto dictionaries [Fiedler, 2006]

<table>
<thead>
<tr>
<th>Year</th>
<th>Name of publication</th>
<th>Number of roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1887</td>
<td>Unio Libro</td>
<td>964 roots</td>
</tr>
<tr>
<td>1894</td>
<td>Universala Vortaro</td>
<td>approx. 2,400 roots</td>
</tr>
<tr>
<td>1934</td>
<td>Plena Vortaro</td>
<td>6,900 roots + 5,000 compounds</td>
</tr>
<tr>
<td>1970</td>
<td>Plena Ilustrita Vortaro</td>
<td>approx. 15,250 roots (about 45,000 entries including compounds and derivations)</td>
</tr>
<tr>
<td>2002</td>
<td>Le Nova Plena Ilustrita Vortaro</td>
<td>approx. 17,000 roots (about 47,000 entries)</td>
</tr>
</tbody>
</table>

To now, mostly translated from French. More specifically, the bitextual examples I use are in Italian and English, being the first natural language pair to be used in the translation game as source and target languages.

4.3.3 Esperanto and machine translation

The use of Esperanto in MT is far from being a new idea. In 1933 the Soviet Union Petr Petrovich Troyanskii, “the Babbage of machine translation” (Bar-Hillel), acquired a ‘author’s certificate’, i.e., a patent, for a mechanical translating machine, made of special desk with a typewriter, a photographic camera and a belt as input/output devices. The symbols of logical and etymological parsing were borrowed directly from Esperanto. Afterwards, Esperanto was no longer considered positively in USSR, so Troyanski dropped its use [Hutchins and Lovtski, 2000]. Therefore, it can be said that Esperanto was involved in this field before its official beginning, in the 1950s. However, in more recent times other projects were proposed.

The Distributed Language Translation (DLT)

According to the survey by Hutchins and Somers [1992], DLT is the most important MT project using Esperanto:

In most interlingua-based MT systems, intermediate representations are not genuinely interlingual. Usually the structural representation is language-independent, e.g. a predicate-argument structure, but lexical items are not. […] In DLT, by contrast, the Esperanto interlingua is more like a ‘natural language’ with its own independent structures and lexical items [Hutchins and Somers, 1992, 298].
4.3. Esperanto as the entry language

Furthermore, there is almost no allomorphy.

In particular, there are unique final suffixes that mark the main grammar characters, i.e., nouns (-o as the subjective singular), verbs (-i as infinitive and only five other temporal markers) and their adjectives (adjectives in -e and circumstances in -e respectively). For instance, *norda* means ‘the north’, *norde* ‘northern’, *norde* ‘at north’ and *nord* ‘to be at north’. See Sabaris et al. [2001] for other examples. Esperanto morphology allows for a high degree of productivity from loan translation.

On the other hand, Esperanto-UTL is a different language system, as the authors arbitrarily changed the proposition system in order to enhance the disambiguating properties of their artificial human language, violating the primitive contract already explained in section 4.3.1, and this is the reason behind the fact that no esperantist has shown interest in this project. The standard Esperanto 34-based preposition system is richer and more precise than its source languages [Perracchietti, 2006a], and hence there is no need to change the delicate linguistic structure of the language. Contra Sabaris et al. [2001], the example 68 – a classic in the literature – shows how the prepositional system of Esperanto is already high precise.

- (68en) I saw a man with a telescope.
- (68as-ko) Mi vidis homon kun teleskopon.
- (68e-ko) Mi vidis homon per teleskopon.
- (68e-ko) Mi vidis kunteleskopan homon.

Example 68a is the linguistic realisation of the scenario where the seen man had the telescope, while in example 68b the telescope has been used to see the man. As any other Q NL, Esperanto allows marked realisations like example 68c, to underline that it is really the seen man, the person whom the telescope belongs. In sum, UTL has some good intuition for the general scenario proposed, but it has severe limits in the language planning side of its architecture.

Esperanto in the Visual Interactive Syntax Learning project

In 1996 the Institute of Language and Communication of the University of Southern Denmark has launched a research and development project called Visual Interactive Syntax Learning (VISL) – see the web site visl.sdu.dk. The theoretical base is Karlsson et al. [1995]’s Constraint Grammar parser, a linguistic framework for annotating corpora of different NLs with a general tagset. In 2003 an on-line corpus for Esperanto was created, annotating the only monolingual corpus available at the time, the Tekstaro de Esperanto,
Chapter 4. The translation game

following the Text Encoding Initiative (TEI) standard but without grammatical annotation [Toskin et al., 2005] – now available at textstaro.com.

The resulting corpus is about 18.5 million words, with different sources, from the Bible to Wikipedia [Bick, 2007] in [Davies et al., 2007]. It is available for free in the multilingual search engine CorpusEye – see the web site corp.hum.sdu.dk.

With the collaboration of GrammarSoft ApS (Denmark) and Kildera Språktechnologi AS (Norway) – which offer professional MT and CAT services for Scandinavian NLs – a MT system Danish-Esperanto was released too – available at gramtrans.com.

The purpose of a tagger is to analyse sentences and to add some linguistic information to their constituents, typically words, more rarely morphemes: Varin [2004] compares the Enrestriction Grammar tagger for Esperanto, which is rule-based, and the gold standard stochastic tagger, i.e., the Hidden Markov Model (HMM) tagger. The rule-based tagger obtained slightly better results.

Other projects and experiences

As far as I know, there are two other Esperanto part-of-speech taggers until now: Minnaja and Pacagnella [2000] and Toral et al. [2005]. The latter in particular is compliant with the EAGLES standard; its tagset is considerably small (86 tags) compared to NLs, e.g., 114 for English, 274 for Italian.

The only open-source project of MT that includes Esperanto as one of the languages is Apertium. Its engine performs a shallow transfer, i.e., the syntax is not analysed deeply but the lexicon is rich enough to permit the right substitutions. This approach proved to be fit for closely related NLs, such as Spanish, Catalan, Occitan and Portuguese, by the Transducens group at the Universitat d’Alacant, and was recently extended to not so related (Q)NLs, such as English, Esperanto, Basque or Welsh. For more information see the official web site apertium.org. 30

There are two more MT projects using Esperanto. The first one is called Tradukita, and it was launched in 2001 by a single programmer. Now, it is publicly testable at tradukita.net, but it seems to be not professional. The other one is called Unikomo, and it was launched in 2006 by Bernard Stollman. It follows the transfer model and Esperanto is at its core, while NLs are currently implemented around it. It is too early to write an evaluation. 23

4.4 Critique of the translation game

As in the classic papers by Turing [1950] and Searle [1980], I will briefly discuss some possible contrary views to the approach presented insofar, along with its counterarguments.

4.4.1 The chinese room argument

“Whatever linguistic model you put into the machine, we cannot consider it really cognition, as the meaning of the linguistic model is only in the brain of Charles, the system designer.”

This argument is based on Searle [1980]. As stated in the introduction, I think that MT is the best testbed of our linguistic models, if they are expressed formally. Even if the linguistic model is only in Charles’ brain, the model is made explicit by the computer program. Furthermore, the model will be refined during implementation thanks to the tests given by the computer program itself.

4.4.2 The engineer’s reaction

“Machine translation is not a testbed of any linguistic theory or anything else. What we need is something practical, i.e., commercially valuable as useful in some domains where we want fast translation of large amount of data.”

This argument is seldom said openly but nevertheless a lot of people believe in it. I do not agree at all. Having no linguistic theory is a linguistic choice indeed. After all, even some recent developments in statistical MT show the need, or at least the opportunity, to improve the quality of translations through some kind of syntax. Computational brute force and statistics are not enough for achieving good results in MT.

4.4.3 The desperantist’s argument

“Esperanto is not fit for the purpose you mean, as it is an artificial language. You choose Esperanto as the C, for propaganda. Why not other international auxiliary languages such as Ido or Interlingua? Why not a logic artificial language as Lojban? It is not better than Klingon!”

People have a bias against Esperanto which is essentially a prejudice, and this is the most clever form I have found to express this common argument. This prejudice is due to a misunderstanding about the term ‘natural’ in languages: from a theoretical linguistic point of view, Lyons [2006] clarifies four types of naturalness about languages, and hence its antonym non-naturalness and unnaturalness, until achieving the concept of QNL. However, I have chosen Esperanto for a very practical reason: it is a carefully planned language and it has a considerable amount of corpora available in digital form, compared to competitors such as Ido [Gobo, 2005a]. Furthermore, unlike any other competitor, it is quite easy to approach the language from most natural languages of the world and a lot of personal experiences agree that everyone may achieve a consistent level of compence.
Chapter 4. The translation game

quite quickly. Vice versa, a so-called ‘logic’ language as Lojban is difficult for Alice to be mastered, at least for the lexicon – which is opaque for everyone.

4.4.4 The typologist’s objection

“Esperanto is fundamentally a European-based language; your scenario may work with English, French or Spanish, but not with non-European languages, such as Chinese, Arabic, or Tamil.”

This argument is very serious, and I have only a partial answer. The Esperanto lexicon is essentially pan-European, but its morphology surprisingly resembles non-European language systems as for instance Hungarian or Turkish [Gledhill, 2001]. The choice of English and Italian as the generated natural languages is a real limit, but this is only due to my linguistic repertoire – a pragmatic reason. If I have good results, I try to generalise the adgram model by introducing non-European languages.

4.4.5 The human interface argument

“Your assumption is too strong. You force Alice not to use her mother tongue, i.e. Spanish, and you ask her to learn Charles’ system too. Furthermore, as your approach implies a strong supervision, I think that it will be easier, faster and cheaper to translate source and target language by professionals instead of using your system.”

This pragmatic argument moves from economics. It is not completely true that Alice can not use Spanish: she can choose alternative translations of each syntagm, as proposed by the system after reading. As claimed in the very description of the scenario, the comparison between the L* and the source language should compensate Alice’s additional work. First of all, note that the scenario implies a strong supervision only in the analysis phase, and only a monolingual parser is needed, as natural language pairs are generated. Furthermore, the more the TMs are stored, the more precise and wider the system will become. Last but not least, I plan to release the system as an open source project in order to let the worldwide Esperanto community members – always at least bilingual – so to improve the linguistic coverage through new consistent examples and natural language pairs, if a consistent output is obtained.

Notes

1 For a survey over the theoretical paradigms, Hutchins and Somers [1992] is still valid.
2 The language policy of the International Academy of Sciences (AB) of San Marino is based on this principle, and proved to be effective, according to their members [Frank and Fossmeister, 2000].
3 This is an inheritance of Caccia’s Correlational Grammar: “the operations that constitute this human universal [of mental functioning] are non-linguistic and their products form the substrate of ‘meaning’ that is designated by different linguistic means” [Glashoff, 2001].
4 The English version of the Common European Framework of Reference for Languages is published by Cambridge University Press. However, it is also available online. Admittedly, it is hard to imagine a bilingual speaker of Spanish and Tamil, however, this is a thought experiment: Spanish and Tamil were chosen only for the first letter of their respective names in English.
5 For a long time, the best references about this topic were two volumes: Couturat and Leau [1907] and Couturat and Leau [1913]. In particular, Couturat was influenced by the Leibniz’ researches, which he rediscovered in a study trip at Hannover in 1901 – see Couturat [1903] and Couturat [1901].
6 The term ‘planned language’ was invented in German as PlanSprache by Eugen Wiester [Blanke, 1998]. For a full classification of the evolution steps of a IAL, see Blanke [1985], a still valid reference: Recent advancements in the field are published in Blanke [2006].
7 I prefer the term ‘planned language’ as a hypernym of TAL instead of ‘interlanguage’ or ‘interlingua’ as this last term has a lot of different meanings: (a) a language variety of L2 learners (i.e., with influences form L1 or overregularisation traits); (b) a formal language in MT systems; (c) ‘Interlingua’ is the name given by Giuseppe Rossano to his IAL instead of ‘Interlingue’ in 1930 [Luciano and Roano, 2008]; (d) the name also refers to the IAL of the International Auxiliary Language Association (IALA), as published under the direction of Alexander Gode; (e) a synonym of IAL, as intended by Jespersen in his talk of 1931.
8 For a survey, see Eko [1993]; for Solsesul, see in particular Cherifilles [2008].
9 The quotation is taken from the cahiers collected by Robert Godel that formed Ferdi- nand de Saussure’s Cours in Gobbo [2000a, 27].
10 Zamenhof as a Jewish philosopher was investigated in particular by Gabbron [1986] Maimon [1975] and Holzhaus [1989]. Also see the complete works by Zamenhof edited by Ibi Kani, alias Ludovitko – see in particular his [1982] on his life and work of Reinhard Haushofer – see at least Vallen [2004].
11 There are two key works by Zamenhof to understand his intellectual background: the call to the Jewish intelligentsia and his grammar of Yiddish (written in a Latin alphabet). They were written in Russian, the first one remains a manuscript, the second was published in the Yiddish journal Lohn un Voshaft. Today the originals are in the Jewish National and University library of Jerusalem. They were translated in Esperanto by J. Kohut-Cedek and revised by Adolf Holzhaus, who republished both texts as a single volume in Holzhaus [1982].
12 The first Esperanto books were recently reprinted as camera-ready in the [1991].
13 For Volapük, see the life and work of Reinhard Haushofer – see at least Vallen [2004].
14 For his language policy, see in particular the essays in the collection of Zamenhof’s original writings edited by Dietzler [1963].
15 For a survey of the history of classic IALs, i.e., before the computational turn, see the still valid Large [1985]. The effects of internet to the life of planned languages was investigated in Gobbo [2005a]. Finally, for a comparison between the sociolinguistics of Esperanto, Ido and Interlingua, see in particular Gobbo [2005a] and Gobbo [2008].
16 The reference of the history of the persecution of Esperanto is Lina [1998], available in different NLs. A good survey of the history of Esperanto is his [1998], while the only sociological analysis in English of the Esperanto movement is Forster [1992].
An insightful analysis of the whole phenomenon is Lindstedt [2006]. A more technical article about some phenomena of overregularisation is Cornetti et al. [2004].

See for example the multilingual thesaurus Komputeko, http://komputeko.net.

These elaboration is based on the statistics published by the Akademia de Esperanto and elaborated furtherly by Kück [2008].

The Frequently Asked Questions of Oxford University Press states:

The Second Edition of the Oxford English Dictionary contains full entries for 171,476 words in current use, and 47,156 obsolete words. To this may be added around 9,000 derivative words included as subentries. Over half of these words are nouns, about a quarter adjectives, and about a seventh verbs; the rest is made up of interjections, conjunctions, prepositions, suffixes, etc. These figures take no account of entries with senses for different parts-of-speech (such as noun and adjective).

Source: http://www.askoxford.com/asktheexperts/laq/. Retrieved 19 November 2008. In comparison, the Italian dictionary De Mauro Paravia contains 129,432 entries, while the potential derivative forms – in particular of verbs and nouns – are 794,692 (Pacioni Paravia Bruno Mondadori spa, Fabrizio Ciciora, personal communication, 19 November 2008). However, it is highly debatable how to count words, exactly for the existence of morphology: admit-able is distinct from admit? And what about water-fall? Moreover, a stative use is to be counted separately from an adjective or a circumstantial use, e.g., iron? There is no general agreement among specialists about this topic, and in any case this problem is out of the scope of this dissertation: let us consider these numbers simply as rough estimates.

I am collaborating informally with the Esperanto and Italian – see the official wiki of the project.

I am collaborating informally with the Unikomo project concerning the Italian language.

14 An insightful analysis of the whole phenomenon is Lindstedt [2006]. A more technical article about some phenomena of overregularisation is Cornetti et al. [2004].
15 See for example the multilingual thesaurus Komputeko, http://komputeko.net.
16 These elaboration is based on the statistics published by the Akademia de Esperanto and elaborated furtherly by Kück [2008].
17 The Frequently Asked Questions of Oxford University Press states:

The Second Edition of the Oxford English Dictionary contains full entries for 171,476 words in current use, and 47,156 obsolete words. To this may be added around 9,000 derivative words included as subentries. Over half of these words are nouns, about a quarter adjectives, and about a seventh verbs; the rest is made up of interjections, conjunctions, prepositions, suffixes, etc. These figures take no account of entries with senses for different parts-of-speech (such as noun and adjective).

Source: http://www.askoxford.com/asktheexperts/laq/. Retrieved 19 November 2008. In comparison, the Italian dictionary De Mauro Paravia contains 129,432 entries, while the potential derivative forms – in particular of verbs and nouns – are 794,692 (Pacioni Paravia Bruno Mondadori spa, Fabrizio Ciciora, personal communication, 19 November 2008). However, it is highly debatable how to count words, exactly for the existence of morphology: admit-able is distinct from admit? And what about water-fall? Moreover, a stative use is to be counted separately from an adjective or a circumstantial use, e.g., iron? There is no general agreement among specialists about this topic, and in any case this problem is out of the scope of this dissertation: let us consider these numbers simply as rough estimates.
18 I am collaborating informally with the Esperanto and Italian – see the official wiki of the project.
19 I am collaborating informally with the Unikomo project concerning the Italian language.
Chapter 5

The adpositional grammar of Esperanto

The core of the MT scenario proposed in the previous chapter is the formal description of the Esperanto grammar. In this chapter, the adpositional grammar of Esperanto is provided, for two reasons. The first one is to give a concrete instance of the general model of adtrees and dictionary described respectively in chapters 2 and 3. The second reason is to give an instance of the translation game in vitro: for this reason an apart attention is given to parallel examples in English and Italian as the source and target NLs of the very system, although other paralels in other NLs are used when needed.

Being Esperanto built over NL various material, it is important to make a distinction clear between Esperanto source languages and other NLs. Zamenhof’s linguistic repertoir was: Yiddish and Belarussian (his mother tongues), Polish, German, Lithuanian (corresponding to the nationalities of his surrounds), French (the international language of his time), English (self-studied), Greek and Latin (high studies) and Hebrew and Aramaic (Talmudic studies).1 These 11 NLs form the set of Esperanto source languages. The relation between Esperanto and its source NLs is similar to the relation between Latin and Italian, or Old Saxon and contemporary English: they are the language substrata of Esperanto. This means that Esperanto borrows their structures – i.e., phonology and morphosyntax – in an original combination. Therefore, it is different to say that Esperanto has a Saxon genitive case, although fossil, as in English, from saying that its morphology is mainly agglutinative as in Turkish or Japanese. The parallel with English is stronger, as English is a source language, while the parallel with Turkish or Japanese can be interesting, but in any case it is accidental, as Turkish and Japanese are not source languages, i.e., these similarities have been unplanned by Zamenhof. Nonetheless, if there would be a consistent percentage of Japanese or Turkish Esperantophones in the worldwide community, this could lead to a significant influence by those NLs. However, in the history of Esperanto, by now the most influencing national group was the French, especially between the two world wars, and this had have a notable influence, especially in the borrowing of new words.

Borrowing is a crucial aspect in Esperanto. In fact, the meaning of lev- emes, even if borrowed from source languages, can be different from the original, as Esperanto is an autonomous linguistic system. Now, a speci- fication is needed. I call calque a loanword where neither phonetics nor morphosyntax is respected in the target language, but only semantics. In contrast, an importation is a loanword where graphemes are respected into the target language, while semantics can be respected or not.2 For example, the French word affaire is borrowed as an English calque as af- fair, while the French importation affaire has a restricted meaning, namely a love affair. Esperanto generally prefers calques to importations; however, Esperanto calques can have a different meaning compared to the source languages, exactly as Old English words can have different meanings com- pared to contemporary English. For example, the Esperanto word afero (‘affair’) has an additional meaning of ‘the affair(s) concerning Esperanto, i.e., the straight engagement in developing the language by using it and make it be used by others’.

Esperanto morphosyntax is highly flexible, as already shown in exam- ple 48 (see section 4.3.3). Its unique features are suitable for the L0 role in the translation game. For example, the construal of the concept ‘to have a shower’ is different between English and German or Italian, and Alice, the MT engine user, would express it accordingly.

- (69en.) Alice had a shower.
- (69de.) Alice duschte.
- (69it.) Alice fece una doccia.
- (69a-en.) Alice havis dušion. (English-like)
- (69b-en.) Alice fāris dušion. (Italian-like)
- (69c-en.) Alice dusis. (German-like)

The series 69a-b-c is perfectly grammatical in Esperanto, while the German- like Italian construal ‘Alice si dekto’ or the Italian-like English construal ‘Al- ice did a shower are not.3 This is a great help to the MT engine user. Of course, the price of this flexibility is a considerable complexity degree in collocation, which is by no means simple or easy, as shown in the seminal work by Jansen (2007).

In the following I present the essential adpositional grammar of con- temporary, standard Esperanto, with reference to the classic text of the ori- gins for control. In other words, first I will base myself on my linguistic
ability, being an Esperantophone, i.e., an active speaker of Esperanto, and an Esperantist, i.e., a member of the worldwide community of supporters. Second, I use recent monolingual and bilingual dictionaries and grammars in various NLs (mainly English, Italian, German) for reference. Third, I use some studies about the language use of Zamenhof for double-checking, so that evolutionary traits can emerge for contrast. Caveat: what follows is a description of Esperanto for machine translation purposes, not a grammar for Esperanto learners. This means that every concept is written for the purpose of implementation in the formal model described linguistically in the first part of this dissertation, and formally and computationally since here. In particular, while the adspace is covered totally, only some affixes are described in their moduli and use. Readers interested in learning Esperanto should turn their attention to the many handbooks and e-learning courses available in many NLs.

5.1 The morphosyntax of Esperanto

In adgrams, the dictionary is made by morphemes, and their rules of combinability and collocation in the syntagmatic axis form morphosyntax. Therefore, the first step to describe the grammar of a QNL is to classify the morphemes under the cross-linguistical classes already presented in section 3.4: adpositions from one side and lexemes from the other side, along with their derivations, i.e., transferers and transferees. I recall that transferers are a subset of adpositions, while transferees are a subset of lexemes. The second and last step is to give language-dependent subclasses according to the semantic maps designed by the (QNL), so to build the dictionary suitable for computational treatment. Table 5.1 shows the general morphological classes, while Table 5.2 shows transferers and transferees. These classes are cross-linguistically valid. Each morpheme belongs to one and only one class.

Esperanto has a rich inventory of about 40 affixes, mostly prefixes and suffixes, which are of wide use. These inventory was set since the beginning by Zamenhof, and afterwards they were approved and monitored by the Academy of Esperanto, with very few changes – see chapter 4 for details. Wennergren [2005, 339] correctly reports and analyses in details un-official affixes too, which are used mainly for specific domain needs, such as zoology. For the purposes of this dissertation, the affixes and their conventions presented hereafter are only the official ones. Furthermore, some prepositions and a pronoun can be used as affixes: they will be analysed too apartly, because their syntactic value is different.

Affixes always add moduli to the lexemes to which they are attached: the affix is the dependent, while the lexeme is the governor (see chapter 2). The dependency between affixes and lexemes is completely grammaticalised.

<table>
<thead>
<tr>
<th>Table 5.1: General morphological classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adpositions</td>
</tr>
<tr>
<td>basic level</td>
</tr>
<tr>
<td>Plus</td>
</tr>
<tr>
<td>Minus</td>
</tr>
<tr>
<td>Slash</td>
</tr>
<tr>
<td>Times</td>
</tr>
<tr>
<td>phrasal level</td>
</tr>
<tr>
<td>Plus</td>
</tr>
<tr>
<td>Minus</td>
</tr>
<tr>
<td>Slash</td>
</tr>
<tr>
<td>Times</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5.2: The special lexemes: transferers and transferes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transferers</td>
</tr>
<tr>
<td>verbifying</td>
</tr>
<tr>
<td>circumstantial</td>
</tr>
<tr>
<td>stative</td>
</tr>
<tr>
<td>adjective</td>
</tr>
</tbody>
</table>
5.2 The Esperanto alphabet

Before to proceed, it is necessary to introduce the Esperanto alphabet, which is derived from Latin – see Table 5.3 (for pronunciation, Wennergren [2005, 32]). As in the case of many NLs, Esperanto has its own unique combinations letter plus diacritic, which act as identity flag, such as the Spanish (ñ) or the German (ß). The four letters {q}, {w}, {x}, {y} are used only for transcribe imported foreign names, e.g., “Yvonne”.

Each phoneme is written through one only grapheme: in other words, Esperanto follows a graphemic writing system, unlike for example English which follows an etymological one. The Esperanto alphabet is easily encodable through the Unicode Standard.

Table 5.3: The Esperanto alphabet

<table>
<thead>
<tr>
<th>a, A</th>
<th>b, B</th>
<th>c, C</th>
<th>ĉ, Ĉ</th>
<th>d, D</th>
<th>e, E</th>
<th>ĝ, Ĝ</th>
<th>f, F</th>
</tr>
</thead>
<tbody>
<tr>
<td>g, G</td>
<td>ĝ, Ĝ</td>
<td>h, H</td>
<td>ĝ, Ĝ</td>
<td>i, ĝ</td>
<td>j, J</td>
<td>k, K</td>
<td>l, L</td>
</tr>
<tr>
<td>m, M</td>
<td>n, N</td>
<td>o, O</td>
<td>p, P</td>
<td>r, R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s, S</td>
<td>ŝ, Ŝ</td>
<td>t, T</td>
<td>u, U</td>
<td>ŭ, Ū</td>
<td>v, V</td>
<td>z, Z</td>
<td></td>
</tr>
</tbody>
</table>

hence their adtype is always Slash (/).

Some affixes can be applied only if the lexeme has a precise grammar character, so they will be presented according to the grammar character of the lexeme they are applied to. In Esperanto, the only transferees are the fundamental moduli, two special valence suffixes and the compound rules (see below). Hence, affixes are transferees and therefore part of the lexicon. In fact, quite often Esperanto affixes are used as lexemes, i.e., without a governor – e.g., ‘perhaps’, ‘a set’, etc. This is not a problem in adgrams: simply that affix will be the lexical head of its adtree, i.e., it will put as the rightmost participant. In Esperanto, it is possible to attach more than one affixes to a given lexeme, like other agglutinative NLs such as Turkish, Hungarian or Japanese: for this reason, they should be parsed accordingly to their value (see section 6.3 in the next chapter).

In the following, the adpositional space of Esperanto will be presented at first, then the lexicon will be covered. The order of presentation of lexemes and affixes will follow the grammaticalisation degree already seen in section 3.3: I → E → O → A.

5.3 The adpositional space of Esperanto

Adpositions in Esperanto are very clear for two reasons. The first reason is the presence of shallow signatures of the fundamental moduli, and the second one is the almost absence of allomorphs. This fact does imply that the adpositional space of Esperanto is neither small nor trivial: in the following, I present the conditio sine qua non so to treat Esperanto ad-grammatically in parsing, adtree generation and adtree transformation (i.e., Tesnière’s metataxis) for machine translation.

5.3.1 The fundamental moduli

Esperanto has the unique property of having explicit signatures of the fundamental moduli (see Table 3.4). This means that the number of transferees is very, very small compared with NLs, as there is no need to resolve complex transfer chains. Lucien Tesnière explicitly acknowledges his debt to the prototypical Esperanto signatures of grammar characters, which are a crucial part of his grammar system, in a note that almost nobody was ever aware of, even in the community of dependency grammar specialists.

This particularity is a useful mnemonic tool, as Esperanto is more or less an intermediate of diverse European languages [Tesnière, 1959, my translation].

Unlike other NLs, the Esperanto set of final affixes explicits the final grammar character of the current group, regardless of the original grammar character of the proper lexeme of that group. Let me explain through example 62, already presented in English in Figure 3.8 (section 3.4.3).

| Figure 5.1: The adtree of Liza parolas neformale (62). |

![Figure 5.1: The adtree of Liza parolas neformale (62).](image)

The main difference between English and Esperanto is in the lexeme formal-, which is a selective adjective in Esperanto, while formal in English is derived from the stative lexeme form, while -al is an adjectival transferer. In order to be transferred to a circumstantial, the stative lexeme form should
be transferred in an adjective before: in fact, form-ly (O>A:E) is right, while *form-ly (O>E) is ungrammatical. I call transfers such as (O>A -> E) in the English example 62 inline transfers, while transfers such as (E -> A->E) final transfers. A transfer chain is a chain of a series of inline transfers (which can be empty) and a final transfer (always one, mandatory). The English language is full of such transfer chains O->A->E: mathematic-s : mathematic-al-ly; region : region-al; nation : nation-al-ly. Of course, in many cases the transfer chain is not evident, often because of the rich etymological table of English. Hell : hell-ish/hell-fen : hell-ish-hell-fen-al-ly, have : have-al : have-al-ly. In contrast, Esperanto performs transfers O->E directly to the final grammar character, without passing through an adjectival transferer: matematik-o : matematik-a : matematik-e, region-o : region-a : region-e, naci-o : naci-a : naci-e, inf erot-o : inf erot-e, baz-o : baz-a : baz-e.

In Esperanto, inline transfers do exist, but they can be almost not computed at all, as the final transfer is always explicit, thanks to the signature of the fundamental moduli. Table 5.4 shows the Esperanto signatures of the fundamental moduli, i.e., all Esperanto final transfers. They are compulsory for every lexeme, even if redundant. For example, the lexeme elevant- is clearly stative, nonetheless it should always be marked with a signature of stativation to be actually used, e.g., elefant-o, 'an elephant' (see section 5.3.3 below for details). This highly simplifies the implementation of parsing.

5.3.2 The quasi-symmetry of adjunction and stativation

Some of the signatures presented in Table 5.4 are simple, i.e., composed by one morpheme, while others are complex, i.e., composed by more than one morpheme. In particular, adjuncts and stative lexemes are almost symmetrical. Table 5.5 shows the basically agglutinative character of Esperanto, as each single adposition brings one and only modulus: stativation is marked by the final -o, adjunction by -a, plurality by -j (section 5.3.4) while fin-

<table>
<thead>
<tr>
<th>Verification</th>
<th>Circumstantialization</th>
<th>Adjunction</th>
<th>Stativation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>E</td>
<td>A</td>
<td>O</td>
</tr>
<tr>
<td>-as</td>
<td>-e</td>
<td>-a</td>
<td>-o</td>
</tr>
<tr>
<td>-is</td>
<td>-en</td>
<td>-aj</td>
<td>-oj</td>
</tr>
<tr>
<td>-os</td>
<td>-an</td>
<td>-on</td>
<td></td>
</tr>
<tr>
<td>-u</td>
<td>-ajn</td>
<td>-ojn</td>
<td></td>
</tr>
</tbody>
</table>

5.3.3 The basic form of a verb is stative

Esperanto borrows the infinitive from Latin deponent verbs, e.g., lego, 'to speak, to talk'. As in English or Italian, the infinitive is used to indicate the basic form of the verb, and that is why Tessniere have chosen the letter I for verbification. However, from a syntactically point of view, an infinitive is not a verb, i.e., its valence(s) are not active, and it acts as a vehicle of actants. Example 70 shows different construals for the same concept.

- (70a) Mi luas danci.
- (70a) I like to dance.
- (70b) Mi plaqas danci.
- (70c) A me piez dancare.
- (70c) Mi plezuras per danci.
- (70c) Io mi diverto a dancare.

The English construal is in example 70a, where the act of dancing is the syntactic object O, while the Italian construals are exemplified by 70b, where the act of dancing is the syntactic subject S. Finally, in example 70c the Italian construal represents the act of dancing as an indirect object, i.e., a stative group introduced by a preposition. Esperanto respects the mental habits of English and Italian speakers, only with small syntactic adjustments (Figure 5.2). In any case, the infinitive cannot have a verbal (i.e., \(\bar{V}^{1/-} \)) value. Table

5.3.4 The adpositional space of Esperanto

<table>
<thead>
<tr>
<th>O</th>
<th>A</th>
<th>Number</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>-o</td>
<td>-a</td>
<td>singular</td>
<td>nominative</td>
</tr>
<tr>
<td>-o+j</td>
<td>-a+j</td>
<td>plural</td>
<td>nominative</td>
</tr>
<tr>
<td>-o+n</td>
<td>-a+n</td>
<td>singular</td>
<td>accusative</td>
</tr>
<tr>
<td>-o+j+n</td>
<td>-a+j+n</td>
<td>plural</td>
<td>accusative</td>
</tr>
</tbody>
</table>
5.6 shows that the infinitive does mark explicitly neither the number (singular vs. plural) nor the case (nominative vs. accusative). In contrast these moduli are marked explicitly by stative lexemes and adjuncts.

5.3.4 Singular and plural

Esperanto has only one signature for the modulus +[PLURAL], i.e., -j, which is attached immediately after stative lexemes and to adjuncts. Verbal lexemes or circumstantialis never have the plural modulus.

- (71a-ko). Junaj knabo kuras rapide.
- (71a-en). Young boys run quickly.
- (71a-it). I ragazzi giovani corrono velocemente.
- (71b-ko). Juna knabo kuris rapide.
- (71b-en). A young boy is running quickly.
- (71b-en). Un ragazzo giovane sta correndo velocemente.
- (71c-ko). Ambaŭ knabo kuris rapide.
- (71c-en). Both boys are running quickly.
- (71c-en). Entrambi i ragazzi stanno correndo velocemente.

In example 71a, the stative group knabo 'some boys' and the adjunctive one juna 'young' are both marked with the final -j, while in 71b – Figure 5.3 –

they are not.12

Furthermore, there is a fossil dual form, ambau, 'both', as shown in example 71c. Finally, there is an explicit marker of collective nouns, i.e., ar-o: hom-ar-o, ‘human-kind’, gazet-ar-o, ‘the newspapers’, arb-ar-o, ‘a forest, a wood’. In this case, syntactically these names are singular even the concept referred are plural.

<table>
<thead>
<tr>
<th>infinutive</th>
<th>NUMBER</th>
<th>CASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>any</td>
<td>any</td>
</tr>
</tbody>
</table>
5.3.5 The accusative

The basic word order of Esperanto is clearly SVO.

- (71d-ee). Junaj knaboj sekvas rapidan hundon.
- (71d-en). Some young boys are following a quick dog.
- (71d-it). Die ragazzi giovani seguono un cane veloce.
- (71e-ee). Juno knabo sekvas rapidan hundojn.
- (71e-en). A young boy is following some quick dog.
- (71e-it). Un ragazzo giovane segue un cane veloce.

The presence of an explicit marker of the syntactic object O, i.e., the morpheme -n, let a certain degree of freedom:

[Esperanto] shows four basic sequence(s) of sentence constituents which can be expressed syntactically. The first of these concerns the positions of the nominal subject S and the nominal direct object O in relation to the verb V in neutral main clauses. The basic order thus defined is SVO. [...] Under the influence of the pragmatic functions of focus and topic, S, V and O all exhibit such mobility that no less than 80 per cent of all their combined occurrences deviate from the basic order SVO. The peripheral positions in the sentence appear more suitable for placing constituents in focus. Inversion of constituents, aimed at focusing on one or the other, proves to be commoner than the use of the oblique sentence. There is a clear tendency to follow the so-called LR Principle, expressed in the form of the Theme-Rheme (TR) or Topic-Comment (TC) sequence: Inversion of constituents for the purpose of bringing the topic forward is very common. [Jansen, 2007, 273–274, references omitted].

The accusative is always a Slash (-:) adposition, unless if used in combination with prepositions: in those cases the adtype is decided according to the preposition (see section 5.3.8 below).

The morpheme -n is directly borrowed from the German (and Yiddish) accusative, and it has very similar functions [Willkommen, 2007, 271] In stative and adjective groups, it is always applied immediately after the plural, if present, or after the stative and adjective signature: jun-a, jun-n, hand-o-n, hand-o-jn. It works analogously with stative and adjective correlatives (see respectively sections 5.3.9 and 5.8.2). The fact of having an explicit marker for the accusative case permits to be clear in sentences where NAs as Italian are ambiguous. Let me recall and expand example 61.

- (61a-it). Paolo ha trovato il telefono rotto.
- (61a-ee). Paŭlo trovis la romaniton telefonom.

5.3. The adpositional space of Esperanto

- (61a-ee). Paŭlo trovis la romaniton telefonom.
- (61a-en). Paul has found the broken telephone.
- (61b-ee). Paŭlo trovis la romaniton rompita.
- (61b-en). Paul has found the telephone out of order.

Figure 5.4: Predicative and attributive adverbs in Esperanto (61ab).
5.3. The adpositional space of Esperanto

The adpositional grammar of Esperanto allows for a variety of directional and locational expressions. For instance, the word "towards" can be expressed using the preposition "en".

<table>
<thead>
<tr>
<th>Circumstantial</th>
<th>E</th>
<th>Towards</th>
</tr>
</thead>
<tbody>
<tr>
<td>-en</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

5.3.6 The circumstantial accusative

The circumstantial accusative, like the genitive and the dative, is used to express the direction or location of an action or event. Unlike English or Italian, the circumstantial accusative in Esperanto does not change based on the number or gender of the noun it describes. For example:

- (72c-eo). Morgâ mi veturos Parizon.
- (72c-en). Morgâ mi veturos al Parizo.
- (72c-it). Domani andro a Parigi.
- (72c-en). Tomorrov I will ride to Paris.

5.3.7 Verbalization

Esperanto has five verbal transferers. Verbal finals in Esperanto are trivial. Every verb follows the same paradigm, even 'to be' and 'to have', as Esperanto is a carefully planned language. Verbal finals change neither for the person nor for the number. Verbal finals are in position li in parsing. Table 5.8 shows the correspondence between each final and their moduli. Some esperantologists argue that the verbal finals bring only tense, not aspect. As shown by Wennergren [2005, 380], this is not true: the Zamenhofian sentence *En la vintro estis hejtas la foron* ('In winter it is used to warm the oven up') shows clearly the modulus [HABIT]. Of course, if the modulus [HABIT] is active the modulus [PROGRESSIVE] will be not. Analogously, in non-marked sentences the form in -os signs the belief of the speaker that the construal will really happen in the world model of reference. Interestingly, the -en final is anastom both of [PRESENT] (en) and of [BELIEF] (en). Mostly it is used with the junctive se ('if').
5.3. The adpositional space of Esperanto

It does not participate in transference, hence it is a transferer, but it indicates the adtype and therefore the structure of the adtree. Some prepositions can be applied in a basic or phrasal level, i.e., both as 'proper' prepositions or as junctives. They will be treated here, while section 5.3.10 will be dedicated to 'proper' junctives.

In Esperanto – as in most Indo-European languages – prepositions can be applied only to stative (O) and Adjunctive (A) groups. If applied to circumstantial (E) groups, they are grammaticalised as prefixes (see below). Adjunctive groups can be assimilated to stative ones, so only verbal and stative groups will be indicated.

I call the left participant of the prepositional adposition the **governor** while the right participant is the dependent: e.g., libro de Petro en biblioteko, ‘Peter’s book in a library’, the governor is *libro* while Petro is the dependent; analogously, libro de Petro belas, ‘Peter’s book is nice’. In the following, the grammar characters of governors in prepositional adpositions will be indicated, as their moduli and adtree structure can change. In fact, some pre-

<table>
<thead>
<tr>
<th>Final</th>
<th>Tense</th>
<th>Aspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>-as</td>
<td>+[PRESENT]</td>
<td>+[PROGRESSIVE]</td>
</tr>
<tr>
<td>-is</td>
<td>+[FAST]</td>
<td>+[PERFECT]</td>
</tr>
<tr>
<td>-os</td>
<td>+[FUTURE]</td>
<td>+[BELIEF]</td>
</tr>
<tr>
<td>-us</td>
<td>+[PRESENT]</td>
<td>-[BELIEF]</td>
</tr>
<tr>
<td>-u</td>
<td>+[IMPERATIVE]</td>
<td></td>
</tr>
</tbody>
</table>

- (78-en). If I would be healthy, I would be happy.

It is possible to change tense and aspect through the use of the participles – see section 5.6.5 below. Finally, the form in -u is borrowed from English, as the second person (singular and plural) can be omitted.

- (79-en). Ludwig, give me bread.
- (79-in). Ludovico, dammi il panon.
- (80-en). Ni legu la unuan ĉapitron, mi petas.
- (80-en). Please, let’s read the first chapter.
- (80-in). Per favore, leggiamo il primo capitolo.

In example 79, the activated modulus is [WISH], while in example 80 the modulus is [DESIRE] [Wernegren, 2005, 382]. Note, that the English form *Let’s* for the first person plural is rendered with the pronoun *ni* (see section 5.7 for pronouns). The idiomatic expression *mi petas* (literally, ‘I ask’), is used to mild the verbal -u final, so it should be treated not as a phrase but as a circumstance of the verb in -u, as the English *please* or the Italian *per favore.*

5.3.8 The prepositions

Pennacchietti [2006a] is the most complete study of the Esperanto prepositions in terms of adspaces. A preposition is a particular type of adposition.
Table 5.9: The Esperanto preposition *de* and its class

<table>
<thead>
<tr>
<th>Prep.</th>
<th>Governor</th>
<th>Basic modulus</th>
<th>Additional moduli</th>
</tr>
</thead>
<tbody>
<tr>
<td>de</td>
<td>O</td>
<td>[+APART]</td>
<td>[+BELONG]</td>
</tr>
<tr>
<td>de</td>
<td>O</td>
<td>[+APART]</td>
<td>[+A]</td>
</tr>
<tr>
<td>[de]da</td>
<td>O, [+MEASURE]</td>
<td>[+APART]</td>
<td></td>
</tr>
<tr>
<td>(ek)de</td>
<td>1</td>
<td>[+APART]</td>
<td>[+TIME-BEGIN]</td>
</tr>
<tr>
<td>de (post)</td>
<td>1</td>
<td>[+APART]</td>
<td>[+TIME-END]</td>
</tr>
<tr>
<td>de (post)</td>
<td>1</td>
<td>[+APART]</td>
<td>[+TIME-END]</td>
</tr>
<tr>
<td>[de]el</td>
<td>[OI]</td>
<td>[+APART]</td>
<td>[+SPACE,ORIGIN,FROM,AWAY,FAR]</td>
</tr>
<tr>
<td>(for)de</td>
<td>[OI]</td>
<td>[+APART]</td>
<td>[+SPACE,MOVE,FROM,AWAY]</td>
</tr>
<tr>
<td>[de]pro</td>
<td>1</td>
<td>[+APART]</td>
<td>[+CAUSE]</td>
</tr>
<tr>
<td>(de)lare de/far</td>
<td>[OI]</td>
<td>[+APART]</td>
<td>O= Ns, from Larenum</td>
</tr>
<tr>
<td>de</td>
<td>[OI]</td>
<td>[+APART]</td>
<td></td>
</tr>
</tbody>
</table>

The prepositions listed after 'and' are treated as 'neutral' in Perracchietti's view for mnemonic reasons, but in the actual version of mine there is no space for neutral subspaces (see chapter 2 for more details).

Before to proceed, it is noteworthy to remember that there are basic adpositions which are not prepositions, such as verbal finals – shown in Table 5.6 – are Plus or Minus in case of mirroring, while adjunctive finals – shown in Table 5.5, or stative finals – they can be only Minus or Slash. See again Table 3.9 for the complete picture. In the following subsections, prepositions are presented in contrastive pairs or groups, according to their use, and their appropriate subspace will be indicated, along with appropriate examples, mostly from Wennekens [2005].

5.3. The adpositional space of Esperanto

This preposition *de* is the most grammaticalised, even among non-dimensional retroappendication (Slash), and hence its meaning varies at most, as shown in Table 5.9. Prototypically, *de* is Slash and it brings the modulus [+APART]. It can depend on an O-group, but it can also be attached to an I-group, with different moduli.

A basic use of *de* is to sign belongingness: la ĉapelo de patro, 'father's cap', la dentoj de iono, 'lion's teeth'. Another basic use is to transfer the dependent stative group in an adjective one, i.e., O–A, exactly as the *a*–final (modulus [+A]): virino de meza aĝo is equivalent to mezaĝa virino, 'a middle-aged woman', while figura de tribla grandeco is equivalent to tribla granda figure, 'a three times big figure' (note that triobl-a has been transferred to triobl-e, i.e., an E-group dependent upon an A-group). Nonetheless, this transference is rarely usable: pomo de oro is not equivalent to orao pomo; the first one is an apple made of gold, the second one a golden apple.

If the governor is a stative group with a modulus of [+MEASURE], sometimes it can be substituted with a more narrowly defined preposition, *da*. For example, la knabo havas la aĝon de nur ses jaroj, literally 'the boy had the age of only six years', which is hardly acceptable in English but normal in Italian, Il ragazzo aveva l’età di soli sei anni. In this cases no substitution is possible. However, [MEASURE] is also the explicit, basic modulus of a correlative series – see section 5.3.9: in that case, it can be always substituted by *da*: kion de la stixo ili jam pretiigos is equivalent to kion da stixo ili jam pretigos, 'how much fabric they have already prepared'.

The preposition *de* can be attached directly to verbal groups. A common use of *de* is with the additional modulus [TIME]. It can be used to sign the beginning (example 81) or the ending (example 82) of an action – *deposit* is Zamenhoftian use, but today’s Esperanto is *de post*.

1. (81-eo.) Mi promesas (ek)de hodia ne fumi plu.
2. (81-en) I promise not to smoke anymore from today.
3. (82-eo) De (post) la tago, en kiu Varsovio salutis la novan jaron, pasis ses semajnoj.
4. (82-en) From the day, in which Warsaw had greeted the new year, six weeks passed.

Another common use of *de* is with the additional modulus [SPACE], with different additional moduli.

1. (83-eo) Mia vojo de Farizo al Londono estis tre laciga.
2. (83-en) My trip from Paris to London was extremely tiring.
3. (84-eo) Distingado de bono diise malbono ne ĉiam estas facila afero.
4. (84-en) To distinguish the good from the bad is not always easy.

In example 83, the prepositions *el*, or for *de*, can also be used. An additional use is with the modulus [CAUSE], which is also a modulus of a correlative series – see section 5.3.9 below.

1. (85-eo) Mi eksaltis de surprizo.
Chapter 5. The adpositional grammar of Esperanto

5.3. The adpositional space of Esperanto

Table 5.10: The Esperanto punctual prepositions al and je

<table>
<thead>
<tr>
<th>Prep.</th>
<th>Governor</th>
<th>Basic modulus</th>
<th>Additional moduli</th>
</tr>
</thead>
<tbody>
<tr>
<td>al</td>
<td>O</td>
<td>[+WARD,POINT]</td>
<td>[GOAL]</td>
</tr>
<tr>
<td>al</td>
<td>O</td>
<td>[+WARD,POINT]</td>
<td>[+SPACE,MOVE,END]</td>
</tr>
<tr>
<td>al</td>
<td>O</td>
<td>[+WARD,POINT]</td>
<td>[+TIME,MOVE,END]</td>
</tr>
<tr>
<td>Lsc</td>
<td>O[I]</td>
<td>[+APART]</td>
<td></td>
</tr>
<tr>
<td>al</td>
<td>I</td>
<td>[+WARD,POINT]</td>
<td>O= Nc</td>
</tr>
<tr>
<td>je</td>
<td>O</td>
<td>+[POINT]</td>
<td></td>
</tr>
<tr>
<td>je</td>
<td>O</td>
<td>+[POINT]</td>
<td>[DEFINE]+[TIME]</td>
</tr>
<tr>
<td>je</td>
<td>O</td>
<td>+[POINT]</td>
<td></td>
</tr>
</tbody>
</table>

Other uses of al are: to sign the goal (example 92), the end of a movement (example 93), and finally the end of a time period (example 94; de tempo al tempo, ‘sometimes’, is an idiomatic expression).

- (92-eco.) Vi devas nur iri al la fonto.
- (92-en.) You only have to go to the source.
- (93-eco.) Li rigardis al la klara, hela luno.
- (93-en.) He looked at the clear, bright moon.
- (94-eco.) Mi rigardas televion de tempo al tempo.
- (94-en.) I look at the tv sometimes.

Also the case of je is of high interest: this preposition was indicated in the first times as a ‘jolly’, i.e., ‘use it whenever you do not know which preposition you should use but you feel you should use one’. With the evolution of Esperanto, its use was naturally restricted to the semantic domain of punctuality. Often the boundaries of a point are flou, i.e., they are not defined, borderless. In examples 95-96, the modulus TIME is active, while in example 95, the modulus MEASURE is active.

- (95-eco.) Ŝi venas je la kvino (hour).
- (95-en.) She comes at five (o'clock).
- (96-eco.) Li revenos hejmen je la plenluno.

2. (85-en.) I jumped for surprise.

In example 85 the preposition pro, which is highly specific, can also be used. An important use is the signature of Agentivity, both in active (example 86) and in passive (example 87) phrases.

1. (86-eco.) Mi ricevis libro de mia patro.
2. (86-en.) I received a book from my father.
3. (87-eco.) Ŝi estas amata de ĉiuj.
4. (87-en.) Shi is loved by everybody.

The preposition de raised a limited but significant list of complex prepositions with very specific meaning during the evolution of Esperanto: dekstre de, ‘at the right of’, except de, ‘except of’, inkluzive de, ‘including’, etc. [Wernnergren, 2005, 141]. Finally, the most grammaticalised use is completely generic, i.e., without additional moduli:

1. (88-eco.) Ŝaĝa filo lernas de la patro.
2. (88-en.) A wise son learns from his father.
3. (89-eco.) Ni ĉiuj okuloj estas plenaj de larmoj.
4. (89-en.) Our eyes are full of tears.

The punctuals: al vs. je

The punctual prepositions al and je are Minus. The preposition al has the precise meaning of showing direction towards a single point as a basic modulus. Table 5.10 shows the current uses of these two prepositions. The default use of this preposition is rather limited, eventually for the influence of its source language substrata: in Esperanto you go al kongreso, ‘at the congress’, al universitato, ‘at the University’, but never al ofico, ‘at the office’, or al hejmo, even if there is no violation transgressed, theoretically speaking. In contrast, the verbal use of al is very, very common, especially with trivalent verbs, where the preposition clearly introduced the Experiencer (%), as in examples 90 and 91.

- (90-eco.) Donu al la lirdoj.
- (90-en.) Give (it) to the birds.
- (91-eco.) Pardonu al mi.
- (91-en.) I beg your) pardon.
5.3. The adpositional space of Esperanto

Table 5.11: The Esperanto space and time prepositions

<table>
<thead>
<tr>
<th>Prep.</th>
<th>Gov.</th>
<th>Basic modulus</th>
<th>Additional m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>en</td>
<td>(OI)</td>
<td>[+SPACE,INTERNAL]</td>
<td>[+TIME]</td>
</tr>
<tr>
<td>en +n</td>
<td>(OI)</td>
<td>[+SPACE,IN,TO]</td>
<td>[+TIME]</td>
</tr>
<tr>
<td>el</td>
<td>(OI)</td>
<td>[+SPACE,INTERNAL]</td>
<td>[+TIME]</td>
</tr>
<tr>
<td>el</td>
<td>(OI)</td>
<td>[+SPACE,INTERNAL]</td>
<td>[+CAUSE]</td>
</tr>
<tr>
<td>el</td>
<td>O</td>
<td>[+SPACE,INTERNAL]</td>
<td>[+MATERIAL]</td>
</tr>
<tr>
<td>el</td>
<td>O</td>
<td>[+SPACE,INTERNAL]</td>
<td>[?]</td>
</tr>
<tr>
<td>ce</td>
<td>O</td>
<td>[+SPACE,NEAR,+ACTIVE]</td>
<td>[+TIME]</td>
</tr>
<tr>
<td>ce +n</td>
<td>O</td>
<td>[+SPACE,NEAR,-WARD]</td>
<td>[+TIME,MOVE,END]</td>
</tr>
<tr>
<td>ce</td>
<td>+l</td>
<td>[ACTIVE]</td>
<td></td>
</tr>
<tr>
<td>apud</td>
<td>O</td>
<td>[+SPACE,NEAR,-ACTIVE]</td>
<td>[+TIME]</td>
</tr>
<tr>
<td>ŝi</td>
<td>(OI)</td>
<td>[+SPACE,LIMIT]</td>
<td>[+MOVE,+TIME]</td>
</tr>
<tr>
<td>ŝi</td>
<td>(OI)</td>
<td>[+SPACE,LIMIT]</td>
<td>[+CHANGE,+STATE]</td>
</tr>
<tr>
<td>ŝi</td>
<td>(OI)</td>
<td>[+SPACE,LIMIT]</td>
<td>[+GRADIENT,+LIMIT]</td>
</tr>
<tr>
<td>dum</td>
<td>I</td>
<td>[+TIME,CONTINUOUS]</td>
<td></td>
</tr>
<tr>
<td>antaŭ</td>
<td>(OI)</td>
<td>[+SPACE,+BEFORE]</td>
<td>[+IMPORTANT,+TIME]</td>
</tr>
<tr>
<td>malantaŭ</td>
<td>(OI)</td>
<td>[+SPACE,+BEFORE]</td>
<td>[+IMPORTANT,+TIME]</td>
</tr>
<tr>
<td>ĉirkaŭ</td>
<td>I</td>
<td>[+SPACE,AROUND]</td>
<td></td>
</tr>
<tr>
<td>ĉirkaŭ +n</td>
<td>I</td>
<td>[+MOVE,AROUND]</td>
<td></td>
</tr>
<tr>
<td>lab</td>
<td>(OI)</td>
<td>[+MOVE,AROUND,DIR.]</td>
<td></td>
</tr>
<tr>
<td>kontraŭ</td>
<td>(OI)</td>
<td>[+MOVE,OPPOSITE,DIR.]</td>
<td></td>
</tr>
<tr>
<td>post</td>
<td>(OI)</td>
<td>[+SPACE,+BEFORE]</td>
<td>[+IMPORTANT]</td>
</tr>
<tr>
<td>post</td>
<td>(OI)</td>
<td>[+TIME,+BEFORE]</td>
<td>[+IMPORTANT]</td>
</tr>
<tr>
<td>super</td>
<td>(OI)</td>
<td>[+SPACE,OVER]</td>
<td></td>
</tr>
<tr>
<td>super +n</td>
<td>(OI)</td>
<td>[+MOVE,OVER]</td>
<td></td>
</tr>
<tr>
<td>sur</td>
<td>(OI)</td>
<td>[+SPACE,ON]</td>
<td></td>
</tr>
<tr>
<td>sur +n</td>
<td>(OI)</td>
<td>[+MOVE,ON]</td>
<td></td>
</tr>
<tr>
<td>sub</td>
<td>(OI)</td>
<td>[+SPACE,BELOW]</td>
<td></td>
</tr>
<tr>
<td>sub +n</td>
<td>(OI)</td>
<td>[+MOVE,BELOW]</td>
<td></td>
</tr>
<tr>
<td>inter</td>
<td>(OI)</td>
<td>[+SPACE,THREE,MIDDLE]</td>
<td>[+TIME,+E]</td>
</tr>
<tr>
<td>inter +n</td>
<td>(OI)</td>
<td>[+MOVE,THREE,MIDDLE]</td>
<td>[+TIME,+E]</td>
</tr>
<tr>
<td>ekster</td>
<td>(OI)</td>
<td>[+SPACE,-INTERNAL]</td>
<td>[+TIME]</td>
</tr>
<tr>
<td>ekster +n</td>
<td>(OI)</td>
<td>[+MOVE,-INTERNAL]</td>
<td>[+TIME]</td>
</tr>
<tr>
<td>preter</td>
<td>(OI)</td>
<td>[+MOVE,-INTERNAL]</td>
<td>[+AROUND]</td>
</tr>
<tr>
<td>preter +n</td>
<td>(OI)</td>
<td>[+MOVE,-INTERNAL]</td>
<td>[+AROUND]</td>
</tr>
<tr>
<td>tra</td>
<td>(OI)</td>
<td>[+MOVE,INTERNAL]</td>
<td>[+TIME]</td>
</tr>
<tr>
<td>tra +n</td>
<td>(OI)</td>
<td>[+MOVE,INTERNAL]</td>
<td>[+AROUND]</td>
</tr>
<tr>
<td>trans</td>
<td>(OI)</td>
<td>[+MOVE,-INTERNAL]</td>
<td>[+TIME]</td>
</tr>
<tr>
<td>trans +n</td>
<td>(OI)</td>
<td>[+MOVE,-INTERNAL]</td>
<td>[+AROUND]</td>
</tr>
<tr>
<td>trans +n</td>
<td>(OI)</td>
<td>[+MOVE,-INTERNAL]</td>
<td>[+AROUND]</td>
</tr>
</tbody>
</table>

- Chapter 5. The adpositional grammar of Esperanto

- (96-en.) He will come home at the full moon.
- (97-en.) Ili preterasis sin je kelke de paŝoj.
- (97-en.) They pass over her of some steps.

Space relations and movement

Tida [2007] rightly argues with emphasis that “Esperanto has a lot of prepositions for space relations, and many of them do not exist in some languages”. Most of them can be put in pairs, and I put apartly the complex adpositions Prep + en. Table 5.11 shows space and time prepositions. The prepositions en and el can be rightly seen in pairs: en is borrowed from the German in, while el is borrowed from the German aus. Let me explain through a couple of examples.

- (98a-en.) Liza iris en la ĝardeno.
- (98a-en.) Liza goes in the garden (she is always in).
- (98b-en.) Liza iris en la ĝardenon.
- (98b-en.) Liza goes into the garden (she was out, now she is in).
- (98c-en.) Liza ĝardenen.
- (98c-en.) Liza goes towards the garden.
- (99-en.) Liza iris el la ĝardeno.
- (99-en.) Liza goes out of the garden (she was in, now she is out).

This subtle distinction with en and the nominative/accusative case (example 98) is rightly calqued from German – compare with the accusative circumstantial, section 5.3.6. The fact that el is calqued from German is testifed by its use as prefix: el-trink-i, ‘to drink’, is clearly a calque of the German aus-trink-en. There are other moduli for el: banejo el marnaro, ‘a pool made of marble (material)’, el surprizo li fugis, ‘because of surprise he escaped (cause)’. Finally, el indicates a precise individual in a set: una el liaj amikoj, ‘one of her friends’, or even unu el amiko, ‘a friend (of somebody)’. I use the sign ? to indicate constructive existentials (see section 5.3.9 for details).

Nearness is expressed by two prepositions ĉe and apud. The difference is into the relation between the static governor and the dependent.

- (100a-en.) Liza estas ĉe (la) tablo.
- (100a-en.) Liza estis ĉe (la) tablo.
Chapter 5. The adpositional grammar of Esperanto

- (100a-en.) Liza is at table.
- (100b-eo.) Liza estas apud (la) tablo.
- (100b-it.) Lisa è vicino alla tavola.
- (100b-en.) Liza is next to the table.

In example 100a Liza has an active relation with the table, while in 100b her relation is non-active (I am not saying passive!). The complex position ĉe with the accusative marker is identical to one of the uses of el already seen in Table 5.10.

The preposition ĉe is the last one proper Mirus preposition, and it indicates the limits of a movement, which the governor does not go beyond (the limit is included in the movement).

- (101a-eo.) Ĉi kie ni tros hodiaŭ?
- (101a-en.) Where to will we go today?

Other uses are: Mi ne serĉestu sin ĉi nevo, ‘I won’t undress her until nudity’ (state change); de homo ĉi ne vojo, ‘from man to beast (last step, limit in a gradient). Finally, ĉe can be used as a verbal lexeme to indicate ‘good bye’ and similar phrases – in this case it is not an adposition but part of the lexicon.

The preposition dum is a Pius adposition, and it is also used at a phrasal level: tendebru ĉe dum la tuta noko, ‘thunder cracked during the whole night (basic level); restu apud mi, dum mi kun li ekstene parolas, ‘stay next to me, while I talk with him outside’.

According to the Baza Radikaro Oficilo, Esperanto has 15 morphemes with the pseudofinal ĉe; some are adverbs, i.e., selective circumstantials, the others are prepositions. Among them, there are five local prepositions: antaŭi and malantaŭi (example 102), ĉirkut (examples 103-4), ĉe (example 105) and kontraŭi (example 106). For the other morphemes with this termination, see section 5.3.8.

- (102a-eo.) Mi iras antaŭi vi.
- (102a-en.) I go before you.
- (102b-eo.) Mi iras malantaŭi vi.
- (102b-eo.) Mi iras post vi.
- (102bc-en.) I go after you.
- (103-eo.) La rabstojoj sidis en rondo ĉirkut la fajro.
- (103-en.) The bandits were sitting in circle around the fire.

5.3. The adpositional space of Esperanto

- (104-eo.) Siajn brakojn li metis ĉirkut la kolon.
- (104-en.) Her arms she put around the neck.
- (105-eo.) Nun ni kuros supren la štuparo.
- (105-en.) Now we will run upstairs following the staircase.
- (106-eo.) Unu figuro venis kontraŭ li.
- (106-en.) A figure was coming against him.
- (107-eo.) Post la vespermango niĝ fratoj eliris kun la gastoj.
- (107-en.) After the dinner our brothers went out with the guests.

The preposition antaŭi has two antonyms: malantaŭi and post. As a spatial preposition, post i is a synonym of malantaŭi (example 102), while most often it is used as a time preposition (example 107). The prepositions super and sur are borrowed from the English over and on. The accusative can be applied in order to sign accusative (see example 108).

- (108a-eo.) Super ni brulas stejoj.
- (108a-en.) Over us there are the burning stars.
- (108b-eo.) La suno levigiis sur la tero.
- (108b-en.) The sun raised over the earth.
- (108c-eo.) Sur la tero kuosas ĉiomo.
- (108c-en.) On the earth there is a stone.
- (108d-eo.) Nenio nova sub la suno.
- (108d-en.) Nothing new under the sun.
- (108e-eo.) La muso kuris sub la litoj.
- (108e-en.) The mouse runs under the bed.

Also inter, ekster and preter are calqued on Latin, and their meaning should be quite clear through the following examples.

- (109a-eo.) Ni vojaĝis inter Romo kaj Pizo.
- (109a-en.) We travelled between Rome and Pisa.
- (109b-eo.) Vi elserĉu inter la tuta popolo homojn bravajn.
Chapter 5. The adpositional grammar of Esperanto

- (109b-en.) You search among the whole people until you find some brave persons.
- (110a-eo.) Mi staras ekster la pordo.
- (110a-en.) I am standing looking out.
- (110b-eo.) Li loĝas ekster la urbο.
- (110b-en.) He lives out of town.
- (111a-eo.) Ekster ŝi, ĉiu venis.
- (111ac-en.) Except her, all came.
- (111b-eo.) Ekster la respondο letera, ni poste donos al vi antaŭ re-
 spondon en nia gazeto.
- (111bd-en.) Beyond the answer by mail, we will afterwards give to you even an answer in our journal.
- (112a-eo.) Li pasis preter mi sen saluto.
- (112a-en.) He passed beyond me without greeting.
- (112b-eo.) La vojo kondukiis preter pregston.
- (112b-en.) The way went well over (a)the church.

The preposition *inter* can also express belonging, as in example 109: this existential is not constructible, i.e., it is not indicated clearly the individual in the set. Analogously, example 110 shows the existential uses of *ekster*, both additive and subtractive – also the Slavic preposition *krom* is used that way (see below). The use with the accusative is synonymous to preposition *d*. The preposition *preter* can be used with the accusative so to mark the fact that the governor is well away from the space of reference. The prepositions *tra* and *trans* are similar and different at the same time.

- (112a-eo.) Tra la fenestro.
- (112a-en.) Through the window.
- (112b-eo.) La sago iris tra lian koron.
- (112b-en.) The arrow went through his heart.
- (113a-eo.) Trans la limo.
- (113a-en.) Beyond the frontier.
- (114a-eo.) Ŝi kuris tra barilon.

5.3. The adpositional space of Esperanto

<table>
<thead>
<tr>
<th>Prep.</th>
<th>Governor</th>
<th>Basic modulus</th>
<th>Additional moduli</th>
</tr>
</thead>
<tbody>
<tr>
<td>anstataŭ</td>
<td>[OJ]</td>
<td>+NEGATION, +SUCCESS</td>
<td></td>
</tr>
<tr>
<td>malgraŭ</td>
<td>[OJ]</td>
<td>+NEGATION, -SUCCESS,MILD</td>
<td></td>
</tr>
<tr>
<td>kvazaŭ</td>
<td>[OJ]</td>
<td>+NEGATION, -SUCCESS,MILD</td>
<td></td>
</tr>
<tr>
<td>preskaŭ</td>
<td>[OJ]</td>
<td>+NEGATION, MILD, -SUCCESS</td>
<td></td>
</tr>
</tbody>
</table>

- (114a-en.) She run through a barrel.
- (114b-eo.) Ŝi kuris trans barilon.
- (114b-en.) She run beyond a barrel.

The preposition *tra* expresses a movement through the space, from one border to the other, while *trans* expresses a movement in order to reach the other side, without going into the space (see example 114 in particular).

The non-spatial -aŭ prepositions

Table 5.12 shows non spatial prepositions which finish in *-aŭ*. The preposition *anstataŭ* has no direct equivalent in English, which use complex adposi-

- (115-eo.) Anstataŭ kafo li donis al mi teon.
- (115-en.) In spite of coffee he gave to me a tea.
- (116-eo.) Malgraŭ ĉio mi ne povas.
- (116-en.) In spite of everything I cannot.
- (117a-eo.) Karlo estis kvazaŭ pikita per ponardo.
- (117a-en.) Charles was hit by a dagger-like.
- (117b-eo.) Karlo estis preskaŭ pikita per ponardo.
- (117b-en.) Charles was almost hit by a dagger.

The nuance between *kvazaŭ* and *preskaŭ* is very subtle, but important, as clarified by example 117. Construal 117a shows that Charles was hit by something that resembled a dagger but it is not, while in construal 117b Charles was eventually not hit.
Chapter 5. The adpositional grammar of Esperanto

The other prepositions

The preposition da is very specific. In fact, it is used only within stative groups indicating measure and quantity (typically, it is used with om correlatives: see section 5.3.9).

• (118a-eo.) Unu kilogramo da pano.
• (118a-en.) A kilogram of bread.
• (118b-eo.) Skatolo da rizo.
• (118b-en.) A box (full) of rice.
• (118c-eo.) Muljo da proboj.
• (118c-en.) A lot of problems.

The preposition krom is calqued from Russian. Its basic use is very similar to the secondary use of ekster, save for the fact that krom is not spatial in nature.

• (111c-eo.) Krom ĝi, ĉuveni.
• (111d-eo.) Krom la respondo leteri, ni poste donos al vi ankāti respondon en nia gazeto.

The prepositions por, pro, pri and per look very similar but they are very different. The preposition por expresses a goal of the action, and sometimes an Experiencer (example 119b), while the preposition pro express a cause (example 120).

The other prepositions

Table 5.13: Other prepositions

<table>
<thead>
<tr>
<th>Prep.</th>
<th>Governor</th>
<th>Basic modulus</th>
<th>Additional moduli</th>
</tr>
</thead>
<tbody>
<tr>
<td>da</td>
<td>O, [MEASURE]</td>
<td>+[QUANTITY]</td>
<td></td>
</tr>
<tr>
<td>krom</td>
<td>[Oi]</td>
<td>[ABSTRACT], +[INTERNAL], ±[?]</td>
<td></td>
</tr>
<tr>
<td>por</td>
<td>I</td>
<td>+[GOAL]</td>
<td>+[N_n]</td>
</tr>
<tr>
<td>pro</td>
<td>I</td>
<td>+[CAUSE]</td>
<td>+[N_n]</td>
</tr>
<tr>
<td>pri</td>
<td>I</td>
<td>+[TOPIC]</td>
<td>+[N_n]</td>
</tr>
<tr>
<td>per</td>
<td>[Oi]</td>
<td>+[RESOURCE]</td>
<td>+[N_n]</td>
</tr>
<tr>
<td>kun</td>
<td>[Oi]</td>
<td>+[COMPANY]</td>
<td>+[TIME]</td>
</tr>
<tr>
<td>sen</td>
<td>[Oi]</td>
<td>−[PRESENT]</td>
<td></td>
</tr>
</tbody>
</table>

5.3. The adpositional space of Esperanto

• (119a-eo.) Mi ne havas tempon por tio.
• (119a-en.) I don’t have time for that.
• (119b-eo.) Tiuj bonaj homoj certe trovos por mi laboron.
• (119b-en.) Those good persons will certainly find a job for me.
• (120-eo.) Ŝi dentoj frapadis pro malvarmo.
• (120-en.) Her teeth were chattering because of the cold.
• (121-eo.) Mi parolas pri leono.
• (121-en.) I’m talking about a lion.
• (122a-eo.) Per hakilo mi hakas, por segilo mi segas.
• (122a-en.) With a hack I hack, with a saw I saw.
• (122b-eo.) Ŝi ne havis piedojn, la korpo finiĝis per fiŝa vosto.
• (122b-en.) She didn’t have feet, the body finished with a fish-tail.
• (123a-eo.) Resti kun leono estas danĝere.
• (123a-en.) To stay with a lion is dangerous.
• (123b-eo.) Leviĝu kun la suno.
• (123b-en.) Wake up with the sun.
• (124a-eo.) Ŝi iras sen celo.
• (124a-en.) She goes without goals.

The preposition pri introduces the topic, hence it is always a circumstantial (example 121), while preposition por indicates the resources to achieve a result or a goal (example 122).

The symmetrical preposition kun indicates essentially company (example 123a), and sometimes it indicates time (example 123b). Finally, the preposition sen, which is Romance (e.g., French sans, Italian senza), corresponds to the English grammaticalised compound with-out. There are no other prepositions beyond the one presented above.
Table 5.14: The structure of correlatives

<table>
<thead>
<tr>
<th>Esperanto</th>
<th>English</th>
<th>Latin</th>
<th>French</th>
<th>Italian</th>
<th>Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td>kiu, kia</td>
<td>what</td>
<td>quals</td>
<td>quel</td>
<td>che</td>
<td>qué</td>
</tr>
<tr>
<td>tiu, tiu</td>
<td>/tiu</td>
<td>that</td>
<td>hic</td>
<td>ce...la</td>
<td>quel</td>
</tr>
<tr>
<td>iu, iu</td>
<td>some</td>
<td>aliqui(s)</td>
<td>quelque</td>
<td>questo</td>
<td>esee</td>
</tr>
<tr>
<td>ĉiu, ĉiu</td>
<td>any</td>
<td>quisque</td>
<td>quelque</td>
<td>cualqueno</td>
<td>cualquero</td>
</tr>
<tr>
<td>neriu</td>
<td>all</td>
<td>omnes</td>
<td>tous</td>
<td>tutti</td>
<td>todos</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>nullus</td>
<td>aucun, nul</td>
<td>nessuno</td>
<td>ninguno</td>
</tr>
</tbody>
</table>

5.3.9 Correlatives

Correlatives are special morphemes used to introduce questions and relative clauses and to give appropriate answers. They have a particular status also in implementation. In adgrams, questions and so-called “relative” clauses are considered collocational phenomena, where the order of morphemes is changed along precise rules, analogously to what seen about mirroring in section 2.9.3. This means, that they are built over the neutral, standard word order and then “rotated” appropriately. They are treated together because the phenomena they activate are structurally similar: in particular, they can augment the valence.

Questions can be divided along the possible answers, as yes/no questions or ‘other’, more complex: This is cross-linguistically valid. Furthermore, at least in Indo-European languages, the yes-no questions are “relative” clauses that can be nested. The connectors form a specific set: each member of this set I call **correlative**. More or less, Indo-European languages show a morphological paradigm underneath correlatives: in English it can be found through the pseudoprefixes *if* - and *if*. Table 5.14 shows the structure of correlatives in some Indo-European languages in comparison. For example, in French some correlatives have *quel*- as the pro forma and *qui* as the pro forma, while in Italian the same pro forma is *quell-. By the way, English – as other NLs – can express some correlatives only invoking complex adpositional patterns, as the its correlative system is less regular. A correlative is a grammaticalised morphemic combination between a pseudoprefix, which I call **pro forma**, and a pseudosuffix, which I call **forma**.

The pro forma is the coolest landmark possible, save obviously for zero morphemes, i.e., pure syntax. Pro forms can be used to introduce ques-

5.3. The adpositional space of Esperanto

The cognitive functions of C and D pro forms are different, therefore they are represented in two different ways in the adpositional grammars.

Correlative clauses

In Esperanto, the pro forma for questions is always *ki*. The function of the C pro forma is to open a clause. I call **clause a pseudophrase**, i.e., a syntactic object built as a phrase but ‘living’ only in symbiosis of another phrase, which governs the clause itself. I call it the **clause governor**. If it is not expressed, that clause is a **question**. This can happen even without explicit question markers: Esperanto has an explicit morpheme to indicate questions (see below, section 5.3.10 for details).

Each clause is a masked circumstantial or adjunctive. Let me bring you beyond this veil through another example.

- (125-eo.) Kiam pluvas, mi dormas.
- (127a-eo.) Pluve, mi dormas.
- (127ab-en.) When it’s raining, I sleep.
Chapter 5. The adpositional grammar of Esperanto

Table 5.15: Adjective correlatives (a-corr-group)

pro forma /	[+QUESTION,	ĉ-	ĵ-	ě-	neni-
form	RELATIVE]	ĝ-	ĵ-	neni-	
[QUALITY]	kia(-p)	ti-al(p)	i-al(p)	ĝa(-p)	neni-a(-p)
[POSSESS]	ki-es	ti-es	i-es	ĝi-es	neni-es
[DEFINITIVE]	ki-ul(p)	ti-ul(p)	i-ul(p)	ĝi-ul(p)	neni-ul(p)
[-DEFINITIVE]	ki-ol(-n)	ti-ol(-n)	i-ol(-n)	ĝi-ol(-n)	neni-ol(-n)

Table 5.16: Circumstantial correlatives (e-corr-group)

pro forma /	[+QUESTION,	ĉ-	ĵ-	ě-	neni-
form	RELATIVE]	ĝ-	ĵ-	neni-	
[TIME]	kia-m	ti-a-m	i-a-m	ĝia-m	neni-a-m
[PLACE]	ki-e	ti-e	i-e	ĝi-e	neni-e
[MANNER]	ki-el	ti-el	i-el	ĝi-el	neni-el
[CAUSE]	ki-el	ti-el	i-el	ĝi-el	neni-el

- (127c-eo.) Kion mi ĵatas dormi kiam pluvas!
- (127c-d-eo.) Kionmi estas dormado kiam pluvas!
- (127c-d-en.) How much I like to sleep when it’s raining.

The flexibility of Esperanto helps to unmask this syntactic reality: example 127c shows how the relative clause (kiam pluvas) is a circumstantial (place), while example 128cd shows how the relative clause (kiam mi ĵatas) is an adjective (kiom diata) – remember that the infinitive is a masquerade performed by a verb, transferred into a stative.

The grammar characterisation of the correlatives is an information which is crystallized a priori in the correlative, because of grammaticalisation. The following tables give the correspondence between adtypes and forms in correlatives. Table 5.15 shows adjective correlatives, while Table 5.16 shows circumstantial correlatives. Note that these last are all invariable. Let me recall and expand example 32, in order to explain this tricky point of the Esperanto grammar, inherited from its Indo-European source languages.

- (32a-eo.) Kion fumas Karlo?

5.3. The adpositional space of Esperanto

- (32a-eo.) Kion Karlo fumas?
- (32a-en.) What does Charles smoke? (e.g., cigars? cigarettes?)
- (32b-eo.) Kiu fumas Karlo?
- (32b-en.) Kiu Karlo fumas?
- (32b-en.) Which one does Charles smoke?
- (32c-eo.) Kiu[f]ncigar[[n fumas Karlo?
- (32c-eo.) Kiu[[n cigar[[n Karlo fumas?
- (32c-eo.) Which cigar(s) does Charles smoke?
- (32d-eo.) Karlo fumas kian cigaron li ĵatas.
- (32d-en.) Charles smokes the type of cigar he likes.
- (32e-eo.) Kian cigaron fumas Karlo? Tuskanojn.
- (32e-en.) Which type of cigar(s) does Charles smoke? Tuscons.
- (32f-eo.) Por kiu (motivo) Karlo fumas (cigaronoj)?
- (32f-eo.) Kial Karlo fumas (cigaronoj)?
- (32f-eo.) Why does Charles smoke (cigars)?

It is noteworthy that the accusative can be in a marked position, as the word order here can be OVS instead of SVO. The semantic opposition between the forms in - in - and in - is explained in examples 32a and 32b. Of course, if something is not defined it will not be pluralised at all: the forms in - cannot be pluralised by definition. In contrast, if something is definite it can be explicitly defined further, in other words, the forms - can specify a stative, which can be empty. Note that it is always possible to apply a suppletive strategy instead of a grammaticalised one (example 32b).

Finally, note that the series made with the forma -er is a saxon genitive. The adtree should be built accordingly (Figure 5.6). In practice, the degree of grammaticalisation in C-correlative, i.e., correlatives for questions, is so strong that there is no need to split pro forms and formasn. In fact, I realised that in a preliminary version of this dissertation adtrees where more complex than necessary because of this fixed, frozen adpositional tree chunk inserted in - this structure has no influence on the rest of the adtree. For this reason, in the formal model presented in chapter 7 C-correlatives are considered as a single, crystallised element, and therefore the final adtree will become far more easy to manipulate (Figure 5.7). Of course, the adtype is Slash, as it grammaticalisation here is very, very strong. Figure 5.8 explains
correlatives and at the same time it gives a glance of how sentences are applied, essentially the same mechanism of phrasal jective (see 5.4). In fact, the presence of the question mark changes dramatically the abstract tree Figure 5.7. But also example 32f respects it, as the clause is absent, or, better said, it is void (□). Note that kian is singular, while Tiskanojn is plural.

Determiner correlatives

Figure 5.9 retains shows that the abstract tree of D-correlatives is very similar to the first, theoretical adtree of C-correlatives (Figure 5.6). Let me explain it expanding example 32 further.

- (32g-eo) Karlo fumas ĉies cigarojn.
- (32g-en) Charles smokes the cigars which belong to everyone.

Figure 5.10 shows that determiner correlative, as the name suggests, are a subclass of determiners. For a full explanation, see section 5.8. What is important to note since now is the fact that if the leaf of cigar- is void, the adtree does not change: the leaf will be simply boxed (□).

5.3.10 Junctives

Any (Q)NL presents complex sentences, i.e., sentences with more than one phrases. In this section I present briefly the phrasal adpositions – i.e., junctives – of Esperanto. It is noteworthy that the formal model built on the sentence level – and even more at a text level – is already general, i.e., almost independent from Esperanto.
Chapter 5. The adpositional grammar of Esperanto

In contrast with basic adpositions, phrasal adpositions can have modals, i.e., they show some lexical value, e.g., the English junctive while is marked with the modulus [+TIME], while the junctive because is marked with the modulus [+CAUSE]. As explained in section 2.10, the phrasal adspace is only retroapplicative, i.e., junctives can be either non-dimensional (Slash) or dimensional (Times). Let me recall and translate example 43:

- (43a-en.) △(Alfredo povas pagi), ĉar li estas riĉa.
- (43a-en.) △(Al can pay), because he is rich.
- (43b-en.) Alfredo povas pagi, do △(li estas riĉa).
- (43b-en.) Al is rich, (hence) therefore △(he can pay).

These are the most used phrasal adpositions in Esperanto (translations are only indicative):

- **Slash**: sed, 'but', tamen 'nevertheless', kvankam 'however', se 'if', ke, 'that', ki 'wh-', do 'so';
- **Times**: kun, 'with', dum, 'while', ĉar, 'as', aŭ, 'or', kaj, 'and', nek, 'nor'.

Adpositions can be switched between the two levels only along the applicativity axis: e.g., dum, 'while', is a Plus adposition as a preposition,
Chapter 5. The adpositional grammar of Esperanto

while it is a Times adposition as a junctive. Figure 5.11 shows how to join adpositions via phrasal adpositions – branches are longer for readability. In the following, I will clarify the structure of adpositions, not pretending to be exhaustive. I give only two examples of two Slash juncitives which are very common in use: se, if, and ke, ‘that’. Let me use two examples.

1. (129-eo.) Paŭlo scias, ke Liza studas.
2. (129-en.) Paul knows that Liza is studying.
3. (130-eo.) Paŭlo ne scias se Liza studas.
4. (130-en.) Paul doesn’t know if Liza is studying.

Figure 5.12: The adtrees of Paŭlo (ne) scias... (129-130).

Figure 5.12 (left) shows the use of , ke, which introduces even a whole sentence with the Patient – syntactically, this is often considered rightly as an accusative.

Binary questions and negation

Esperanto borrowed from the Polish cz the morpheme če in order to introduce yes/no questions, which is applied in the adtree as an external circumstantial (void antit X₁..n), without touching the word order – see Figure 5.13 for the corresponding adtrees.

1. (32-eo.) Karlo fumas en la voĉtruon.
2. (32-en.) Charles smokes in the manhole cover.
3. (32h-eo.) Ĉu Karlo fumas en la voĉtruon? (jes,ne)

Figure 5.13: Esperanto question clauses (example 32).
Chapter 5. The adpositional grammar of Esperanto

- (32h-en.) Is Charles smoking in the manhole cover? (Yes, no)
- (32i-en.) Ĉu Karlo ne fumas en la vojtruo? (Yes, no)
- (32j-en.) Ĉarles not smoking in the manhole cover? (Yes, no)
- (32k-en.) Karlo fumas en la vojtruo, ĉu ne?
- (32l-en.) Charles is smoking in the manhole cover, isn’t he?

Example 32j shows that Esperanto borrowed the German word doch – which eventually became ja – in order to solve ambiguities in negative questions. The combination ĉu ne is an invariant idiomatic expression for isn’t he and similar expressions.

Double junctives

Some junctives can be double, like the English either... or, both... and. Let us assume that the first adposition is the left member while the second adposition is the right member. The adtree is built in the same way even if the left member is omitted, as shown by the following example 128.

- (128-a) Kaj Liza kaj Paŭlo legas libron.
- (128-b) Both Liza and Paul read a book.

Figure 5.14: The adtree of Kaj Liza kaj Paŭlo legas libron (128).

Figure 5.14 shows how the adtrees are built in these cases. In the third part all rules so to treat these phenomena will be given.

5.4 Sentence delimiters

Last but not least, punctuation can be used as a junctive. This fact is cross-linguistical, otherwise no text would be possible. A text is a linear structure, i.e., it is clear what is before, and what is afterwards, so the adtree at the text level is trivial. I have already given an example in Figure 1, i.e., Terence’s quotation that opens this dissertation. Sentence delimiters can be Slash as the adtype, as in that example, or Times, as full stops or question marks, exactly as junctives. Let me explain this point through a very simple text.

- (128a-eo.) Ĉu Liza legas libron? Ne, ŝi studas. Fakte, ŝi lacas.
- (128a-en.) Does Liza read a book? No, she is studying. In fact, she is sleepy.

Figure 5.15: The adtree of a short text (example 128a, unexplained).

Figure 5.15 shows how the adtree of a whole text is built (I will come back later in this topic, in chapter 8, devoted to MT). What I want to underline here is the evidence of five levels of analysis in Esperanto. Table 5.17 shows the five levels of analysis in NLs; a junctur is simply a hypernym of junctures, prepositions, Ć-correlatives. Of course, some levels, most notably the clause levels, can be not operative in actual use.29 This ends the description of the Esperanto adspace: now the reader is invited to turn his or her attention to the Esperanto lexicon.
5.5 The Esperanto lexicon

The Esperanto lexicon is made of calques from the lexemes belonging to its source languages: e.g., krajeno is from the French, biro is from German, sed is from Latin, tu is from Polish. Interestingly, Zamenhof preferred to choose a Lautbild, i.e., a phonemic writing system, over a Schriftbild, i.e., an etymological writing system. For instance, lexemes borrowed from German NLS are calqued as the best compromise between English and German: strate is a compromise between street and Straße, fotbalto is a compromise between football and Fußball, and so on. Lexemes borrowed from Latin, Greek or Romance languages are already adapted to the Slavic-like phonological rules: e.g., the Latin aqua and quantum become in Esperanto respectively aro and kvankum.

In 1974 the Academy of Esperanto has published the Baza Radikaro Oficiala, the basic dictionary of the language, now available both in the official web site of the Academy and as a Wikisource. That work is the main reference of this section. However, there is one important point of difference between adgrams and the approach of the Academy insofar. In the adpositional grammar representation of Esperanto, the fundamental grammar characters are four, instead of three, as in the document of the Academy. I argue that the character of words like futbalo, 'to jump', or morgaŭ, 'tomorrow', is clearly circumstantial (E), and I regard this as a matter of fact, as they modify verbs: otherwise, the whole system presented here collapses.

5.5.1 Selection and redundancy

Some Esperanto lexemes are selective, i.e., nouns, verbs, adjectives, adverbs, while others are clear only if collocated. For example, elefant and polic are nouns, honest is an adjective while kis is a verb: in the sentence honest-a polic-o kis-as elefant-o-n, 'the honest police kisses an elephant' the signatures of the fundamental grammar characters are redundant, as the sentence in an “Esperanto sine flexione” à la Giuseppe Peano honest polic kis elefant seems to be equivalent. This redundancy may appear pedantic, especially to English readers, as in the English language most lexemes are not selective; however, the Esperanto flexibility of its final system is indoubtably a source of richness: kis-a honest-a polic-as elefant-o-r, ‘the honesty concerning kisses acts as police like elephants do’.

In some cases, the grammar character seems to be more relaxed: muzik- and bild- are used indifferently as stative, verbal, adjectival and circumstantial. Nonetheless, the structure of the dictionary, as presented in chapter 3, request some additional information, e.g., valence and the actants, so that lexemes can be classified accordingly. In other cases, some transfers are not clear semantically, so in practice they are avoided: the verbal use of the selective noun libr, ‘book’, is never used, even if in English ‘to book’ has a very precise meaning: this is a further proof of the linguistic autonomy of Esperanto. In the dictionary, the transfer O=1 of the lexeme libr will be simply blocked (i.e., marked with a ↓ in the dictionary). Moreover, even in Esperanto combinability of affixes is not free, but governed by precise rules, according to the grammar character of the lexeme and sometimes to the moduli that are into the lexemes (see details below).

5.5.2 Rules for compounding

Esperanto forms compounds following the Germanic model – more precisely as German, Yiddish and English, which are its Germanic source languages. Compounding is perhaps the most highly form of grammaticalisation in Esperanto, as the meaning of the relation of the participants, i.e., their adposition, is completely dependent on the lexemes themselves. For instance, vapur-šip-o is ‘steamship’, while šip- vapur-o is the steam of a ship. I call the first element the lexical specification, while the second element the lexical atom. In a compound, there can be at best one lexical specification and atom at a time. Affixes can be applied either, but they follow their own rules, described below.

The grammar character of the atom is crucial. First, it influences how the grammar character of the specification is transferred, i.e., the rules of the compounds depends on the grammar character of the atom. Hence, there will be four compound rules: stative, adjective, verbal and circumstantial. In practice, circumstantial compounds are not attested, hence the rules are three. Furthermore, circumstantial do not participate as specifications, and this permits a further simplification of the rules themselves. Let us consider the adpositions for compounding special zero adpositions which acts as additional transferers. But the grammar character of the atom is very important for another crucial reason: the set of affixes that can be applied to the compound depends on the grammar character of the atom. In fact, there are some general affixes, i.e., affixes that can be applied to any lexeme, regardless of its grammar character, but there are also stative affixes, i.e., affixes that can be applied only to stative lexemes as governors, and verbal affixes, i.e., affixes that can be applied only to verbal lexemes as governors. There are not adjective or circumstantial affixes, i.e., specific only for adjective or circumstantial lexemes. Table 5.18 shows the relation between grammar character and affixes. The lexeme salto-, ‘to jump’, is verbal, so the verbal prefix ek- can be applied. In contrast, the lexeme knab-, ‘boy’, is stative, so the applying of ek- gives a non-sense. Analogously, the lexeme verk-, ‘green’, is adjective, so the suffix -ul, which gives animation to the inanimate, can be applied safely. Note that also tabl-, ‘table’, is inanimate, but stative, so -ul- cannot be applied either. Note that the final grammar character of the word is completely uninfluential in this respect.

At a first glance this linguistic fact seems to be a severe limit to the
Table 5.18: The grammar character and the affixes (specimen)

<table>
<thead>
<tr>
<th>Analysed word</th>
<th>Gram. char. of the lexeme</th>
<th>English translation</th>
<th>Italian translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ek-salt-o</td>
<td>I</td>
<td>a leap</td>
<td>un balzo</td>
</tr>
<tr>
<td>*ek-knab-o</td>
<td>O</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>verd-ul-o</td>
<td>A</td>
<td>relating a given (man, politician...)</td>
<td>di un verde</td>
</tr>
<tr>
<td>*tabl-ul-o</td>
<td>O</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Table 5.19: The grammar character and the special affixes (specimen)

<table>
<thead>
<tr>
<th>Analysed word</th>
<th>Modified gram. char.</th>
<th>English translation</th>
<th>Italian translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>sur-tabl-ig-o</td>
<td>O>1</td>
<td>the laying of the table</td>
<td>T'apparecchiatura</td>
</tr>
<tr>
<td>*sur-tabl-o</td>
<td>O</td>
<td>with the act of putting on (a dressing)</td>
<td>?</td>
</tr>
<tr>
<td>sur-met-e</td>
<td>I</td>
<td>?</td>
<td>con il mettersi su, il vestirsi</td>
</tr>
<tr>
<td>(si) ek-ruq-ig-as</td>
<td>A>1</td>
<td>she started to turn red</td>
<td>let divento rossa</td>
</tr>
<tr>
<td>(ii) *ek-ruq-as</td>
<td>A</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>(iii) ek-think-ig-os</td>
<td>A>1</td>
<td>it will be start to be drank (by someone)</td>
<td>sara muzato ad essere bevuto (da qualcuno)</td>
</tr>
</tbody>
</table>

freedom of Esperanto morphology. Nonetheless, there is a couple of special lexemes, which modify the valence of the word, which also act as in-line verbal transferers. Table 5.19 shows the relation between the grammar character and the affixes. For example, the prefix sur- is derived from the homonymous preposition, and it is verbal in nature: in fact, it cannot be applied to the stative lexeme tabl unless it is verificated by the special suffix -ig. Of course, these rules can be applied in the same way to compounds, after the substitution from ‘grammar character of the lexeme’ to ‘grammar character of the atom’.

Now, let us see the detailed rules for compounding. Table 5.20 shows the rule of stative compounds. Basically, the final grammar character of the specification transfered by the O-compound adposition is always stative, regardless of the original grammar character: papero/korbo, ‘a paper basket’, skribmašino, ‘a typewriter’, keldinto, ‘a

Table 5.20: The rule of stative compounding (O-compound)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-O</td>
<td>O-korbo</td>
</tr>
<tr>
<td>T-O</td>
<td>O-skribmašino</td>
</tr>
<tr>
<td>A-O</td>
<td>O-bel-difino</td>
</tr>
</tbody>
</table>

Table 5.21: The rule of adjunctive compounding (A-compound)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-litom</td>
<td>A-kolona</td>
</tr>
<tr>
<td>A-O</td>
<td>A-bel-rila</td>
</tr>
<tr>
<td>T-O</td>
<td>A-servo-pretas</td>
</tr>
</tbody>
</table>

God(dess) of Beauty’. Table 5.21 shows the rule of adjunctive compounds. This rule is analogue to the stative one: the final character of specification is always stative. In fact, the rare compound neĝe-blanka, ‘snow white’, found by Gledhill [1998], cannot be written as neĝblanka, because it would mean ‘white because of the snow’. The examples are: litonkoloro, ‘stone coloured’, beltria, ‘rich, full of beauty’, servopreta, ‘ready for service’.

Table 5.22 shows the rule of verbal compounds, which are more nuanced by the grammar character of the specification. Stative and verbal lexemes becomes modifiers of the atom, i.e., circumstantialis: pafmuri is the grammaticalisation of murdi paf, ‘to murder somebody through shooting’, while finfiri is ‘to do finally’. Analogously, matanmaniti is the grammaticalisation of maniti mato, ‘to eat in the morning’, that eventually is ‘to have breakfast’, while fingromanonti is the grammaticalisation of manonti finger, ‘to show through a finger’; voldoni means ‘to vote’, which is the grammaticalisation of to give (dom) with the voice (voie).

In contrast, adjective lexemes retains their grammar character, which is always considered predicatively: rajpreniri is ‘to paint something or somebody red’, while plenstopi is exactly the German expression voll stopfen, ‘to fill (something at a full level)’. 197
Lexicalisation

There are exceptions to the rules just presented. Normally these exceptions are due to the influence of the Greek or Latin substrata into the source languages of Esperanto. For example, hom-mangiti is not mangiti home, ‘to eat (I) as a man (O->E)’, but ‘to act as a cannibal’, i.e., mangiti homi(n), ‘to eat (I) men (O->O)’, as in the Greek-derived word anthropophagy. Analogously, grand-animo is not ‘a soul of the bigness’, but magnanimous, even if anim-grand-a, which follows the rules, is possible, but almost not used [Cherpillod, 2003]. All these cases should be treated as lexicalisation. Let me explain through the paradigm of staticive compounds whose atom is lipo (ship).

Table 5.23 [Butler, 1947, elaboration], shows clearly that the adposition spec-atom depends both on the specification and the atom. So, what to do? Let us suppose that vapo-lipo is the syntactic subject S in a phrase (Figure 5.16). Theoretically, its adtree of words is the one described on the left. The problem is that most probably the machine translation engine would translate in English as ‘a ship moved by steam’ or something similar, instead of ‘steamship’. This happens because adtrees do not encode the encyclopaedic knowledge necessary to solve this kind of ambiguities: the only way to avoid it is consider vapordipo a lexicalisation, i.e., a compound which has been crystallised in the semantic space of Esperanto. Of course, it is highly questionable which compounds are lexicalised and which not: only a collocation analysis of monolingual corpora can give the answer. In terms of adtrees, the compound would be not analysed but on the contrary considered as a single lexeme (Figure 5.16, right).

Analogously, a paf-il-gko-o is not ‘a (generic) big gun’, but a cannon – although kanon-o does exist too, mal-san-ad-il-o is not ‘a (generic) place for sick people’, but a ‘hospital’ – again, hospital-o does exist. The word fervoj-o is not ‘a way of iron’, but a ‘railway’. If fervoj would not be considered as a lexicalisation how the word fervoj-o can be understood as ‘railwayperson’?

Sometimes segmentation of compounds is not clear. The word konkludo is konkludo-o, ‘conclusion’, or konklu-do-o, ‘a play (ludo with shell konko)? Even the very name of the language, esperanto, can be analysed both as esperant-o, ‘the language Esperanto’, or esperant-o, ‘one who hopes’. Esperanto is a living language, not a perfect language, with its own ambiguities: these cases will be treated in the implementation as different possible adtrees pertaining the same family. This solution is to be considered as a pragmatical one: paraphrasing Winston Churchill, it is not a perfect solution, but we do not have anything better.

5.5.3 Esperanto lexemes

In the dictionary, lexemes are stored taking into account every possible transfer from their basic grammar character. Moreover, valence and the actant schema – e.g., if the syntactic subject is an Agent or a Patient – are information stored too, even if they are not always used. The conventions followed for the dictionary were already explained in chapter 3. Every lexeme should have a fundamental final attached so to clarify the final grammar character of the group. In the following two subsections special cases
Chapter 5. The adpositional grammar of Esperanto

Table 5.24: Esperanto adverbs and transference (specimen)

<table>
<thead>
<tr>
<th>Adverb</th>
<th>Signature</th>
<th>Transfer</th>
<th>English translation</th>
<th>Italian translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>hodia</td>
<td>9</td>
<td>E</td>
<td>today</td>
<td>oggi</td>
</tr>
<tr>
<td>hodia</td>
<td>o</td>
<td>E>O</td>
<td>today</td>
<td>oggi</td>
</tr>
<tr>
<td>hodia</td>
<td>–a</td>
<td>E>A</td>
<td>today’s</td>
<td>oggiorno</td>
</tr>
<tr>
<td>hodia</td>
<td>e</td>
<td>E>E</td>
<td>nowadays</td>
<td>oggiorno</td>
</tr>
</tbody>
</table>

will be clarified.

Adverbs

There is a special class of adverbs in Esperanto, i.e., lexemes that are circumstantial by selection, and minus adverbs. Unlike any other lexeme, they are stand-alone, i.e., no final character is attached: ne, ‘no’, et, ‘even’, jam, ‘yet’, tus, ‘just’, tra, ‘too much’, are some examples.

A subclass of them is the series of adverbs in -al, which should not be confused with the prepositions in -al, already seen in Table 5.12. This series is limited and it is not etymologically homogeneous: hiera, ‘yesterday’ (from French), hodia, ‘today’ (from French), morga, ‘tomorrow’ (from German), aliva, ‘good bye’ (from French), hilua, ‘sooner’ (from German), apeniti, ‘barely’ (from French), preskii, ‘almost’ (from French).

Of course, it is still possible to perform transference even for adverbs. In this case the meaning changes, i.e., there are some moduli to be added.

Extreme lexicalisation

Esperanto is a living language, and hence unplanned linguistic phenomena can emerge. One of the most interesting and compelling phenomenon is the lexicalisation of adpositions (sic).

- (131-ev.) Ni kunigas oson al peranto.
- (131-en.) We put together the future to the mediator.

Words like kun-al- and per-al- are neither strange nor so infrequent, and their lexical base is respectively the lexicalisation of the prepositions kun- and per-. An even more extreme lexicalisation is the verbal signature of the future -as: this is experimental and not used, but not impossible in principle. In principle, each adposition can be lexicalised directly in Esperanto: e.g., ezi, ‘to put yes/no questions’, which is rare but attested in my personal experience of Esperantophone. However, adgrams can treat even these extreme cases. In fact, these lexicalisations should be treated as so, i.e., they are different entries in the dictionary, compared to prepositions they derive from.

5.5.4 Static lexemes

In the lexicon, static lexemes can be ordered on the abstractness axis, i.e., along hyponymy and hyperonymy in order to find the basic level – onomasiological salience [Taylor, 2002]. This is cross-linguistically valid. In Esperanto there are other dimensions along which static lexemes can be ordered: animateness, gender, and number:

- Collective neutral: popol- ‘people’, olkezi, ‘Church (not church!)’.

The appropriate category can be verified with the application of the appropriate transferers – see section 5.6.6 below.

5.5.5 Verbal lexemes

Esperanto has an open list of selective verbs, like nek-i, ‘to snow’ (zerovalent), promen-i, ‘to have a walk’ (monovalent), mang-i, ‘to eat’ (bivalent), and liv-i, ‘to rent’ (trivalent, the rental being the Experiencer and the syntactic subject). Of course, any lexeme can be verbified, so it will have its own valence value and actant structure, i.e., where to put actants in the adtree.

The verb esti

The verb esti is a calque from the Latin esse, ‘to be’. As seen in section 2.9.2, this verb has a special value in Indo-European languages, as it is bivalent, but its second argument, introduced by Minus, is not an accusative, but always a nominative. This is an exception: some rules are written only to cover this special case. The second argument can be static (mi estas homo, ‘I am a human being’), circumstantial (mi estas frue, ‘I am early’), or adjunctive (mi estas alta, ‘I am tall’). Finally, if the second argument is adjunctive, the verb esti can be omitted (see next section).
5.5.6 Adjectival lexemes
Adjectival lexemes pertain to precise semantic domains, as for instance colours, flu-‘a, ‘yellow’, rug-‘a, ‘red’, or qualities bel-‘a, ‘(nice) handsome’, alt-‘a, ‘high’, bon-‘a, ‘good’. For lexemes belonging to this semantic domain, the antonymiser mal- is exceptionally productive: mal-alt-‘a, ‘low’, mal-bon-‘a, ‘bad’, etc. In the dictionary, adjectival lexemes are monovalent unless specified otherwise.

- (132a-eo.) Liza estas bela.
- (132b-eo.) Liza belas.
- (132ab-en.) Liza is nice.

Note that the direct verbification of an adjectival lexeme, as in example 132b, builds a slightly different construal, i.e., there is a more active flavour of Liza’s niceness in example 132b compared to example 132a. In fact, the two adverbs are different.

5.6 Affixes
To be rigorous, affixes should be put as a subsection of the lexicon, as in adverbs they are rightly put on leaves, not on hooks, as adpositions. However, as the Esperanto affix system is quite rich, I decided to put them in an apart section for readability.

Transferences are morphemes that do not change the grammatical character of their governor and they are part of the lexicon. Esperanto has a lot of affixes which are highly productive and powerful, because there is almost no allomorphy. Most Esperanto affixes are either prefixes or suffixes.

Some affixes can be applied only to a specific grammar character, e.g., there are static transfers, that can be applied only to static governors. However, most transfers can be applied regardless of the grammar character: they are called generic affixes. In practice, the categorisation of Esperanto is as follows:

- generic prefixes (λ-prefixes);
- generic suffixes (λ-suffixes);
- verbal prefixes (i-prefixes);
- verbal suffixes (i-suffixes);
- stative prefixes (o-prefixes);
- stative suffixes (o-suffixes);

5.6.1 Generic prefixes
Table 5.25 shows some generic Esperanto prefixes. The prefix mal- is an antonymiser, and it can be applied in principle to any lexeme: adjectival (e.g., bel-‘a, ‘good’, mal-bon-‘a, ‘bad’), verbal (e.g., sukces-‘i, ‘to succeed’, mal-sukces-i, ‘to fail’), stative (e.g., ord-‘e, ‘order’, mal-ord-e, ‘disorder’), circumstantial (e.g., tro-‘u, ‘too much’, mal-tro-‘u, ‘not enough’). If applied to adpositions, e.g., mal-anta-‘u, it is considered an extreme lexicalisation (see section 5.5.5). I have said ‘in principle’ because in practice it is applied if it makes sense. In other words, there is an open list of morpheme where this prefix can be applied, that cannot be captured by the formal model, as it is not described in terms of grammar characterisation. Furthermore, in some cases the antonymiser is a modulus inside the lexeme itself: memor-‘i, ‘to remember’, forges-‘i, ‘to forget’ (it is equivalent to mal-memor-‘i, which is not practically used), tag-‘u, ‘day’, mal-tag-‘u, ‘night’. In adgrams, these lexical antonymy relations are not rendered explicitly, as they are not represented morphologically, and in fact these relations are highly debated among cognitive linguists [Taylor, 2002].

As a stand-alone morpheme, ne is clearly an adverb, expressing negation. Its homonymous signature ne- expresses lacking. Let us see the series with the lexical base util-‘a, ‘useful’: mal-util-‘a, ‘harmful’, ne-util-‘a, ‘useless’.

5.6.2 Generic suffixes
Table 5.26 shows some of the Esperanto verbal prefixes. The suffix -al-, officialised in 1909, means ‘of bad quality, not adequate’ and it is calqued from Yiddish: dom-al-‘e, ‘a hovel’, fur-al-‘i, ‘to do badly’, mal-al-‘a, ‘flabby, flaccid, limp’. The suffix -eg- is an augmentative, and it can be applied

<table>
<thead>
<tr>
<th>λ-prefix</th>
<th>Governor</th>
<th>Basic modulus</th>
<th>Additional moduli</th>
</tr>
</thead>
<tbody>
<tr>
<td>mal-</td>
<td>A</td>
<td>=ANTONYM</td>
<td></td>
</tr>
<tr>
<td>ne-</td>
<td>A</td>
<td>=LACK</td>
<td></td>
</tr>
</tbody>
</table>

In the following, prefixes and suffixes will be presented along their classification. For brevity, I will omit details which are not relevant for the goal of this dissertation part: presenting conventions and rules of the Esperanto adgram.
5.6. Affixes

Table 5.26: The generic suffixes (λ-suffix class)

<table>
<thead>
<tr>
<th>λ-suffix</th>
<th>Governor</th>
<th>Basic modulus</th>
<th>Additional moduli</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ab-</td>
<td>λ</td>
<td>+[QUALITY,RAD]</td>
<td></td>
</tr>
<tr>
<td>-ag-</td>
<td>λ</td>
<td>+[AUGMENT]</td>
<td></td>
</tr>
<tr>
<td>-et-</td>
<td>λ</td>
<td>-[AUGMENT]</td>
<td></td>
</tr>
<tr>
<td>-em-</td>
<td>I</td>
<td>+[WARD,ABSTRACT]</td>
<td></td>
</tr>
<tr>
<td>-en-</td>
<td>O</td>
<td>+[WARD,ABSTRACT]</td>
<td>+[LIKE]</td>
</tr>
<tr>
<td>-iel-</td>
<td>O</td>
<td>+[ANIMATE,MASCULINE]</td>
<td>+[HABIT]</td>
</tr>
<tr>
<td>-iel-</td>
<td>λ</td>
<td>-[ANIMATE,INSTR.</td>
<td></td>
</tr>
<tr>
<td>-iel-</td>
<td>[O, +[IL]]</td>
<td>+[CONTINUOUS]</td>
<td>+[HABIT]</td>
</tr>
<tr>
<td>-iel-</td>
<td>[O, +[IL]]</td>
<td>+[CONTINUOUS]</td>
<td>+[ACTION]</td>
</tr>
</tbody>
</table>

5.6.3 Verbal prefixes

Table 5.27: The verbal prefixes (I-prefix class)

<table>
<thead>
<tr>
<th>I-prefix</th>
<th>Governor</th>
<th>Basic modulus</th>
<th>Additional moduli</th>
</tr>
</thead>
<tbody>
<tr>
<td>ek-</td>
<td>L</td>
<td>+[ACTION]</td>
<td></td>
</tr>
<tr>
<td>dis-</td>
<td>L</td>
<td>+[ACTION]</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.6.4 Verbal suffixes

Table 5.28: The verbal suffixes (I-suffix class)

<table>
<thead>
<tr>
<th>I-suffix</th>
<th>Governor</th>
<th>Basic modulus</th>
<th>Additional moduli</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ebel-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-end-</td>
<td></td>
<td>+[IBLE]</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...is somehow limited: two caiques of computer where proposed in the 1970s, komputer-o (analogously to transistor) and komput-il-o. Today komput-il-o has definitely won.

The suffix -ad- and the prefix ek- are complementary. The basic moduli of -ad- is +[CONTINUOUS]. Normally, it is used with verbal lexemes: uz-ad-o, ‘(regular) use’, vizit-ad-o, ‘a visit (the act of usual or regular visiting)’. It is also used with instrumental statives, specifying the action: martel-ad-o, ‘hammering’, telefon-ad-o, ‘a phone call’, kompil-il-ad-o, ‘a computation made with a computer’. If used with other lexemes, it brings the additional modulus +[USUAL]: mal-fru-ad-o, ‘the act of being usually late’.

...
Table 5.29: The valence suffixes (I-valence-suffix class)

<table>
<thead>
<tr>
<th>Affix</th>
<th>Governor</th>
<th>Basic modulus</th>
<th>Additional moduli</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ig</td>
<td>$\lambda_{[\text{VALENCE}=0,2]}$</td>
<td>(x > 1)</td>
<td>$S = {X_1, X_2}$</td>
</tr>
<tr>
<td>-igk</td>
<td>$\lambda_{[\text{VALENCE}=2]}$</td>
<td>(x > 1)</td>
<td>$S = N_0$</td>
</tr>
<tr>
<td>-igk</td>
<td>$\lambda_{[\text{VALENCE}=1]}$</td>
<td>(x > 1)</td>
<td>$S = N_0$</td>
</tr>
</tbody>
</table>

as a lexeme: eb-ec-o, ‘possibility’, ne-ebt-a, ‘impossible’. The form kompren-ebt-o is an idiomatic expression meaning ‘of course, for sure’, and it should be listed apart as a single item. The suffix -end-o is the last affix to be officially discussed (1953), and it is derived from Latin: leg-end-o, ‘that should be read’, pag-end-a, ‘that should be paid’. Note that a group head by the preposition de which is dependent from an A-group having inside -end-o always indicates the Agent, while a dependent group head by the preposition al always indicates the Experiencer, e.g., pagenda de mi al vi, ‘to be paid by me to you’.

5.6.5 Special verbal suffixes

There are two special classes of verbal suffixes, that are treated apart: valence transferers and participles.

The valence transferers

There is a class of special suffixes with only two elements. Their function is to modify the value of valence and therefore the actant structure in the current phrase. They modify the grammar character, so they should be presented rightly in the adposition section; however, as they are suffixes, please let me present them here, just after ordinary verbal suffixes. Table 5.29 shows the Esperanto valence affixes, one of the most powerful class of affixes of this QNL. First of all, valence suffixes are inline verbifying transferers of the grammar character of the lexeme (or the atom, in case of compounds): this changes the whole set of affixes which can be applied to the lexeme (see section 5.5.2 for further details).

The suffix -ig is calqued by German but it has been generalised. The subject of a verb with -ig is always the Agent or the Instrument, regardless of the original valence: la nub-o plan-i-g-as, ‘the cloud has caused the raining’ (zerovalent verb); la sid-i-g-as la bund-o-n, ‘he had put the dog seated’ (monovalent verb), la knub-ino alset-i-g-as donac-o-n al la patr-o, ‘the little girl has made his father buy a gift’. If present, the second valence is the Patient (e.g., bund-) and the third valence the Experiencer (e.g., patr-). This suf-
5.6. Affixes

Table 5.30: The structure of Esperanto participles

<table>
<thead>
<tr>
<th>Morpheme</th>
<th>Gov.</th>
<th>Diathesis</th>
<th>Basic modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>-int-(-a+n)</td>
<td>I</td>
<td>[ACTIVE]</td>
<td>[CONTINUOUS]</td>
</tr>
<tr>
<td>-int-(+a-n)</td>
<td>I</td>
<td>[ACTIVE]</td>
<td>[CONTINUOUS]</td>
</tr>
<tr>
<td>-int-(a-j-n)</td>
<td>I</td>
<td>[ACTIVE]</td>
<td>[START,NEXT]</td>
</tr>
<tr>
<td>-it-(a-j-n)</td>
<td>I</td>
<td>[VALENCE=2]</td>
<td>[ACTIVE]</td>
</tr>
<tr>
<td>-ot-(a-j-n)</td>
<td>I</td>
<td>[VALENCE=2]</td>
<td>[ACTIVE]</td>
</tr>
</tbody>
</table>

Table 5.31: Esperanto circumstantial participles

<table>
<thead>
<tr>
<th>Morpheme</th>
<th>Gov.</th>
<th>Diathesis</th>
<th>Additional moduli</th>
</tr>
</thead>
<tbody>
<tr>
<td>-int-e</td>
<td>I</td>
<td>[ACTIVE]</td>
<td>S = t</td>
</tr>
<tr>
<td>-int-e</td>
<td>I</td>
<td>[ACTIVE]</td>
<td>S = t</td>
</tr>
<tr>
<td>-ot-e</td>
<td>I</td>
<td>[VALENCE=2]</td>
<td>[ACTIVE]</td>
</tr>
<tr>
<td>-ot-e</td>
<td>I</td>
<td>[VALENCE=2]</td>
<td>[ACTIVE]</td>
</tr>
</tbody>
</table>

The participles

A second class of suffixes involved in verb formation are participles. In Esperanto, participles are used mainly to indicate the aspect. Esperanto follows the Slavic model in this respect, which is more rich and symmetric compared to Western Indo-European languages. Table 5.30 shows the basic structure of participles, which are a special case of suffixes. Note the perfect symmetry between the vowels of the participles and the verbal finals (Table 5.8). Their use depends on the grammar character they are applied to. They are never used with compounds. The structure seen before is not changed if they are part of an adjectival group, both if applied to a stative group or to esti. In contrast, their use is more rich if they are used as circumstantial or stative, i.e., the basic moduli are retained in any case. Circumstantial participles correspond to gerund in English, gerundio in Italian, and sometimes as absolute ablative in Latin. This means, that such a group introduces a new phrase which is dependent from another. There is no use of -n with circumstantial participles.

- (139a-eo.) Manĝante pomon, Liza legas.
- (139a-en.) While eating an apple, Liza is reading.
- (139b-eo.) Manĝinte pomon, Liza legas.
- (139b-en.) After eating an apple, Liza starts reading.
- (139c-eo.) Manĝanto pomon, Liza legas.
- (139c-en.) Just before eating an apple, Liza reads.

In example 139, the subject of the dependent phrase is a trace for Liza: this is an information brought by the circumstantial use of the participle. If stative, the participle has the additional modulus of ‘a human being doing something’ if active, and ‘a human being being done something’ if passive.

- (140a-eo.) Paŭlo estas la amato de Liza.
- (140a-en.) Paul is Liza’s lover.
- (140b-eo.) Liza estas la amatinio de Paŭlo.
- (140b-en.) Liza is Paul’s lover.

Note that participles block the use of suffixes like -al-, save in lexicalised cases like konat-al-o, ‘acquaintance’, and few others. If an imitatio is needed, the suffix -af- is added: leg-at-af-o, ‘something being read’, although mostly legaf-o is enough, i.e., without the participle.
Chapter 5. The adpositional grammar of Esperanto

5.6. Affixes

Table 5.33: Gender and endearment affixes

<table>
<thead>
<tr>
<th>Morpheme</th>
<th>Gov.</th>
<th>Basic modulus</th>
<th>Additional moduli</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge++j</td>
<td>O+</td>
<td>[MASCULINE]</td>
<td></td>
</tr>
<tr>
<td>ge-</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-in-</td>
<td>O+</td>
<td>[MASCULINE]</td>
<td></td>
</tr>
<tr>
<td>ge++j</td>
<td>O+</td>
<td>[MASCULINE]</td>
<td></td>
</tr>
<tr>
<td>bo-</td>
<td>O+</td>
<td>[HUMAN]</td>
<td></td>
</tr>
</tbody>
</table>

For joking, it is possible to found -unt- participles: e.g., stud-unt-o, 'someone who should study but actually be or she is not', a lazy student. However, this use is not part of the standard register of Esperanto. Let me conclude with a side note. Wennigeren [2005, 398] correctly notes that log-ut-a, 'inhabited', is possible, even if in traditional grammar this is considered "intransitive". In fact, in adgrams, the correct basic form of the verb is logi en, because en is a false adposition, being a marker of a Minus relation in a bivalent verb. In other words, the formal model is fit for these otherwise puzzling cases.

5.6.6 Stative affixes

Stative affixes can be further divided in affixes applied to animate lexemes and affixes applied to inanimate lexemes.

Gender and endearment

Table 5.33 shows gender and endearment affixes. Animate affixes, as ordinary lexemes, can be marked with the feminine suffix or by the bisexual prefix if they are masculine. Neutral affixes or lexemes – such as animals – cannot be modified by the feminine suffix -in-. 'Hem-in-o' for 'a human', instead of in-in-o, 'table-in-o', 'she-table', 'myer-in-o', 'bag'. Some calques of common European proper names show an -a as the feminine final: Paul-in-a, 'Paul', Paol-in-o or Paol-in-a, 'Paula' or 'Pauline', Liz-in-a, 'Lisa', Ana, 'Anna', Barbara, 'Barbara'. All these are standard lexemes with the modulus [FEMININE] in.

The circumfix ge++j (the only one in Esperanto) is used with masculine nouns: ge-sinper-o, 'Ladies and Gentlemen', ge-frat-oj, 'brothers and sisters', ge-patr-oj, 'the parents'. The homonymous prefix ge- is used sometimes with verbal lexemes: ge-lern-o, 'a school for boys and girl', ge-dorm-i, 'to have sex heterosexually in bed' (informal).

To indicate endearment within proper and family names, Esperanto has a couple of Slavic suffixes -ýj and -ýr – as in the common Slavic feminine names Tatiana/Tanja, Sofia/Sonja. These two suffixes are inflective, unlike any other Esperanto suffix – hence, they are considered lexicalisations. For masculine nouns, the suffix is -ýj: John-o, 'Johnathan', Jaký-o, 'John', patr-o, 'father', paý-o, 'dad'. To express endearment, the suffix -er is also used.

Stative animate prefixes

Table 5.34 shows Esperanto animate stative prefixes. The prefix ĉef- is similar in meaning to -estr-, but it can be applied to any stative lexeme: ĉef-redaktor-o, 'the editor-in-chief', ĉef-strat-o, 'the main street'. Note that -estr- always indicates a human being, while ĉef- not: urb-estr-o, 'a mayor', ĉef-urb-o, 'the capital city'.

Animate stative suffixes

Table 5.35 shows Esperanto animate stative affixes.

The suffix -an- is neutral and it is used to sign membership, within groups: estr-an-o, 'a member of the leading group', famil-an-o, 'a member of the family', kongres-an-o, 'a member of the congress'. Second, it can be used with places, that are metaphorically sets of members: Belg-uj-an-o, 'someone that lives in Belgium', Pariz-an-o, 'a Parisian'. Third, it is used for adepts of religions, philosophies and any doctrine: Krist-an-o, 'a Christian', Islam-an-o, 'a Muslim'.

The suffix -estr- indicates the leader or the head of the place indicated by the governor: ban-estr-o, 'a director of a bank', imperi-estr-o, 'an emperor', lern-estr-o, 'a head teacher'.

The suffix -id- is a calque from Greek, and it means [DESCENDANT]: ŝaj-id-o, 'a lamb', arbi-id-o, 'a young tree', reg-id-o, 'the king’s descendant', Israel-id-o, 'an Israeli'. A lexicalised form is Latin-ia-lingo-o, 'a Romance language'. The suffix -in- is explained in section 5.6.6.
Inanimate stative suffixes

Table 5.36 shows the Esperanto inanimate stative affixes. The couple of suffix -af- and -ec- are often put in contrast as antonyms, but their behaviour shows a relation more complex than plain antonymy. The suffix -af- is basically a concretive. Applied to adjectives, it is the complement of the suffix -ec-, which is always abstractive, both in quality and in state: util-af-o, 'something useful', util-ec-o, 'utility'; nud-af-o, 'something bare or naked', nud-ec-o, 'nakedness'. In contrast, if applied to verbal lexemes, it signs a single product of the action, according to the basic modulus of the verbal lexeme: far-af-o, 'something done', desegn-af-o, 'a picture', trink-af-o, 'something to drink'. If applied to something edible, the suffix -af- indicates a dish: suker-af-o, 'a sweet delicacy'. The suffix -ec- applied to stative lexemes shows quality: hom-ec-o, 'humaneness', fion-ec-o, 'the quality being hard as a stone', viv-ec-o, 'diverseness'. Finally, sometimes these two affixes are lexicalised: delc-af-o is 'a sweet', not a generic 'sweet thing', konstr-af-o is 'a building', not generically 'a thing that was built', non-af-o is 'the news', not 'something new'; analogously delc-ec-o is 'beauty', not 'something which is nice'. These entries should be listed apart.

The suffix -ej- brings the modulus [PLACE], and hence it cannot be easily applied to lexemes already that modulus: Franca-uj-ek-o, 'a place of France', tabak-uj-ek-o, 'a place of the city', hospit-al-uj-ek-o, 'a place for being a hospital' (in those cases, an average Esperantophone would prefer a word compound strategy: Franca-uj-lok-o, perhaps the 'Île de France', urb-uj-lok-o, 'a particular place of the city', hospit-al-o or mat-nan-ul-uj-ek-o, a calque from the German -e Krankenhaus, 'a hospital'). A common use is with verbal lexemes, where some forms are lexicalised: lern-uj-o, 'a school', not only 'a place where to learn'; preg-uj-o, 'a Church', not only 'a place where to pray'. With objects, it indicates places where to store or to sell those things. Note that the suffix -ej- is deliberately generic: if precision is needed, Esperantophones calques a strategy from a source language. For example: aitl-uj-o can be either a garag-o, 'garage', or an aitl-o-park-o, 'cigar-uj-o can be either a shop where they sell cigars, or a room where to store them. With cultivable plants, it indicates the place of cultivation: tabak-uj-o, 'a tobacco plantation', riz-uj-o, 'a rice-field'. With other natural objects, it indicates a place where that object is abundant: herb-uj-o, 'a meadow', sabl-uj-o, 'a sandbox', glacie-uj-o, 'a glacier'.

The suffix -er- indicates the elements of a set composed by inanimate objects, or a natural element seen as a set: mon-er-o, 'a coin (literally, a piece of money)', sabt-er-o, 'a speck of dust', neq-er-o, 'a snow flake', plan-er-o, 'raindrop'. The suffix -ar- is its complementary: arbo-er-o, 'the wood or the forest', memb-er-o, 'the members (of a group)'. However, most of its compounds are lexicalised: hom-er-o, 'humankind', which is more than 'a set of human beings', bird-er-o, 'the birds (all the birds in the world)', gazet-er-o, 'the press', which is more than 'a set of newspapers', stap-er-o, 'a ladder', which is more than 'a set of bars', torn-er-o, 'dictionary', which is more than 'a set of words', ngeon-er-o, 'convoy, train', which is more than 'a set of wagons'. In case of ambiguities, Esperantophones use word compounds,
5.8. Determiners

Table 5.38: The Esperanto invariable determiners

<table>
<thead>
<tr>
<th>Morpheme</th>
<th>Basic modulus</th>
<th>Additional moduli</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/</td>
<td>[DEFINITE]</td>
<td></td>
</tr>
<tr>
<td>/l/</td>
<td>[+ONE, ONLY]</td>
<td>[DEFINITE]</td>
</tr>
<tr>
<td>/unu/</td>
<td>[-SINGULAR]</td>
<td>[DEFINITE]</td>
</tr>
<tr>
<td>/ambal/</td>
<td>[+DUAL]</td>
<td>[DEFINITE]</td>
</tr>
</tbody>
</table>

5.8.1 The invariable determiners

Under a cognitive point of view, determiners are important bridges between the linguistic and the extralinguistic world. In fact, they often introduce anaphors and cataphors. However, adverbs treat them only as purely linguistic objects, for the purposes of this dissertation.

For implementation, Esperanto determiners should be divided between invariable and variable determiners: the last ones should agree in gender and number with the other linguistic objects belonging to the same group.

In example 141d, the construal depicts a scene of dancing of Paul with someone’s lover, say, Charles: a totally different situation compared to the other variations of the example!
Chapter 5. The adpositional grammar of Esperanto

5.8. Determiners

5.8.2 The variable determiners

Table 5.39 shows the variable determiners in Esperanto, which are extracted from the Table 5.15. Note that the saxon genitive does not need to follow agreement.

5.8.3 Numerals

Numbers always have an apart place in NLs, and Esperanto is no exception. Being a planned language, it shows a sophisticated and regular system to treat numerals and numbers in general. As in most parts of the grammar, I base myself on Wennergren [2005]: the treatment of time, i.e., dates and hours, are here omitted, as they are not interesting in order to clarify the adpositional grammar model.

From zero to 999,999

There are 13 basic numbers in Esperanto that form an apart class:

- mil = 0
- unu = 1
- du = 2
- tri = 3
- kvar = 4
- kvin = 5
- ses = 6
- sep = 7
- ok = 8
- neli = 9
- dek = 10

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Pluraliser</th>
<th>Accusative</th>
<th>Basic modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProForma-uj(in)</td>
<td>T</td>
<td>T</td>
<td>+[DEFINITE]</td>
</tr>
<tr>
<td>ProForma-a(in)</td>
<td>T</td>
<td>T</td>
<td>+[QUALITY]</td>
</tr>
<tr>
<td>ProForma-es</td>
<td>T</td>
<td>T</td>
<td>+[POSS]</td>
</tr>
</tbody>
</table>

Table 5.39: The Esperanto variable determiners

Table 5.40: The numeral suffixes

- cent = 10²
- mil = 10³

Numerical lexemes

There is a special class of stative lexemes which is used to express big numbers, the numerical lexemes:

- milion = 10⁶
- miliardo = 10⁹
- bilion = 10¹²
- trilion = 10¹⁸
- kvadrillion = 10²⁴
- kvintillion = 10³⁰

Bigger numbers are possible, but they are out of the standard language register so they are omitted.

Numerical specifications

Numerical specifications can be formed either by stative basic numbers or by numeral lexemes and they are always introduced by the preposition da without the accusative marker: e.g., miliardoj da formikoj, ‘billions of ants’.

This subgroup can be also formed by basic numbers, used as stative lexemes: e.g., centoj da birdoj, ‘hundreds of birds’. Of course, if it makes sense, any stative lexeme can be used in this way, but not within a numeral group: e.g., malmulte da tempo, ‘so little time’.

Numerical suffixes

Table 5.40 shows the numeral suffixes. The numeral suffixes can be applied to any numeral lexeme, even if they are mostly found applied to small
Chapter 5. The adpositional grammar of Esperanto

Table 5.41: The numeral determiners

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Basic modulus</th>
<th>Additional moduli</th>
</tr>
</thead>
<tbody>
<tr>
<td>preskaŭ</td>
<td></td>
<td>NumAtom(∃), NumAtom(obl), NumAtom(on)</td>
</tr>
<tr>
<td>ĉirkau</td>
<td></td>
<td>NumAtom(∃), NumAtom(obl), NumAtom(on)</td>
</tr>
<tr>
<td>plimalpli</td>
<td></td>
<td>NumAtom(∃), NumAtom(obl), NumAtom(on)</td>
</tr>
<tr>
<td>pli</td>
<td></td>
<td>NumAtom(∃), NumAtom(obl), NumAtom(on)</td>
</tr>
<tr>
<td>malpli</td>
<td></td>
<td>NumAtom(∃), NumAtom(obl), NumAtom(on)</td>
</tr>
<tr>
<td>po</td>
<td></td>
<td>NumAtom(∃)</td>
</tr>
</tbody>
</table>

5.9. A corpus-based example

The word of the Devil: po

Cherpillod [1996] offers a convincing comparative analysis of one of the most tricky parts of the Esperanto grammar, even if he put it erroneously in the category of prepositions. The word po is borrowed from Russian and it is present in most Slavic languages, but a similar strategy is used by Japanese too. Let me give extract examples.

- (142-e.o.) Mi donis al la infanoj po 3 bonbonojn.
- (142-en.) I gave 3 sweets to the children each.
- (142-it) Diedi 3 caramelle a ciascun bambino.
- (143-pl) Dostali po 3 jablkow.
- (143-hr) Dobrše po 3 jabuke.
- (143-en) They received 3 apples each.
- (144-ip) Biru-o 3 zucu yatta.
- (144-en) (Someone) gave 3 glasses of beer each.

Adagrams shows clearly that po is a determiner of numerals, because it can never put in a phrase along with other determiners: it is completely irrelevant if the group is nominative or accusative, one of the most debated point, as referred by Cherpillod [1996]. Table 5.17 shows the use of determiners of numerals in various Esperanto and in English. Table 5.18 shows the use of determiners of numerals in Italian and in Polish. Finally table 5.19 shows the same example in Japanese and Croatian (note that the adjectives in Croatian and Polish are identical). It is quite clear that Western languages, such as English or Italian, put this special morpheme as a modifier of the Experiencer (%), while Slavic languages or Japanese put it as a modifier of the number of the Patient (%), which is cognitively clear. Esperanto follows the Slavic example.

It is theoretically possible to combine po with the numeral suffixes, even if it seems a bit too odd to an esperantophobe. Finally, as a prefix, po is also used, even if it is controversial: e.g., poime, approximately ‘step by step’, is found 10 times in the whole Tekstaro de Esperanto, made of 4,266,767 words (5 December 2008).

5.9 A corpus-based example

Let me conclude this chapter with a rich sentence extracted from the web edition in Esperanto of Le Monde Diplomatique:
Chapter 5. The adpositional grammar of Esperanto

5.9. A corpus-based example

Figure 5.17: Determiners of numerals in Esperanto and in English.

Figure 5.18: Determiners of numerals in Italian and Polish.
5.9. A corpus-based example

Sekve al la franca kaj nederlanda referendumoj de 2005, la traktato pri funkcio de la Eŭropa Unio (TFEU) forlasas la konstitucion leksikon kiu karakterizis la eŭropan konstitucion traktaton kiu havis la celon “eternigi” la liberalajn principojn.46

This is a rough translation in English: “After the French and Dutch referendum of 2005, the Treaty on the Functioning of the European Union (TFEU) lets fall the constitutional lexicon that characterised the constitutional treaty and that had the goal of making the liberal principles “eternal”. This sentence is quite complex, as it is made of three phrases, i.e., a main phrase and two relative clauses. For readability, I split this sentence in two adtrees (see Figures in the following pages: double junctions and correlatives in bold, also the left member, which is omitted in the original text):

- (145main-eo.) Sekve al la franca kaj nederlanda referendumoj de 2005, la traktato pri funkcio de la Eŭropa Unio (TFEU) forlasas la konstitucion leksikon
- (145rel-eo.) kiu karakterizis la eŭropan konstitucion traktaton kaj kiu havis la celon “eternigi” la liberalajn principojn.

Figure 5.20 shows the main phrase, in particular, note the external circumstantial opened by Sekve al – here exploded in its components, but probably to be considered a lexicalised adpositional pattern. In contrast, I considered Eŭropa Unio as a lexicalisation, and rendered as EU: this is to show that the designer of an adpositional grammar system should take some choices, but always at a linguistic level, i.e., what to consider lexicalisation and hence to be put in the dictionary. Furthermore, please note the double group franca kaj nederlanda nested are appended to referendumoj in the last position. Figure 5.21 shows the clauses appended at the main phrase thanks to the double junction kaj. They are both opened by the C-correlative kiu, which acts as the hook of the syntactic subject S of the respective clauses. The presence of kaj is important, because it pushes down the first clause: otherwise the second clause would be attached to traktat- instead of leksik-.

Figure 5.19: Determiners of numerals in Japanese and Croatian.
Chapter 5. The adpositional grammar of Esperanto

5.9. A corpus-based example

Figure 5.20: The adtree of Sekre al... (145, main phrase).

Figure 5.21: The adtree of Sekre al... (145, clauses).
tendencies of their literary languages (La Littomila tombo, Fivequin’s ivy) – see also Sutton [2009, 466–471] about Pol.

11 I will solve this ‘almost’ in section 5.5.2 about word compounding.

12 The English indefinite article is rendered with a zero adposition in Esperanto, as in Slavic languages; see section 5.8 for details on articles.

13 Contra Wennekens [2005] and Willkomm [2007], following Imbert et al. [1985] and Migliorini [1995], I decide to use traditional grammar terms like ‘nominative’, ‘accusative’, as this strategy does not cut Esperanto from its source languages, performing the so-called ‘pragmatic effect’ in language learning, identified in the pioneer article by Eaton ([1927] and proved in various research projects (for a survey, see Pinto [2002] in DI Stefano and Renzi [2002]).

14 However, esa, ‘to be’, is tricky in any case, but for different reasons, that I explain later.

15 It is noteworthy that Zamenhof considered -sil a true adversative: “[sil] does not belong to the root, but it is only a facultative final, so it is omitted, as ‘s’ in substantives” [ibid., 190, 58]. However, this possibility never entered the standard language register of Esperanto.

16 The modulus [dil in isá] and kotvri means ‘direction’.

17 I thank Ivan Buská for giving me the source of the following table [Snedekhly, 1989].

18 For instance, morpheme clusters as ochl妇科 of example 32d are considered as an idiomatic expression so to express a correlation. The table is modelled on Esperanto: the table for other NLs can be different, but only increasing the number of forms, never the pre forms. As explained in chapter 7, the implementation can be extended if needed.

19 It is attested some use of circumstantial correlative verified by the appropriate trans- fer e.g. tielsis, ‘things are so’, kiamis ‘how much?’. This is a case of lexicalisation: the correlative is put as it is in the lexicon, having lost its grammatical potentials. In the adtree, it will be simply put in the appropriate leaf.

20 It can also be used for exclamations [Wennekens, 2005, 224]. This fact does not prejudice the line of reasoning I am presenting.

21 A very common error, also made by Esperantologists like Migliorini, is to consider the forma - as belonging to the modulus (IlANIMATE). It is not so, as this example in very common, plain Esperanto shows clearly.

22 It is far easier to consider the formas -en completely grammaticalised, instead of analyse it as [-PLACE, MOV]. However, the implementation permit to have circumstantial variable correlatives as well, if needed.

23 Pretending that Esperanto is an “Asian language” – whatever this would really mean, usually meaning NLs like Chinese or Japanese – because of its use of affixes is simply a non- sense – e.g., Peron [1981]. Not only the lexicon is clearly 99% Indo-European – yes, words like -elento and -aforismo are originally Arabic, but they arecalqued through the mediation of Indo-European languages! – but also its structure is clearly Indo-European, as I am showing at any step of this chapter. In fact, how would be possible for Zamenhof to plan an “Asian QNL”, if its source languages are either Indo-European or Semitic? The true reason of this bug is political: some Esperantists pretend that Esperanto becomes the world language (mondelingvo), and they want to avoid the ideological attack of Eurocentrism (as a side note, not Zamenhof, who postulated in 1915 the United States of Europe, but this is another story). Recently the Japanese Esperantologists Yamaski [2003] and Toda [2007] in Cotton et al. [2007] offered additional arguments to my thesis, in this respect.

24 Further details are given through the implementation in the following chapters.

25 For the over-formal Esperantologist, in Esperanto there are three cases: nominative, accusative, and genitive, which is fossil, i.e., no longer productive. There is a tentative to revive this fossil case in words like, ‘juis, ‘my’, or ‘tias’, ‘belonging to another person’. These proposals are superbous, because there are already used in the regular compound all-o. For details over this very special topic, see the discussion in Wennekens [2005, 13–3].

26 Last but not least, the definition of ‘clause’ can be extended to static groups when governed by a proposition. This will become clear in the formal model.
This is particularly clear with le-case, which is a grammaticalisation having the word case inside. The model is spurious in this specific point.

In the early version of adverbs the property of symmetry seen by Brondal seemed to be promising. In the end, it was cut off by the model, as justifices show the property of associativity, not symmetry, at a formal level. So, symmetry should be considered a semantic proper and a guideline to put rightly adpositions when building the adpositions of NAs. In a sense, semantic symmetry is carved into Times.

Of course, this list can be expanded whenever the formal model is applied to other language realities.

At the following web addresses:
http://www.akademia-de-esperanto.org/verko/baza_jadikaro_oficiala.html

One of the numerous reforms of Esperanto proposed in the 20th century was exactly of this character. For a comparison between the lexical approach of Latino sine Flexione, proposed by Giuseppe Peano, and the approach of standard Esperanto, well analysed by Eugen Wüster, see (Gobbo, 2008).

On a cognitive level, I argue that this last sentence is processed slowly than the previous one, exactly because our mind should calculate the transfers.

The first study of compounding was published in 1910 by René de Saussoeur and it is now available as an ebook (De Saussoeur, 2003). This study, published first in French and then in Esperanto, was clearly approved by Zamenhof himself as a good guideline, especially for writers (B6, 1990, 4). René de Saussoeur was a Swiss mathematician, an early Esperanto supporter, and the friend of the more famous Ferdinand de Saussoeur. A presentation of his life and works is Künzi [2001] in Friedler and Liu [2001]. Other sources of analysis is the corpus-based grammar of Esperanto by Gledhill [1998, 31-37] and the study of Cherylld [2003].

A direct consequence is that I consider compounds like 'limo-broko', 'Liza’s house at the seaside', as ungrammatical. It may be that such monstrous compounds do exist in Esperanto, but they are definitely out of the standard register of the language, the one which I am describing and implementing.

However, it is easy to add a rule for circumstantial compounding, if ever needed, as the formalism proposed here is robust enough to do so, if needed.

It seems that the so-called 'adjectival' affixes, to use the imprecise terminology of some Esperanto grammarians, are inline analyser of the lexeme they are applied to. This is of no use from a computational point of view, as the final grammar character is always defined by the Esperanto final system.

Of course, this is valid if the compound is not lexicalised. At the limit, it can be delexicalised, e.g., dvo-n-dvo-na is 'a continuous fall of water', while 'a continuous waterfall' is dvo-a-alvo. In other words, in this compound the atom is f-e not alvo.

It is obvious the influence of the source language substrates: ferroja is a calque from the French chêne de fer, while nielensoja is a calque from the German Koenkroos. For the Esperanto linguist: it is obvious that the suffix -oj- is built semantically in front of -oj-. However, I decided to omit it as its intricacies are always at a semantic level, i.e., on moduli, and this does not give any useful information to the model, in particular because of the concurrent forms expressing the relation between inhabitants and countries. Adverbs are agnostic, so they permit at a limit Afgen-ist-sen-o: Afgen-lindo-o: Afgen-o-o: Afgen-o-n. However, I find the arguments of de Kock [2007] in Löwenstein [2007] very convincing in spite of all discussions, even in this semantic area Esperanto shows a good degree of regularity compared to NAs.

Note that a frequent error made by Esperantophones is the adjunction of the circumstantial, e.g., mi estis free. This is a proof that esti need an apart cognitive process, rendered in the formal model as a apart set of rules.
Part III

Implementation
Chapter 6
The parsing of Esperanto

In this chapter the morphemes presented in the previous chapter will be finally collocated in their groups. This permits the implementation of the Esperanto grammar, i.e., the transformation of the set of Esperanto words forming phrases and sentences in input to the output, i.e., the appropriate adtree(s). The tables that show the parsing patterns of Esperanto are referred to in the rules of the formal model (see next chapter). Names help the reader to follow this line of reasoning. A special role is done by the fundamental moduli, which permit to know the final fundamental grammar character of each group. Therefore, the parsing will follow the grammar character taxonomy given throughout the whole dissertation.

Two caveats are needed before to proceed. Of course, the caveat of the name-entity problem stated in the Introduction is still valid: e.g., in the sentence *Andreas studas multe* the word ‘Andreas’ should be tagged as a name-entity, otherwise it would be reckoned erroneously as a verbal group, being the final – as a signature of the fundamental verbal modulus. An additional caveat is of a linguistic nature. Namely, this topic – collocation in Esperanto – is still highly debated among specialist. I cannot exclude that rare or ‘strange’ collocations can exist that do not fit into the model presented hereafter. However, I argue that the model itself captures above the 95% of sentences written in contemporary standard Esperanto. In any case, a systematic testing of the formal model with the available linguistic corpora is out of the scope of this dissertation – perhaps a whole extra PhD dissertation would be needed. Nonetheless, every collocation was manually tested, i.e., the examples offered are extracted from the corpora or immediately derived from them. Finally, please note that my English translations are only for the reader’s benefit, because these groups are not collocated in the syntagmatic axis: as stated in chapter 4, translation is possible only within co-text, i.e., with morpheme chains in collocations.

The meaning of the finals in italics will be clarified in section 5.3.1 below. The positions (*λ0, λ1, λ2, ..., E−1*, *E0, ..., A0* etc.) will be referred in section 5.2.2.

6.1. The lambda subgroup

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>F_{adv}</th>
<th>S_{adv}</th>
<th>S_{pre}</th>
<th>S_{post}</th>
<th>S_{post2}</th>
<th>S_{post3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>λ_0^*</td>
<td>λ_1</td>
<td>λ_2</td>
<td>λ_3</td>
<td>λ_4^*</td>
<td>λ_5^*</td>
</tr>
<tr>
<td>Mandatory</td>
<td>λ_0^*</td>
<td>λ_1</td>
<td>λ_2</td>
<td>λ_3</td>
<td>λ_4^*</td>
<td>λ_5^*</td>
</tr>
</tbody>
</table>

5.3. Positions without star (e.g., *λ0*) can occur only once within each phrase, i.e., they are singletons, while positions with star (e.g., *E−1*, *E0*) can occur indefinitely, albeit in language use this recursion is very limited (hardly more than twice). Some positions are mandatory, others not. The notation is as follows:

- \perp: the position is not mandatory, and there can be at best one item;
- \ast: the position is not mandatory, and there can be one or more items;
- \top: the position is mandatory, and there is always one item at a time.
- \top^*: the position is mandatory, and there can be one or more items.

There is always at least one mandatory position which give the final grammar character of the group with a fundamental modulus (see section 5.3.1 below) and gives cues about the adtype, according to the conventions presented in Table 3.9.2

6.1 The lambda subgroup

Each table will show the subgroups forming the current group. I call subgroup something very generic that concurs into the making of the group itself. It can be a morpheme of a particular type, as well as another subgroup, i.e., a particular morphological pattern that takes place recursively, or even a full-fledged group – in this case, I call it a *nested group*.

An apart status is given to the lambda subgroup, which solves the compound and the admissible lists of affixes. λ-subgroups are the main place where to find lexemes in the implementation. This subgroup is based on the grammar character of the atom (section 5.5.2, that can be modified by the valence transferers –ιg- and –ιh- (see again Table 5.18 if needed).

Furthermore, the λ-subgroup separates what is on the left from what is on the right in the implementation, i.e., subgroups at its left, for instance prepositions, can be parsed in parallel with subgroups at its right, e.g., predicative adjectives. For details about this point, see the third part of this dissertation.
Chapter 6. The parsing of Esperanto

Table 6.2: The parsing of \(\lambda \)-pron

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>(P_{\lambda})</th>
<th>Position</th>
<th>(P \rightarrow \lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
<td>(\perp)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.3: The parsing of \(\lambda \rightarrow \tau_{\text{max}} \)

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>(\tau_{\text{max}})</th>
<th>Position</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
<td>(\perp)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.4: The parsing of \(\lambda \)-grouplets

| Subgroups | \(P_{\lambda} \) | \(S_{\lambda} \) | \(\{ \varphi|\tau|\varphi|\varphi|\lambda \} \) | \(A_{\lambda} \) | \(S_{\lambda} \) | \(\sigma \) |
|-----------|--------------------|----------------|---|----------------|----------------|-------------|
| Example | \(\text{demonstr} \) |
| Position | \(\lambda \) | \(\lambda \) | \(\lambda \) | \(\lambda \) | \(\lambda \) | \(\lambda \) |
| Mandatory | \(\perp \) | \(\perp \) | \(\perp \) | \(\perp \) | \(\perp \) | \(\perp \) |

Table 6.5: The parsing of \(E \)-grouplets

| Subgroups | \(P_{\lambda} \) | \(S_{\lambda} \) | \(\{ \varphi|\tau|\varphi|\varphi|\lambda \} \) | \(A_{\lambda} \) | \(S_{\lambda} \) | \(\sigma \) |
|-----------|----------------|----------------|---|----------------|----------------|-------------|
| Examples | \(\text{malt} \) |
| Position | \(E_1 \) | \(E_4 \) | \(E_1 \) | \(E_2 \) | \(E_{1+} \) | \(E_5 \) | \(E_{E-2} \) |
| Mandatory | \(\perp \) |

6.2 Fundamental groups

Fundamental groups are various instances of one or more \(\lambda \)-subgroups nested one into the others. I call them ‘fundamental’ because it is obvious to classify them along their grammar characters: verbal, circumstantial, stative and adjectival. The following subsections give account of the inner structure of each instance of the fundamental groups, while their combination is clarified in the next section.

6.1.1 Lambdas and placeholders

There are two special cases of lambdas: pronouns and traces. Pronouns and traces are both placeholders, i.e., they are markers of anaphoras and cataphoras (see again section 3.3.3, if needed). In parsing, Esperanto pronouns take a special place \(P \), which corresponds to \(\lambda_{\text{y}} \), but it is different, as it deactivates various adjectival positions – see Table 6.2. As shown in section 5.7, Esperanto pronouns agree with gender, name and case. In contrast, they take directly the place of \(\lambda_{\text{y}} \) and there is no agreement or any other adposition possible (Table 6.3). Section 6.2.3 will clarify pronouns and traces putting them into action.

6.2.1 Verbal groups

Table 6.4 shows the parsing of verbal groups. The verbal group is always without spaces, i.e., composed only by words. It is found easily through the verbal finals (\(\{ \text{-as}\text{-a}\text{-o}\text{-i}\text{-u}\} \)), which are in position \(I_{\text{as}} \), and fix the rightmost limit of the group. Words with two lexemes are called compound and it will be treated in section 5.5.2 below. The example words are: \(\text{demonstr} \), ‘put a question mark’, \(\text{kunsvajko} \), ‘come together having a trip’, \(\text{frenziiko} \), ‘will become crazy’, \(\text{daiptipris} \), ‘that could last’.

6.2.2 Circumstantial groups

Table 6.5 shows the parsing of circumstantial groups, which are found by the mandatory morpheme \(\epsilon \). If an \(E \)-group is with the \(E_{-2} \) empty, it is called an elementary circumstantial group (e-group): this instance of \(E \)-group can be applied to verbal groups as well as to generic adjectival groups – see Tables 6.17 and 6.18 below.

Circumstantial groups are always made by words, i.e., all lexemes are attached one to the others. The examples are: \(\text{malmalmanca} \), ‘in few manners’, \(\text{italian} \), ‘to(wards) Italy’, \(\text{sinunedence} \), ‘generously (literally, who has tendency to give himself)’. There is no \(E_{-1} \) to remember the mandatory
Chapter 6: The Parsing of Esperanto

6.2.3. Adjective groups

Adjective groups may occur before any sentence element except another adjective group.

Table 6.6: The parsing of o-det-inv-groups

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>Examples</th>
<th>Position</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{o}x$</td>
<td>$D_{o}x$</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>$A_{o}G_{o}$</td>
<td>$A_{o}G_{o}$</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>$S_{o}G_{o}$</td>
<td>$S_{o}G_{o}$</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>$P_{o}G_{o}$</td>
<td>$P_{o}G_{o}$</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>S_{o}</td>
<td>S_{o}</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>P_{o}</td>
<td>P_{o}</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>O_{x}</td>
<td>O_{x}</td>
<td>O_{x}</td>
<td>O_{x}</td>
</tr>
<tr>
<td>A_{x}</td>
<td>A_{x}</td>
<td>A_{x}</td>
<td>A_{x}</td>
</tr>
</tbody>
</table>

Table 6.7: The parsing of o-det-inv-corr-groups

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>Examples</th>
<th>Position</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{o}x$</td>
<td>$D_{o}x$</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>$A_{o}G_{o}$</td>
<td>$A_{o}G_{o}$</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>$S_{o}G_{o}$</td>
<td>$S_{o}G_{o}$</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>$P_{o}G_{o}$</td>
<td>$P_{o}G_{o}$</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>S_{o}</td>
<td>S_{o}</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>P_{o}</td>
<td>P_{o}</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>O_{x}</td>
<td>O_{x}</td>
<td>O_{x}</td>
<td>O_{x}</td>
</tr>
<tr>
<td>A_{x}</td>
<td>A_{x}</td>
<td>A_{x}</td>
<td>A_{x}</td>
</tr>
</tbody>
</table>

The absence of the number 7.

Example

1. The phrase "la bela libro" is parsed as follows:

- **Subgroups:** $D_{o}x$ (determiner)
- **Examples:** $D_{o}x$
- **Position:** O_{x}
- **Mandatory:** A_{x}

Thus, the phrase is parsed as a determiner group followed by a noun group.

Adjective groups

Adjective groups are formed in a similar manner to noun groups. The most common types are:

1. **Determiner groups:** $D_{o}x$
2. **Adjective groups:** $A_{o}G_{o}$
3. **Superlative groups:** S_{o}
4. **Prepositive groups:** P_{o}

Syntax

Adjective groups can be combined in various ways:

- **Determiner + Adjective:** $D_{o}x A_{o}G_{o}$
- **Adjective + Superlative:** $A_{o}G_{o} S_{o}$
- **Adjective + Prepositive:** $A_{o}G_{o} P_{o}$

Table of Examples

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>Examples</th>
<th>Position</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{o}x$</td>
<td>$D_{o}x$</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>$A_{o}G_{o}$</td>
<td>$A_{o}G_{o}$</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>$S_{o}G_{o}$</td>
<td>$S_{o}G_{o}$</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>$P_{o}G_{o}$</td>
<td>$P_{o}G_{o}$</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>S_{o}</td>
<td>S_{o}</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>P_{o}</td>
<td>P_{o}</td>
<td>O_{x}</td>
<td>A_{x}</td>
</tr>
<tr>
<td>O_{x}</td>
<td>O_{x}</td>
<td>O_{x}</td>
<td>O_{x}</td>
</tr>
<tr>
<td>A_{x}</td>
<td>A_{x}</td>
<td>A_{x}</td>
<td>A_{x}</td>
</tr>
</tbody>
</table>
Table 6.8: The parsing of o-det-pron-groups

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>P_{sa}</th>
<th>AP_{sa}</th>
<th>$A_{sa}{\text{Group}} = \ominus$</th>
<th>$P_{sau} \ominus$</th>
<th>$S_{sau} \ominus$</th>
<th>\ominus</th>
<th>\ominus</th>
<th>\ominus</th>
<th>\ominus</th>
<th>$A_{sa}{\text{Group}} = \ominus$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>de-</td>
<td>maj</td>
<td>malgentila</td>
<td>def</td>
<td>redaktor</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>foraj</td>
</tr>
<tr>
<td>Position</td>
<td>O_1</td>
<td>A_V</td>
<td>$A_1\ast$</td>
<td>O_2</td>
<td>O_3</td>
<td>O_1</td>
<td>O_4</td>
<td>O_5</td>
<td>O_6</td>
<td>O_7</td>
</tr>
<tr>
<td>Mandatory</td>
<td>\bot</td>
</tr>
</tbody>
</table>

Table 6.9: The parsing of o-det-var-groups

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>P_{va}</th>
<th>D_{va}</th>
<th>$A_{va}{\text{Group}} = \ominus$</th>
<th>P_{vax}</th>
<th>I_{vax}</th>
<th>I_{vax}</th>
<th>I_{vax}</th>
<th>S_{vax}</th>
<th>\ominus</th>
<th>\ominus</th>
<th>\ominus</th>
<th>$A_{va}{\text{Group}} = \ominus$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>on, al</td>
<td>prin</td>
<td>malgente</td>
<td>muz</td>
<td>handel</td>
<td>-ing</td>
<td>-ing</td>
<td>-ing</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>foraj</td>
</tr>
<tr>
<td>Position</td>
<td>O_1</td>
<td>O_2</td>
<td>$A_1\ast$</td>
<td>O_3</td>
<td>O_4</td>
<td>O_5</td>
<td>O_6</td>
<td>O_7</td>
<td>O_8</td>
<td>O_9</td>
<td>O_{10}</td>
<td>O_{11}</td>
</tr>
<tr>
<td>Mandatory</td>
<td>\bot</td>
</tr>
</tbody>
</table>

Table 6.10: The parsing of o-num-groups

<table>
<thead>
<tr>
<th>S.</th>
<th>P_{np}</th>
<th>$AN_{num}{\text{Group}}$</th>
<th>$A_{np}{\text{Group}} = \ominus$</th>
<th>P_{num}</th>
<th>I_{num}</th>
<th>I_{num}</th>
<th>I_{num}</th>
<th>S_{num}</th>
<th>\ominus</th>
<th>\ominus</th>
<th>\ominus</th>
<th>$A_{np}{\text{Group}} = \ominus$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.</td>
<td>per</td>
<td>mal</td>
<td>petrol</td>
<td>$-$</td>
<td>dolar</td>
<td>eportun</td>
<td>lance</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>foraj</td>
</tr>
<tr>
<td>F.</td>
<td>O_h</td>
<td>A_1</td>
<td>$A_1\ast$</td>
<td>O_2</td>
<td>O_3</td>
<td>O_4</td>
<td>O_5</td>
<td>O_6</td>
<td>O_7</td>
<td>O_8</td>
<td>O_9</td>
<td>O_{10}</td>
</tr>
<tr>
<td>M.</td>
<td>\bot</td>
</tr>
</tbody>
</table>

Table 6.11: The parsing of stative pronominal groups (o-pron-groups)

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>P_{np}</th>
<th>P_{num}</th>
<th>\ominus</th>
<th>$AN_{num}{\text{Group}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>pri</td>
<td>ni</td>
<td>$-$</td>
<td>du</td>
</tr>
<tr>
<td>Position</td>
<td>O_h</td>
<td>O_{1+}</td>
<td>A_1</td>
<td>\bot</td>
</tr>
<tr>
<td>Mandatory</td>
<td>\bot</td>
<td>\bot</td>
<td>\bot</td>
<td>\bot</td>
</tr>
</tbody>
</table>
Chapter 6. The parsing of Esperanto

Stative determined groups

Tables 6.6, 6.7, 6.8 and 6.9 show the stative determined groups, which are very similar one with the others, save for agreement. I have chosen to keep them separate, so that they are more easily readable for the reader interested in Esperantology; similarly, the rules will be kept symmetrical. However, it is possible to have less patterns, and from a computational point of view the rules would be more efficient: what is lost is the clearness of the model. I decided to have a clear model than an efficient one. The examples are: por la ĵaroj pasintaj, ‘for the years that passed’; kun la belaj koramikintoj, ‘with the nice little girl-friends’; ties okulstipronon, ‘[his/her/its] beginning capacity to last’ (accusative); de mia kuzminaj feraj, ‘of our cousins which live far away’; por mia nunaĵa ĉefredaktoro, ‘about my impolite editor-in-chief’; el ili aksofledo, ‘from their small waterfall’; en tiun erkandelinego, ‘in(to) that golden candlestick’; al mistregeoj neforguseblaj, ‘to big errors which we cannot forget’.

Stative numeral groups

Table 6.10 shows the stative numeral groups. Note that in this group the atom is always pluralised, even with zero (nul). Moreover, if there is a pattern with unu without a plural, this unu is a determiner, and it will parsed accordingly. The examples are: por mil petrodolaraĵ maljaraĵ, ‘for a thousand petrodollars which are dirty’; kvarcent tridek ok malsupertrejaj, ‘438 bad conditionals’; nulancoj tiajn, ‘no chances thereby (accusative)’.

Stative pronominal groups

Table 6.11 show stative pronominal groups. They can substitute λ-subgroups in various patterns. The examples are: vin du, ‘you two’ (accusative); por mi, ‘about us’; ili okdek unu mil tracent sepdek kvar pliakaj da homoj, ‘they, 81,374 billions of human beings’.

Stative infinitive groups

Table 6.12 shows i-groups, which are essentially λ-groups with the signature of infinitive -i as the tail. The examples are: pri ĉirkuitintoj, ‘about putting around’; krom vaporstipigoji, ‘instead of put in a steamship’; surtabligradi, ‘to lay on the table again and again’.

Stative empty groups

These groups have as the lexical base the trace of stative lexemes, i.e., an anaphoric or cataphoric anchor. For this reason, I call them stative empty groups: paradoxically, they are stative without showing any ‘true’ stative lexeme, but only placeholders, such as traces or pronouns. Table 6.13 shows the empty determined variable group, which is analogue to the empty determined invariable group, save for the agreement. Figure 6.1 shows the adtree of example 145, which has a stative determined invariable pattern nested in:

- (145es) Ni kunvenas kun la pasintaj koramikintoj.
- (145em) We meet with the past little girl-friends.

The adtree is complete, i.e., also abstract, unused subtrees are shown, along with their position, so to make the structure clear. The other stative determined groups are very similar: their adtrees are left to the reader. The examples are: por tiuj ili ĉefaj, ‘for that begging of theirs’; tiu niaj, ‘ours of that quality’; al tiu Ĉi ĉi liaj plenkreskaj ĉentilaj, ‘al those your adult polite ones’, la liaj, ‘hers’. Table 6.13 shows the empty determined variable group. In this case, D_iα is always the definite article la. This is the only case where adjective pronouns and the article can be put together within the same group.

The generic stative groups

A generic, stative group (O-group) subsumes all stative groups seen before. Figure 6.2 shows a generic abstract adpositional tree. Under a complemen-
Chapter 6. The parsing of Esperanto

Figure 6.1: The adtree of stative determined invariable groups (ex. 145).

Table 6.14: The parsing of o-emp-det-inv-groups

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>P_{eq}</th>
<th>D_{k1k2}</th>
<th>AP_{eq}</th>
<th>$A_kG_{eq} = {}$</th>
<th>$AN_{k1}G_{eq}$</th>
<th>t_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>n'</td>
<td>n'</td>
<td>la</td>
<td>a'</td>
<td>A_kG_{eq}</td>
<td>$AN_{k1}G_{eq}$</td>
<td>t</td>
</tr>
<tr>
<td>Position</td>
<td>O_1</td>
<td>O_6</td>
<td>A_{1k}</td>
<td>A_{1k}^+</td>
<td>A_1</td>
<td>O_6</td>
</tr>
<tr>
<td>Mandatory</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>*</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

6.2. Fundamental groups

Figure 6.2: The abstract adtree of O-groups.
6.2. Fundamental groups

Numerals are identified by a linguistically limited class of morphemes. Numerals are singletons in each adjective group, exactly as pronominal group. Numbers have a special place in (QNLs, as their linguistic planning, i.e., how to name them in speech, was never done with the consultation of mathematicians, and not rarely against them, e.g., the political power of zero was considered highly dangerous by the Church in mediæval Europe.6

As seen in section 5.8.3, Zamenhof has chosen to borrow the model of representing numbers and their modifiers from the East Europe, and planned carefully this part so to have no exception – in contrast, in Italian ‘10’ is se-dici, ‘6+10’, while ‘17’ is disea-sette, ‘5+10’, instead of ‘sette-dici’. Nevertheless, I tried to build the rules so to implement the Esperanto conventions explained, then I realised that the finite-state automaton necessary to implement this part of the grammar is huge and completely useless for three good reasons.7

First, whoever will write in a numeral group like plimalpli ducent tridek unu mil kvincent naukan trilionoj da homoj, ‘more or less 23,591 trillion human beings’, instead of plimalpli 231.591 trilionoj da homoj? In the translation game this can be asked to Alice without any problem: if she agrees to play the game and write in Esperanto, for sure she will also write numbers as ciphers, instead of words. In fact, – and this is the second reason – the adtrees of numbers are useless, as there is no explicit adposition to build them, only epilons (v)’! Let me explain through a somehow complex example: kvarcentope, ‘in 400-tuples’, where the lesical base is always void (C3), while kvarcent, ‘400’, is a compound, and ‘ope’ is a suffix. Figure 6.3 shows the corresponding adtree. The only relevant information is the suffix –ope and the grammar character -c: so I decided to retain that information, letting numbers being what they are, i.e., numbers, thanks to the representation in ciphers. The third part of my argument is that the final goal of adgrams is machine translation: it is always possible to write kvarcent tridekope as 430-ope, regardless of the (QNL). In this way, numbers are considered as special a-groups (see section 6.1, if needed) implemented directly in the dictionary. Figure 6.4 shows how the adtree is built. This is the only part of the formal model that implements a part of the encyclopedia, preferring an a priori storage instead of computation, always remember the rule/list fallacy. The additional moduli presented in Table 5.41 are put to avoid that po is used if a numeral suffix is already in place.

More scientific uses of numbers, e.g., degrees, are not covered here, as they are not part of the everyday language. In any case, they can be solved following the same approach.
Chapter 6. The parsing of Esperanto

6.3. The parsing of affixes

6.2.6 Adjectival groups

The most frequent subset of adjectives are elementary adjectival groups. Table 6.16 shows the parsing of elementary adjectival groups. Basically, an elementary adjectival group is what expected: a λ-group with the appropriate fundamental, number and case signatures.

As explained immediately below, theoretically there can be an infinite number of them within each adjectival group. The first example is longedaita, ‘that lasts for a long time (accusative, plural)’. This is an intermediate step of grammaticalisation: longe daita → longedaita → longdaita (see section 5.5.2 for this phenomenon, especially important for static groups).

The other examples are: plimelpi kverele, ‘more or less badly quarrelsome’, kvar nepli, ‘four somebody does not like’, pli junan, ‘younger (accusative)’.

Generic adjectival groups

Tables 6.17 and 6.18 two possible parsings of adjectival groups in Esperanto. The swapping is rare but Zamenhofian: the example is taken from the novel Marta, found in the Tekstaro de Esperanto. It is noteworthy that circumstantial groups can act as adjectival group modifiers, so they should be attached to the appropriate adtree, as shown in the adjectival group foje bongustaj, ‘sometimes tasteful’ – Figure 6.5. In conclusion, it is possible to say that, under a cognitive and formal point of view, common linguistic minimal structures seem to be associative. In fact, the only exception is this last swapping, which is commutative.

6.3 The parsing of affixes

In the previous tables, the objects P_{aff} and S_{aff} were used. In Esperanto, some chains of affixes are allowed, others not. The first criterion
Table 6.7: The parsing of \sum groups

| Subgroup | P_{aff} | S_{tmc} | $(\cdot|\cdot|a|\cdot|\cdot|\cdot|\cdot|\cdot|\cdot)$ | A_{conn} | S_{aff} | a | J | \neg |
|----------|------------------|------------------|---|------------------|------------------|----|----|------|
| \sum | \sum | \sum | \sum | \sum | \sum | \sum | \sum | \sum |

Table 6.8: The parsing of a \sum group

<table>
<thead>
<tr>
<th>Example</th>
<th>Position</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>pli</td>
<td>A_1 A_2 A_3</td>
<td>A_3 A_2 A_1</td>
</tr>
</tbody>
</table>

Table 6.16: The parsing of ω groups

| Subgroup | P_{aff} | S_{tmc} | $(\cdot|\cdot|a|\cdot|\cdot|\cdot|\cdot|\cdot|\cdot)$ | A_{conn} | S_{aff} | a | J | \neg |
|----------|------------------|------------------|---|------------------|------------------|----|----|------|
| ω | ω | ω | ω | ω | ω | ω | ω | ω |

Table 6.18: The parsing of affixes

<table>
<thead>
<tr>
<th>Example</th>
<th>Position</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>pli</td>
<td>A_1 A_2 A_3</td>
<td>A_3 A_2 A_1</td>
</tr>
</tbody>
</table>
Chapter 6. The parsing of Esperanto

Table 6.20: The parsing of phrases (sentence level)

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>(groupl/group)</th>
<th>(group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

acter of the group itself, as seen in section 6.1. As a side note, please notice the lexicalisation of *lern-aj*, ‘school’, which has acted a permanent transfer 1–O.

As a proof, I offer a list of Esperanto words that break these rules: *ge-be-patr-o, "san-il-un-o, "knab-df-a, "ge-knab-in-o-j*. Every Esperantophone sees these words as bad-formed, and this is reflected in the formal model. Of course, there are some dependencies between affixes, as in the case of ge++j (see again Table 5.33). These should be computed with ad hoc rules, which are strictly language-dependent.8

The examples in Table 6.19 are: *bogepatroj, ‘parents-in-law’, russajama, ‘a Russian’, knabitojo, ‘a little girl’, jurnalisto, ‘a journalist (presswoman)*, lāfo, ‘a lamb’, gelernesinto, ‘a headmaster (of a school open to both boys and girls), malsanulino, ‘a hospital only for women’, maldrikemanalo, ‘an alcohol-fobic’, demando, ‘a set of question (if lexicalised, a questionnaire*), viziladanto, ‘a person who is used to be a visitor’, edzino, ‘to marry (literally, to become a wife)’.

6.4 The parsing of phrases and beyond

As stated in section 6.2.4, A-groups are always carved into O-groups. Hence, in order to form a phrase, there are only three generic groups directly involved:

1. the **I**-**group**, which actives valences and hence the intra-phrasal structure (at the extreme, it would be void: ☒);
2. at least an **O**-**group**, filling valences, perhaps enriching the phrasal structure (with zerovalent verbs, it would be void: ☐);
3. zero or more **E**-**groups**, which are out of valences – i.e., they always enrich the phrasal structure with additional, external information.

As shown in Table 6.20, the parsing algorithm at this level is now trivial.8 I call this level the **sentence level**, which is the highest level concerning Esperanto. Above this level there is a **text level**, i.e., the level that transforms a set of sentences in a text. In fact, the rules of the text level are valid regardless of the (Q)NL: a text seems to follow an linear order, otherwise anaphoras and cataphoras simply cannot be solved.

In the next chapter, the rules of the sentence level will be offered, with all its inner layers, which have been sketched here, as well as the sentence level, which is far simpler indeed.
Notes

1 To be rigorously, the fundamental moduli are the only ones which are really mandatory, as they can even be used alone as lexemes, as in the often quoted literary example si mastro si fere, ‘if a master is out’ [Cherryfield, 2003]. However, this potential use of the Esperanto grammar is never used practically, at least in the standard register of the language. Nonetheless, the formal model can parse correctly even zero lexemes.

2 Sometimes they are found only as stative forms, e.g., demandosigno (‘question mark’), instead of verbal form, i.e., demandosigno (‘put a question mark’).

3 The prefix si- is in reality the reflexive pronoun in the accusative form si- it. However, here it is used as a prefix, so in adverbs it will be considered apart from the reflexive pronoun, analogously to the case of prepositions used as prefixes – see Wertermann [2005], [38-43] for details about this extra affix.

4 As put clearly by Jansen [2007], this point of Esperanto collocation is still debatable; however, I have taken this decision for clearness in the formal model.

5 1,371,364 is the numeric example put by Leibniz to show how to have a universal manner to pronounce numbers in his Logica generalis (1679), i.e., mahalible, or Talabila [Eco, 1995].

6 A good survey of the social history of numbers is still Boyer [1968].

7 In a previous version of this dissertation there was a table for that automaton, which now is left to the reader.

8 Under a cognitive point of view, there may be some semantic blocks carved into the lexemes. For example, it is possible to be an ex, i.e., a former spouse, but it is not possible to be an ex-son or an ex-parent. Therefore, the English prefix ex in the English adpositional grammar should be treated apartly so to be parsed correctly.

9 As said before, complex phenomena as mirroring or elf sentences are not completely covered, at least in this dissertation. E.g., Paris je tué, ‘it is towards Paris, that I am driving by car’, is a monophasal sentence formed by [Ex group Fnom, Fnom], cannot be parsed at the moment.
Chapter 7

The formal model

In this chapter the formal model is explained in details, so that the virtual von Neumann’s machine can parse texts supposed to be written in standard contemporary Esperanto and the appropriate adtree(s) are generated. Let me recall the two key concepts necessary in order to build an adtree: (a) the hook, which is the set of adpositions that heads the current adtree; (b) the lexical base, which is the rightmost participant in a given subtree, and it pertains the lexicon. A lexical base can be:

- a lexeme, in simple words (section 6.1);
- an atom, in compound words (section 5.5.2);
- a pronoun, in native pronouns (Table 6.11);
- a trace, in empty groups (section 6.2.3).

The purpose of this chapter is to explain how the adtrees are constructed from the token list derived by the lexical analyser. Since the process that builds adtrees is non-deterministic and is best described by means of derivation rules, I define the parsing algorithm as a set of derivation rules. The next subsection introduces the syntax of rules starting from a standard logical syntax. The logical syntax is extended by adding definitions, in order to model the relevant entities and concepts. Then, the format of rules is presented, explaining their meaning in terms of a non-deterministic computation. Finally, the parsing rules for Esperanto are given, following the guidelines developed in the previous chapters.

These rules form a non-deterministic algorithm since a well-defined computational engine, described along with the formalism, can use them to calculate the adtrees from a token list.

7.1 The virtual machine

The parsing algorithm operates on a virtual machine which can be implemented on a real architecture. Thus, I assume to have a von Neumann’s architecture with enough memory. Furthermore, I assume that there is an imperative language available for that machine. A C-like pseudo-language to develop the low-level algorithms is used (Kernighan and Ritchie, 1988).

The distinguishing feature of this parser is its intrinsic non-determinism. As current practice, the non-deterministic behaviour is simulated by means of backtracking. When an arbitrary choice has to be taken, one possibility is chosen: if it reveals to be unsuccessful, the machine retreats its choice and inspects another possibility. The backtracking mechanism is well-known and various alternatives to implement it has been studied. Here, the choice is to have a backtrack stack, which is a data structure holding the alternative states of the computation.

The data structure is manipulated by means of two primitives. The backtrack primitive takes one or more parameters. The first one is a label, indicating a point in the code; the other parameters are assignments. The execution of backtrack (label, v₁ := e₁, v₂ := e₂, ...) pushes onto the backtrack stack the label, the set of all variables in the current state of execution along with their actual values except for v₁, v₂, ... whose values are the result of evaluating e₁, e₂, ..., respectively. Therefore, the entry on the backtrack stack represents an alternative state where the program counter equals the label and the accessible memory equals the stored variables.

The second primitive is failure, which takes no parameters. When a failure occurs, i.e., when the failure primitive is executed, the system pops from the top of the backtrack stack a label along with the pairs (v, c) where v is a variable and c is an expression. The execution restarts from the label while the memory is instantiatiso to contain exactly the variables stored in the backtrack stack.

Therefore, since the backtracking mechanism is a variant of standard methods, although it is not efficient, it can be implemented on a von Neumann’s machine. In other words, a program written using these primitives in an imperative language is computable.

The lexical analysis transforms a sequence of characters in a sequence of tokens. Each token is formed by a list of tags; each tag identifies an Esperanto modulus as defined in the previous chapters. The lexical analyser is shown in details in the next section, using the described architecture. Hence, the lexical analysis is computable.

The parsing algorithm operates on a virtual machine built on the top of the described architecture. It is similar to Prolog, although a closer resemblance may be found with the so-called logical frameworks.

The virtual machine consists of a complex logical syntax, which allows
7.2 The lexical analyser

The input to the parser is a string of text which is supposed to be written in
Esperanto. The goal of the lexical analysis is to convert this string into a list
of tokens, representing the whole text whose tokens are, roughly speaking,
the morphemes.

The lexical analysis is performed in four subsequent steps:

1. the input string is transformed into a list of words, separating the
 basic elements;
2. the list of words is scanned to search for composed words;
3. the list of words is cleaned by removing the words with no meaning,
 like spaces;
4. each word is transformed into a sequence of tokens, that is, a set of
tags denoting the lexical status of a morpheme in the word.

7.2.1 Step 1: String to list of words

The goal of the first step is to transform the input string into a list of words,
where a word is understood to be a non-empty string of consecutive char-
acters formed by at least one morpheme between two separators. In ad-
grams, a word has no special linguistic meaning, it has only a compu-
tational meaning, while the linguistic meaning is carried out by the mor-
phosyntax and semantics as explained in the previous chapters.

I assume to have a set, called WordSeparator, that contains the char-
acters separating words. This set, containing characters like blanks, com-
as, periods, etc., is shown in Table 7.1. This set is not rigid, but it is
stored in the dictionary. Technically speaking, a word separator appears
in the dictionary as any other morpheme, but it is marked with the spe-
cial tag WordSeparator. Thus, the WordSeparator set is obtained by
querying the dictionary, asking to retrieve all the morphemes tagged with
WordSeparator.

A word is defined to be a string of characters, either a separator or the
list of characters between two separators. New strings can be constructed
by appending characters at the end, via the $+$ operation. Similarly, lists
can be extended by adding an element to the end, via the $+$ operation. The
empty string and the empty list are represented by the nil element. No con-
fusion arises since typing allows to decide what is the right interpretation of
nil and $+$ case by case. The output is a list of words.

The code which parses the string obtaining the list of words is pretty
standard. It is shown in Figure 7.1.

7.2.2 Step 2: Alternative interpretation of words

The goal of the second step is to compose sequences of words that may be
thought as a single unit. This composition is not compulsory, so it generates
an alternative computation track.

Composite sequences of words are represented in the dictionary as a
list of regular expressions.

A query to the dictionary is performed by means of the Composable(w)
function which returns a list of lists of regular expressions; the result of this
function contains the list r_1, \ldots, r_n if w matches the regular expression r_1.
A w corresponds to a tag, while e is the regular expression.

An example of a composable sequences of words in the English word
‘21st’, which is a sequence of three words, ‘21st’, ‘th’ and ‘’. In order to
treat this example, I assume that the following list of regular expressions

<table>
<thead>
<tr>
<th>Character</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>full stop</td>
</tr>
<tr>
<td></td>
<td>space</td>
</tr>
<tr>
<td>?</td>
<td>question mark</td>
</tr>
<tr>
<td>!</td>
<td>exclamation mark</td>
</tr>
<tr>
<td>:</td>
<td>colon</td>
</tr>
<tr>
<td>;</td>
<td>semicolon</td>
</tr>
<tr>
<td>-</td>
<td>hyphen</td>
</tr>
<tr>
<td>/</td>
<td>slash</td>
</tr>
<tr>
<td>...</td>
<td>dots</td>
</tr>
<tr>
<td>()[]</td>
<td>brackets</td>
</tr>
<tr>
<td>'</td>
<td>apostrophe</td>
</tr>
</tbody>
</table>
Chapter 7. The formal model

7.2. The lexical analyser

INPUT(s : List(string) ;
 s : integer;
 w : string;
 l : List(string);

 w := nil; l := nil;
 for [i := 0; i < len(s); i := i + 1] do
 if s[i] ∈ WordSeparator then
 if w ≠ nil then l := l o w;
 l := l o s[i]; w := nil;
 else w := w o s[i];
 enddo
 if w ≠ nil then l := l o w;
OUTPUT(l : List(string));

Figure 7.1: Separating the input string in words

is stored in the database: [: digit [: digit | then [: period | and finally [: digit [: digit |].

Matching of regular expressions is defined in the usual way [Wirth, 1986], and I assume that it is implemented via the matchRegexp(w,v) function which matches the r regular expression versus the w word.

The pseudocode deputed to compose words is shown in Figure 7.2.

7.2.3 Step 3: Eliminating mute separators

The list of words obtained so far contains some useless words, which have no meaning.

Table 7.2: The characters acting as mute separators

<table>
<thead>
<tr>
<th>Character</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| - | space
| - | hyphen |

In fact, some separators are mute and they are recognised because they are members of the set MuteWordSeparator, shown in Table 7.2. Mute separators, e.g., spaces, do not form words. Hence, the goal of this step is to remove mute separators from the list of words. As usual, mute separators are stored in the dictionary database. A morpheme in the dictionary is a mute separator if it is tagged both with WordSeparator and MuteSeparator.

The code deputed to eliminate mute separators is shown in Figure 7.3.

Figure 7.2: Composing words

INPUT(l : List(string) ;
 s, l, l' : List(string);
 w : string;
 i, j, k, h : integer;
 r : List(List(regexp));
 p : boolean;

 → step2: for [i := 0; i < len(l); i := i + 1] do
 r := Composable(l[i]);
 if r ≠ nil then
 for (l' := nil; j := 0; j < i; j := j + 1) do
 r' := r[j]; enddo
 for (j := 0; j < len(r[i]); j := j + 1) do
 if s[j] ∈ len(r[i]) then
 for (w := l[i]; p := true; k := 1;)
 p ∧ k < len(r[i]); k := k + 1) do
 if matchRegexp([i + k], r[j][k]) then
 w := w o l[i + k];
 else p := false;
 enddo
 if p then
 l' := l'; l'[j] := w;
 for (h := i + k + 1; h < len(l[i]); h := h + 1) do
 l'[h] := l[i + k]; enddo
 backtrack(step2, l := l');
 endif
 endif
 endif
 endif
 enddo

OUTPUT(s : List(string));

259
Chapter 7. The formal model

INPUT(s : List(string));
in : integer;
l : List(string);
for (i := nil; i := 0; i < len(s); i := i + 1) do
 if s[i] \notin MuteWordSeparator then l := l \circ s[i];
enddo
OUTPUT(l : List(string));

Figure 7.3: Removing mute separators

7.2.4 Step 4: words to tokens

The list of words is not enough to parse the text; what is really needed is to classify the single words according to their syntactical nature, in particular their grammar character. This is done looking for them or their components in the dictionary. In fact, a word may be composed by many parts, each one being a morpheme.

The set of information collected for every morpheme is called a token: a token is an entry in the dictionary - see chapter 3 for details. Each token is composed by a set of tags, each one being a modulus. Tags can be written as a single identifier, or as a parametric identifier, like rep(m), where the parameter is a string. The tag rep(m) represents the entry in which the entry is referred with the appropriate grammar character, i.e., how it is written, and it is also used as a key.8

The algorithm that transforms words into tokens is shown in Figure 7.4. It operates by scanning every word from left to right, searching for morphemes. When a candidate morpheme is found in the dictionary, inspected via the searchMorpheme function, a list of alternative interpretations of the morpheme is returned. The algorithm takes care of either ignoring these interpretations continuing to expand the morpheme - the first backtrack alternative – or to consider each interpretation – the second backtrack alternative. Each alternative is a token, that is, a set of tags whose textual representation is the morpheme. The list of so-recovered tokens is the output of the lexical analyser.

7.3 The parsing formalism

For the purposes of implementation, a token is a set of tags, a tag being the implementation of a modulus. Given a list of tokens T = t₁, …, tₙ, I say...
Chapter 7. The formal model

that a → b₁ read as "a is strictly on the left of b₁" and b₁ → a read as "b₁ is strictly on the right of a", if there are b₂, k ∈ {1, ..., n} such that b = k and a = t₁ and b₂ = t₂. Similarly, I write a → b as a shorthand for a → b ∨ a = b, and a → b as a shorthand for a → b ∨ a = b.

Furthermore, T = t₂+₁ if t₁ and i ≤ n in the token list T = t₁, ..., tₙ, while T = ∅ otherwise. Symmetrically, T = t₂+₁ if t₁ and i > 1, while T = ∅ otherwise. Note that we distinguish the empty token ∅ from the void token ∅, denoting an empty leaf, since the last one contains at least an element, namely Rep(r), i.e., the empty string r is its textual representation.

The rules are written using formulae based on ‘sided’ quantifiers, i.e., quantifiers acting on the left or on the right of a specified token. Given a token list T = t₁, ..., tₙ,

- ∀_{left}(x). P(x) is equivalent to ∀x ∈ T. x → t → P(x).
- ∀_{right}(x). P(x) is equivalent to ∀x ∈ T. x → t → P(x).
- ∀_{left}(x). P(x) is equivalent to ∀x ∈ T. x → t ∧ x → s → P(x).
- ∀_{right}(x). P(x) is equivalent to ∀x ∈ T. x → t ∧ x → s → P(x).
- ∃_{left}(x). P(x) is equivalent to ∃x ∈ T. x → t ∧ P(x).
- ∃_{right}(x). P(x) is equivalent to ∃x ∈ T. x → t ∧ P(x).
- ∃_{left}(x). P(x) is equivalent to ∃x ∈ T. x → t ∧ x → s ∧ P(x).
- ∃_{right}(x). P(x) is equivalent to ∃x ∈ T. x → t ∧ x → s ∧ P(x).

A state is a set of ranges; a range is a named pair of tokens w(r, s) both appearing in the token list, such that r = tᵢ, s = tⱼ and i ≤ j, and w is an name.

- k(x, y) where k is a constant, x and y are variables, satisfied by any range w(a, b) in the state having w = k; moreover, the satisfying assignment poses x = a and y = b;
- k(r, s) where k is a constant, r and s are tokens, satisfied by any range w(a, b) having w = k, a = r and b = s;

7.3. The parsing formalism

- k(x, y) where k is a constant, x is a variable and s is a token, satisfied by any range w(a, b) having w = k, b = s; moreover, the satisfying assignment poses x = a;
- k(r, y) where k is a constant, r is a token and y is a variable, satisfied by any range w(a, b) having w = k, a = r; moreover, the satisfying assignment poses y = b;
- v(x, y) where v is a variable, x and y are variables, satisfied by any range w(a, b) in the state; moreover, the satisfying assignment poses v = w, x = a and y = b;
- v(r, s) where v is a variable, r and s are tokens, satisfied by any range w(a, b) having w = r and b = s; moreover, the satisfying assignment poses v = w;
- v(r, x) where v is a variable, x is a variable and s is a token, satisfied by any range w(a, b) having w = r and s; moreover, the satisfying assignment poses v = w, x = a;
- v(r, y) where v is a variable, r is a token and y is a variable, satisfied by any range w(a, b) having w = r and y = b; moreover, the satisfying assignment poses v = w and y = b.

A state on the tree is a logical formula over ranges interpreted as satisfiable atoms.

The special notation r ∈ r(a, b), where r, a and b may be variables, means that, given the token list T = t₁, ..., tₙ, if a = tᵢ and b = tⱼ under any satisfying assignment on the state, then there is an index i such that j ≤ i ≤ k and tᵢ, tⱼ ∈ r in human terms, t occurs in the range r(a, b). A tree is written in the notation defined in the previous chapters, but it is intended here to be encoded as a data structure. In contrast to standard trees, this is the hook, an extra node which lies "above the root", presented since the introduction. The hook identifies the adposition which dominates the tree, or – in more operative terms – it is the tool to attach the current tree on the other tree. The adposition node is denoted through square brackets aside the root of the tree. It is omitted when it is the empty token ∅.

A statement on a tree is a tree where a node may contain a variable for a subtrees. A statement S on a tree is satisfied if the current tree is identical to S except that variables may become instantiated, eventually augmenting the satisfying assignment. By representing trees as terms, the satisfiability of trees correspond to the standard matching problem for terms.
Chapter 7. The formal model

A rule is written as

\[
\begin{array}{ll}
\triangleright P_1 & \triangleright P_4 \\
\triangleright P_2 & \triangleright P_5 \\
\triangleright T_1 & \triangleright T_2 \\
\triangleright P & \triangleright T_1 & \triangleright T_2 \\
\triangleright T & \triangleright T_1 & \triangleright T_2 \\
\triangleright Q & \triangleright T_1 & \triangleright T_2 \\
\triangleright P & \triangleright T_1 & \triangleright T_2 & \text{Rule name}
\end{array}
\]

where \(P \) is a statement on the current state, \(T \) is a statement on the current tree, and \(Q \) is a logical formula which may contain variables shared with \(P \) and \(T \), while \(P' \) is a state update and \(T' \) is a tree; moreover, \(P_i \) and \(T_j \) are states, while \(P' \) and \(T' \) are trees. Each \(P_i \) and \(T_j \) may contain variables shared with \(P, T \) and \(Q \) and \(P', T', T_j \) for every \(j < i \). Intuitively, \(\text{a subderivation} \); \(\text{may depend on previous subderivations, i.e., on derivations appearing on its left. Subderivations may be absent, but if they are present, there is a finite and fixed number of them.} \)

The action of a rule is to deduce new values for the current state and the current tree. The rule can be applied if the premises \(P, Q \) and \(T \) satisfy the current state and the current tree – as explained before – and every subderivation can be completed. Generally, there is more than one way to satisfy the premises \(P, T \) and \(Q \); it is obvious that there is a finite number of ways to satisfy them since the current state, tree and token list are finite objects. Each satisfying instance corresponds to a different way to interpret the phrase modelled by the token list. Under a computational point of view, each different instance corresponds to a branch of a non-deterministic computation. Deterministically, all the possibilities are tried until the successful one is found; since the engine supports backtracking it is not too difficult to simulate the non-deterministic behaviour by means of backtracking.

Updates of the current state are written as a set of terms of the form \(r(a, b) \) or \(r((a, b)) \), indicating that the range \(r(a, b) \) must be deleted from or added to the current state, respectively.

When a rule contains one or more subderivations \(n_1, \ldots, n_n \), the rule can be applied if all subderivations can be carried out successfully. A subderivation \(n_i \) is successfully completed if it is possible to derive by means of the parsing rules the state \(P_i \) and a tree satisfying the tree statement \(T_i \) starting from the initial state \(P_0 \) and the initial tree \(T_0 \).

The initial state of the parsing procedure is the set \(\{ \text{init}(i_1, k_n) \} \) associated to the token list \(T = t_1, \ldots, t_n \) calculated by the lexical analyser and the initial tree is the empty tree.

Rules are applied as far as possible; when no rule can be applied anymore, the current state \(S \) and the current tree \(W \) are used to decide whether the process has terminated with a success or with a failure. The parsing algorithm is successful when \(S \) is empty, i.e., there is no range left to parse and the \(W \) tree does not contain empty leaves.

If the parsing has been successful, the parsing algorithm provides \(W \) as its output and then proceeds as if there was a failure; if there has been a failure, the parsing algorithm pops from the backtrack stack an alternative and restarts from there; if there are no alternatives to a failure, the parsing algorithm stops. The result is a sequence of adtrees each one representing a possible interpretation of the input string; if the output is empty, the input string is not in the language.

7.4 Recognising syntactical objects

Every parsing strategy is based on attributing to a group of tokens some syntactical status.

In example 76, The book is expected to be recognised as the syntactic subject, while costs should be recognised as the verb and ten euros should be labelled as the syntactic object.

In a formal model having a computational meaning, like this one, a compact way to express the basic entities of our grammar is needed, in order to recognise them. More specifically, I need a set of predicates of the form \(P(u, v, \ldots) \), i.e., of logical formulae satisfied when the tokens from \(u \) to \(v \), included, that forms the syntactical entity I want to determine. In a more human-readable form, these predicates have already been introduced in the previous chapters but, now, we need them as logical formulae to be used to write the parsing rules. The extra parameters are used to extract significant information from the range of tokens.

7.4.1 The \(\lambda \) predicate

The \(\lambda \)-subgroup models the essential block of morphemes that constitutes the base of most groups (see section 6.1).

The whole group is composed by an atom possibly preceded by a specifier or, simply, it is empty.

\[
\text{\(\lambda \)-group}(u, v) \equiv \exists w, n. \text{\(\lambda \)-atom-group}(u, v, n, w) \lor \text{\(\lambda \)-spec-group}(u, w, l, a) \land \lambda-atom-group(\text{\(\lambda \)}(w, \lambda-atom-group(u, v, n, a)), a) \lor w \implies v .
\]

(7.1)
Chapter 7. The formal model

The specifier is composed by i, a fundamental adposition, preceded by a lexeme, the specifier, and a list of prefixes. The adposition may be empty. If present, the adposition must be preceded by an explicit specifier.

$$\lambda\text{-spec-group}(u, v, l, a) \equiv (\exists p. \text{Rep}(p) \in v \land \text{Fundamental} \in v \land (7.2)$$
$$\land \text{Atom}(a) \in \mathbb{W} \land$$
$$\lor (\lambda\text{-prefix-group}(u, \mathbb{W}, a)) \lor$$
$$\lor (\exists q. q \in \mathbb{W} \land \text{Val} \in (q, \delta, n, a)) \lor$$
$$\lor (I = 0 \land \lambda\text{-prefix-group}(u, v, a)).$$

The prefix is a possibly empty sequence of prefix tokens. Prefixes can be generic or, depending on the grammar character of the atom, they may be verbal (I) or stative (O).

$$\lambda\text{-prefix-group}(u, v, a) \equiv u \rightarrow v \lor$$
$$\lor (\lambda\text{-prefix-group}(u, v, a) \land$$
$$\land (a = I\text{-atom} \land I\text{-prefix} \in u) \lor$$
$$\lor (a = O\text{-atom} \land O\text{-prefix} \in u) \lor$$
$$\lor G\text{-prefix} \in u).$$

The atom is parsed by combining its lexeme with the suffixes. Also, the atom group calculates the valence as the natural valence of the verb plus a modifier induced by the suffixes.

$$\lambda\text{-atom-group}(u, v, n + \delta, a) \equiv \text{Val}(a) \in u \land \text{Atom}(a) \in u \land (7.4)$$
$$\land \lambda\text{-suffix-group}(u, v, n, a).$$

The suffix group is a possibly empty sequence of elements, each one being a suffix. The special valence suffixes `-q` and `-q` modify the valence, as explained in section 5.6.5. Suffixes must agree with the grammar character of the atom, as prefixes do (see section 5.5.2 for a detailed linguistic

7.4. Recognising syntactical objects

description).

$$\lambda\text{-suffix-group}(u, v, \delta, n, a) \equiv (\text{Rep}(q) \in v \land n \leq 2 \land \delta = 1 \land$$
$$\land \lambda\text{-suffix-group}(u, v, \delta) \lor$$
$$\lor (\text{Rep}(q) \in v \land n = 2 \land \delta = -1 \land$$
$$\land \lambda\text{-suffix-group}(u, v, \delta) \lor$$
$$\lor (\text{Rep}(q) \in v \land n = 1 \land \delta = 0 \land$$
$$\land \lambda\text{-suffix-group}(u, v, \delta) \lor$$
$$\lor \lambda\text{-suffix-group}(u, v, n, \delta) \land$$
$$\lor (a = I\text{-atom} \land I\text{-suffix} \in u) \lor$$
$$\lor (a = O\text{-atom} \land O\text{-suffix} \in u) \lor$$
$$\lor G\text{-suffix} \in u).$$

If there is a special suffix modifying valence, then the other suffixes should be modified accordingly.

$$\lambda\text{-suffix-group}(u, v) \equiv u \rightarrow v \lor$$
$$\lor (\lambda\text{-suffix-group}(u, v) \land$$
$$\land (a = I\text{-atom} \land I\text{-suffix} \in u) \lor$$
$$\lor (a = O\text{-atom} \land O\text{-suffix} \in u) \lor$$
$$\lor G\text{-suffix} \in u)).$$

7.4.2 1-predicates

The 1-predicate describe verbal groups. A range represents a verb if and only if it satisfies the 1-group predicate. If this is the case, that range is a 1-group. An 1-group is a 1-subgroup followed by a signature of the verbal grammar character, which is eventually an adposition. The predicate extracts the valence of the verb, modified by the special suffixes, if present. Thus, the 1-group takes two additional parameters: n, the valence, and d the verbal adposition, like `-as` in `plus`.

This fairly clear situation is complicated by `-as`, 'to be', that in Esperanto as in most Indo-European languages follows different rules than the other bivalent verbs; the second valence cannot be accusative in case (see section 5.5.5). The adjective must agree in number and case with the subject: this agreement is captured via the e argument. Thus, the predicate
recognising a 1-group is as follows.

\[
I\text{-group}(u, v, d, e) = (\{ i \in v \land \text{Rep}(i) \in v \land \\
\land I\text{-comp-group}(u, \overline{v}, n) \land \\
\lor (3c'. (c = c' \lor n \lor e = c') \land \\
\land n = 1 \land \text{Rep}(\overline{c'}) \in u \land \\
\land I \in \overline{v} \land \text{Rep}(d) \in \overline{v} \land \\
\land \text{Adj-group}(\overline{u}, \overline{v}, c, c') \lor \\
\lor \text{v-group}((\overline{u}, v) \lor \\
\lor \text{non-stative-group}(\overline{u}, v))) \} \).
\]

Except for extracting the valence from the lexeme acting as the root of the verb, the I-comp-group is a λ-group.

\[
I\text{-comp-group}(u, v, n) = \exists \lambda. \lambda\text{-atom-group}(u, v, n, a) \lor \\
\lor (\exists p \mu. \exists \lambda. \lambda\text{-spec-group}(u, w, l, a) \land \\
\land \lambda\text{-group}((\overline{u}, v, n))) .
\]

7.4. Recognising syntactical objects

(b). The formal model does not need to specify left or right direction at this level; therefore, I introduce the symbol diamond (\(\Box\)) in rules, so to make clear if it is possible to have such secondary adpositions, along the main one, or not.\(^{15}\)

\[
\text{stative-group}(u, v, p) = \text{stative-group}(u, v, p) \lor \\
\lor (3w,x,y,z) \exists \exists \text{PreJunct} \in w \land \text{Rep}(z) \in u \land \\
\land \text{stative-group}(w, x, p) \land \\
\land \text{OPostJunct}(c) \in x \land \\
\land \text{stative-group}(w, x, p) .
\]

\[
\text{stative-verb}(u, v, p) = \text{O-S-group}(u, v, p) \lor \\
\lor (1_{(u, x, y)} \exists p) \exists \exists p \in x \land \exists p \in y \land \exists p \in z \land \\
\land \text{stative-group}(u, x, y) \land \\
\land \text{OJunct}(x, y, c) \land \\
\land \text{stative-group}(w, x, p, y, p) ; .
\]

Agreement

It is time to introduce the rules for agreement, which can be also used with some A-groups, as explained later. Two operations are needed, as sometimes the pluraliser -j and the case marker -n need a signature of a fundamental modulus (tag: Fundamental1), sometimes not – described in chapters 5.6.

The \(\circ\) operation, parametrised by \(e\), is depicted in the following table:

<table>
<thead>
<tr>
<th>(\circ)</th>
<th>(e/0)</th>
<th>(j)</th>
<th>(n)</th>
<th>(\circ p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\circ)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\circ)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

The \(\circ\) operation, parametrised by \(e\), is described in the following table:

<table>
<thead>
<tr>
<th>(\circ)</th>
<th>(e/0)</th>
<th>(j)</th>
<th>(n)</th>
<th>(\circ p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\circ)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

269
Chapter 7. The formal model

The ⊕ and the ⋆ operations take care of calculating the right agreements among two joined groups and the junction. The interested reader is warmly invited to check how they do their job.

Simple stative groups
A simple stative group is either the composition of fundamental blocks (an O∗-group) or a preposition followed by an O∗-group.

O-S-group(u, v, p) ≡ O∗-group(u, v, p) ∨ (7.11)

A composition of fundamental blocks, the O∗-group, is a fundamental
stative group (O-group) or a pair of O∗-groups joined together by an
appropriate junction.54

O∗-group(u, v, p) ≡ O-group(u, v, p) ∨ (7.12)

(∃p.q.r.p = q ⊕ r ∧
 ∧ Rep(q) ∈ u ∧ Prep ∈ u ∧
 ∧ O∗-group(ℓ, v, r)) .

The junction is a sequence of tokens, interpreted as a unit, providing a
way to coordinate two O-groups of some level of complexity. To simplify
things, junctions are represented in the dictionary as single tokens. In fact,
the lexical analyser would combine tokens when needed. These special
tokens are marked with a tag denoting their status.55

OJunct(u, v, c) ≡ u = v ∧ OJunct ∈ u ∧ OAg(c) ∈ u . (7.13)

Fundamental stative groups
The fundamental stative group, or O-group, is one of the following:

O-group(u, v, p) ≡ o-det-group(u, v, p) ∨ (7.14)

∧ i-group(u, v, p) ∨
 ∧ o-pron-group(u, v, p) ∨
 ∧ o-emp-det-group(u, v, p) .

The o-det groups previously described share the same structure, as one
can easily see by inspection of the corresponding tables. The common

structure is captured by the following predicate.

o-det-group(u, v, p) ≡ 3x, y, z, w.t.3c.p = o ∘ c ∧ (7.15)
 ∧ Det(u, y, c) ∧ Adj(c) ∈ W ∧
 ∧ λ-group(z, w) ∧ Adj(ρ) ∈ W ∧
 ∧ Agr(W, t, c) ∧ Adj(c) ∈ T , v, c) .

The determiner is recognised by checking to which class it belongs (section
5.8).

Det(u, v, c) ≡ 3x, d.t DetInv(u, v, l) ∨ DetInvCorr(u, v, a, l) ∨ (7.16)
 ∨ APro(u, v, c, l) ∨ DetVar(u, c, c) ∨
 ∨ ANum(u, v, l, d) .

Furthermore, there can be zero, one, or more adj-groups. An adj-group
can be either Slash or Minus, as already explained in section 6.26. Adj-
groups may be present in any number or they may be absent. This form of
occurrence is captured via the following predicates. They enrole the
recursive definition with respect to the proximity to the “focus” of the O-group.

Adj(u, v, c) ≡ 3y, w t Adj-group(u, v, c, l) ∧ Adj(u, v, c) ∈ W ∧
(7.17)
 ∧ u ⇔ v .

Adj(u, v, c) ≡ 3y, w t Adj-group(u, v, c, l) ∧ Adj(u, v, c) ∈ W ∧
(7.18)
 ∧ u ⇔ v .

Agreement checks number (plural vs. singular) and case (accusative vs.
nominative).

Ag(u, v, c) ≡ (Rep(c) ∈ u ∧ Rep(c) ∈ v ∧ (7.19)
 ∧ u = v ∧ c = p) ∨
 ∨ (Rep(c) ∈ u ∧ u = v ∧ c = p) ∨
 ∨ (Rep(c) ∈ u ∧ u = v ∧ c = p) ∨
 ∨ (u ⇔ v ∧ c = 0) .

There are various types of determiners that concur to form stative groups
(see Table 6.6 and the following). It should be noted that some determin-
ers are members of the A-group, so they are defined in their appropriate
section.

DetInv(u, v, l) ≡ (Rep(l) ∈ u ∧ Invar ∈ u ∧ u = v) ∨ (7.20)
 ∨ (u ⇔ v ∧ l = 0) .

271
Chapter 7. The formal model

\[\text{DetInvCorr}(u, v, a, l) \equiv \text{Rep}(l) \in u \land \text{AdjCorr} \in u \land \text{Rep}(u) \in v \land \text{InvAdjCorr} \in v \land u = v. \]

(7.21)

\[\text{DetVar}(u, v, c, a, l) \equiv \text{Rep}(l) \in u \land \text{AdjCorr} \in u \land \text{Rep}(u) \in \overline{W} \land \text{VarAdjCorr} \in \overline{W} \land \text{Ag}(\overline{W}, v, c) . \]

(7.22)

Apart from det-groups, an O-group may be an infinitive. In this case, it is called i-group (Table 6.12).

\[\text{i-group}(u, v, p) \equiv \text{Rep}(v) \in v \land \lambda\text{-group}(u, \overline{W}) \land p = \lambda . \]

(7.23)

Moreover, an O-group may be a pronoun. As said, these O-groups have a similar structure – but still different – from det-groups.

\[\text{o-pron-group}(u, v, p) \equiv \exists u. \text{Pron} \in u \land p = u \land \land (\exists l, d. \text{ANum}(\overline{W}, v, l, d) \land u = \emptyset) \lor \lor (\exists l, d. \text{Rep}(\emptyset) \land \overline{W} = v \land n = \emptyset) \lor \lor (\exists l, d. \text{Rep}(\emptyset) \land \overline{W} = n \land n = \emptyset) \land \land \text{ANum}(\overline{W}, v, l, d)) . \]

(7.24)

Finally, an O-group may be a trace group, properly called an empty determiner group, or o-emp-det-group for short.

\[\text{o-emp-det-group}(u, v, p) \equiv \exists a, l, z, w. \overline{3c}, a, l, f, p = c \land \land (\exists l, d. \text{ANum}(\overline{W}, v, l, d) \land u = \emptyset) \lor \lor (\exists l, d. \text{Rep}(\emptyset) \land \overline{W} = v \land n = \emptyset) \lor \lor (\exists l, d. \text{Rep}(\emptyset) \land \overline{W} = n \land n = \emptyset) \land \land \text{ANum}(\overline{W}, v, l, d)) . \]

(7.25)

An empty determiner is either a DetInv (Table 6.14) or a DetVar (Table 6.14).

\[\text{EmpDet}(u, v, c) \equiv \exists a, l. \text{DetInv}(u, v, l) \lor \text{DetVar}(u, v, c, a, l) . \]

(7.26)

An o-group has a case. The following predicate matches exactly nominative groups.

\[\text{nom-stative-group}(x, y) \equiv \text{stative-group}(x, y, \emptyset) \lor \text{stative-group}(x, y, \lambda) . \]

(7.27)

7.4 Recognising syntactical objects

In contrast, the following predicate matches exactly accusative groups.

\[\text{acc-stative-group}(x, y) \equiv \exists a. \text{stative-group}(x, y, a \circ \lambda) . \]

(7.28)

What has been called a prepositional clause is nothing else than a stative group with a preposition which qualifies its role in the phrase, as defined by the following predicate which extracts the preposition in the p variable.

\[\text{prep-nom-stative-group}(x, y, p) \equiv \exists a. \land (a = c \lor a = \lambda) . \]

(7.29)

\[\text{prep-acc-stative-group}(x, y, p) \equiv \exists a. \land (a = c \lor a = \lambda) . \]

(7.30)

7.4.4 A-predicates

A-predicates are deputed to recognise adjectives, i.e., the modifiers of O-groups. The prominent members of this family are the adjectives. But, as already explained, other linguistic elements may be regarded as A-modifiers (section 6.2.4).

As for the case of \(\overline{W} \)-groups, this group is characterized by the A-group predicate, which defines its fundamental structure. But, A-groups may be composed, so the need for a pair of predicates that take care to model the composition of A-groups.

\[\text{Adj-group}(u, v, s, c) \equiv \text{Adj1-group}(u, v, s, c) \lor \lor (\exists a, l, z, w. \overline{3c}, a, l, f, p = c \land \land (\exists l, d. \text{ANum}(\overline{W}, v, l, d) \land u = \emptyset) \lor \lor (\exists l, d. \text{Rep}(\emptyset) \land \overline{W} = v \land n = \emptyset) \lor \lor (\exists l, d. \text{Rep}(\emptyset) \land \overline{W} = n \land n = \emptyset) \land \land \text{ANum}(\overline{W}, v, l, d)) . \]

(7.31)

\[\text{Adj1-group}(u, v, s, c) \equiv \land (\exists u, v, s. \overline{3c} \land \text{AJunct} \in u \land \text{Rep}(\emptyset) \land \land \text{Adj1-group}(u, v, s, c) \land \land \text{AJunct} \in x \land \land \text{Adj1-group}(\overline{W}, x, y, s, c)) . \]

(7.32)

An A-group comes in two forms: either it is an adjective, or it may be a phrase introduced by an appropriate junction. Furthermore, a preposi-
Chapter 7. The formal model

tional clause modifying a stative group is an adjunctive.
\[\text{A-group}(u, v, s, e) \equiv \text{A1-group}(u, v, e) \lor \text{A2-group}(u, v, e) \lor (7.33) \]
\[\lor (v = 0 \land \text{Ajoined}(u, e)) \lor \]
\[\lor (v = 0 \land \text{circ-group}(u, v)) . \]

The two adjective forms of the A-group has been analysed above. They are coded by the following predicates.
\[\text{A1-group}(u, v, e) \equiv \exists x \exists y \exists z \exists l \exists f \exists F \exists d \exists EAdj\text{-group}(w, v, e) \land (7.34) \]
\[\land e\text{-group}^\ast(w, v) \land \text{ANum}(x, y, l, d) \land \]
\[\land \text{APron}(u, \overrightarrow{T}, c, \overrightarrow{I}) . \]
\[\text{A2-group}(u, v, e) \equiv \exists x \exists y \exists z \exists l \exists f \exists F \exists d \exists EAdj\text{-group}(w, v, e) \land (7.35) \]
\[\land e\text{-group}^\ast(w, v) \land \text{APron}(x, y, c, l) \land \]
\[\land \text{ANum}(u, \overrightarrow{T}, f, d) . \]

Last, but very important, an Adj-group may be a phrase preceded by a conjunctive of the right class.
\[\text{Ajoined}(u, e) \equiv \text{AHJunct} \in u \lor \text{phrase-group}(w, v) . \] (7.36)

Both the A1-groups and the A2-groups have a common kernel, identified by the EAdj-group, i.e., elementary adjecital groups (e-adj-groups), already explained through Table 6.16.
\[\text{EAdj}\text{-group}(u, v, e) \equiv \exists x \exists y \exists z \exists l \exists f \exists F \exists d \exists EAdj\text{-group}(w, v, e) \land (7.37) \]
\[\land \lambda\text{-group}(u, w) \land \text{APron}(w, v, e) . \]

The EAdj-groups may be possibly modified by one or more e-groups (see section 6.2.2).
\[e\text{-group}^\ast(u, v) \equiv (\exists x \exists y \exists z \exists l \exists f \exists F \exists d \exists EAdj\text{-group}(w, v, e) \lor (7.38) \]
\[\lor u = w . \]

The APron is a pronoun which agrees with the O-group the whole Adj-group modifies (Table 6.15).
\[\text{APron}(u, v, c, l) \equiv \text{Rep}(l) \in u \lor \text{Rep} \in u \land (7.39) \]
\[\land \text{Rep}(a) \in w \land \text{APron}(w, v, e) . \]

The ANum is a particular numerical predicate explained in section 6.2.5. As explained before, numbers and numerical expression form an intricate

7.4. Recognising syntactical objects

subject (section 5.8.3). There is no reason to really code these forms into the grammar, since they affect only the way a sequence of tokens is interpreted as a unit. Specifically, a numerical object is nothing else than a single token recognised during the lexical analysis phase. Hence, I assume to have a clever dictionary. The dictionary calculates whether a sequence of tokens can be thought as a numerical expression, so I need to cope only with the presence of determiners that may affect the way the adtree is built.
\[\text{ANum}(u, v, l, d) \equiv (\exists c \in \text{NumDet} \in u \lor \text{NumAtom}(c) \in u \land (7.40) \]
\[\lor \text{Num}(c) \in w \land \text{NumAtom}(c) \in e \land \]
\[\land \text{Rep}(d) \in u \lor \text{Rep}(l) \in v \land w = e) \lor \]
\[\lor (\text{Num}(u \lor u = e \land \text{Rep}(l) \in u \land d = 0) . \]

7.4.5 E-predicates

E-groups denote verbal modifiers. A slight complication is that, sometimes, E-groups are required not to admit the accusative form. For this reason, also e-groups have been defined (section 6.2.2).

Since E-groups may be composed, the definition of the E-group predicate is suspiciously similar to the ones of O-groups and A-groups. In fact, an E-group may be either simple or the composition of a pair of E-groups, properly joined. A simple E-group is either an E-S-group or a circumstantial group.
\[\text{E-group}(u, v) \equiv \text{El}\text{-group}(u, v) \lor (7.41) \]
\[\lor (\exists x \exists y \exists z \exists \text{EPrelJunct} \in u \lor \text{Rep}(c) \in u \land \]
\[\land \text{El}\text{-group}(w, v) \land \]
\[\land \text{EPrelJunct}(c) \in x \land \]
\[\land \text{El}\text{-group}(\overrightarrow{T}, e) . \]
\[\text{El}\text{-group}(u, v) \equiv \text{E-S}\text{-group}(u, v) \lor \text{circ-group}(u, v) \lor (7.42) \]
\[\lor (\exists x \exists y \exists \text{El}\text{-group}(u, \overrightarrow{T}) \land \]
\[\land \text{EJunct} \in x \land \]
\[\land \text{El}\text{-group}(\overrightarrow{T}, e) . \]

An E-S-group, where [S] stands for 'simple', is composed by an optional preposition, followed by a \(\lambda \)-subgroup, and concluded by \(e \) or by
Chapter 7. The formal model

4. Also, it may be a prepositional clause.

\[\text{E-S-group}(u, v) \equiv \text{e-S-group}(u, v) \lor \text{circ-group}(u, v) \lor \text{\textcopyright{\textcircled{g}}} \text{group}(u, v) \land \text{Rep}(e) \in v \] \hspace{1cm} (7.43)

\[\text{A circ-group models prepositional clauses modifying I-groups.} \]

\[\text{circ-group}(u, v) \equiv \exists p \text{-pre-nom-stative-group}(u, v, p) \lor \text{pre-acc-stative-group}(u, v, p). \] \hspace{1cm} (7.44)

An e-group is similar to an E-group except that it does not admit the signature of the accusative case -n. Its recognising predicates are defined accordingly.

\[\text{e-group}(u, v, s, c) \equiv \text{e-S-group}(u, v) \lor \text{circ-group}(u, v) \lor \] \hspace{1cm} (7.45)

\[\lor (\exists (u, x) \text{-e-group}(u, v) \land \] \hspace{1cm} \land E\text{Junct} \in x \land \text{e-group}(x, v)) . \]

\[\text{Last, but very important, an E-group or an e-group may be a phrase preceded by a junctive of the right class.} \]

\[\text{EJoined}(u, v, c) \equiv \text{EHJunct} \in u \land \text{phrase-group}(u, v) . \] \hspace{1cm} (7.47)

\[\text{Let me comment briefly this linguistic discover, that was driven rightly by the formal model: there are phrases preceded by a junctive that are 'declased' to clauses joined circumstantially or adjectivally to their 'real' phrase. This discover was what lead me to re-define the levels of analysis concerning NLs.} \]

7.4.6 The phrase predicates

A phrase is composed by a verb with the structure induced by its valence as well as its modifiers.

\[\text{phrase-group}(u, v) \equiv \text{Verb}(u, v) \lor \text{Verb}(u, v) \lor \] \hspace{1cm} (7.48)

\[\lor \text{Verb}(u, v) \lor \text{Verb}(u, v) . \]

\[\text{7.4. Recognising syntactical objects} \]

\[\text{The structure of a zerovalent verb is a I-group possibly surrounded externally by E-groups.} \]

\[\text{Verbs}(u, v) \equiv (\exists (u, x) y, x, z, c, d, \] \hspace{1cm} (7.49)

\[\text{E-group}(u, v) \land \] \hspace{1cm} \land \text{I-group}(u, y, z, c, d) \land \text{E-group}(u, v) . \]

\[\text{The structure of a monovalent verb is a subject and a I-group possibly surrounded by E-groups. The following predicate is incomplete for conciseness and clarity: the omitted part is simply obtained by moving the subject (nom-stative-group) after the I-group. The omitted part takes care of the previously explained mirroring phenomenon.} \]

\[\text{Verbs}(u, v) \equiv (\exists (u, x) y, z, s, t, c, d, \] \hspace{1cm} (7.50)

\[\text{E-group}(u, v) \land \] \hspace{1cm} \land \text{I-group}(u, y, z, c, d) \land \text{E-group}(u, v) . \]

\[\text{The structure of a bivalent verb is a subject, a I-group and an object, possibly surrounded by E-groups. Again, mirroring is hidden.} \]

\[\text{Verbs}(u, v) \equiv (\exists (u, x) y, z, s, t, c, d, \] \hspace{1cm} (7.51)

\[\text{E-group}(u, v) \land \] \hspace{1cm} \land \text{I-group}(u, y, z, c, d) \land \text{E-group}(u, v) . \]

\[\text{The structure of a trivalent verb is: a subject, a I-group, an object, and a} \]

277
Chapter 7. The formal model

dative, possibly surrounded by E-groups.

\[
\begin{align*}
\text{Verb}_d(u, v) &= (\exists_{u,v}[x, y, s_1, s_2, o_1, o_2, d_1, d_2] \exists_c, d, e) \quad (7.52) \\
\text{E-}^\text{group}(u, v) &= \wedge \text{nom-stative-group}(s_1, s_2) \wedge \\
&\wedge \text{E-}^\text{group}(T_1, T_2) \wedge \\
&\wedge \text{I-group}(x, y, z, d, e) \wedge \\
&\wedge \text{E-}^\text{group}(y, d_1) \wedge \\
&\wedge \text{acc-stative-group}(o_1, o_2) \wedge \\
&\wedge \text{E-}^\text{group}(d_1, d_2) \wedge \\
&\wedge \text{prep-nom-stative-group}(d_1, d_2, al \; \emptyset \; e) \wedge \\
&\wedge \text{E-}^\text{group}(d_2, v)) \lor \ldots .
\end{align*}
\]

Every E-\text{group} can be an empty sequence of E-groups, each one modifying the verb.

\[
\text{E-}^\text{group}(u, v) = (\exists_{u,v}[w], \text{E-}^\text{group}(u, v) \wedge \text{E-}^\text{group}(u, \overline{v})) \vee (7.53) \\
\forall u \rightarrow v .
\]

7.4.7 The sentence predicates

A sentence is composed by a single phrase or by two subsentences joined together (see Table 5.17).

\[
\text{sentence-group}(u, v) = (\exists_{u,v}[x], \text{phrase-group}(u, v) \vee (7.54) \\
\vee (\exists_{u,v}[x], \text{sentence-group}(u, T_1) \wedge \\
\wedge \text{SJunct} \in x \wedge \\
\wedge \text{sentence-group}(T_1, v)) .
\]

7.4.8 The text predicates

The whole text is a sequence of sentences, each one joined to the following by means of a delimiter (e.g., questions are delimited by question marks, see for instance Figure 5.13).

\[
\text{text-group}(u, v) = (\exists_{u,v}[x], \text{sentence-group}(u, v) \vee (7.55) \\
\vee (\exists_{u,v}[x], \text{sentence-group}(u, T_1) \wedge \\
\wedge \text{SentenceDelimiter} \in x \wedge \\
\wedge \text{text-group}(T_1, v)) .
\]

7.5 Parsing rules

The parsing machine recognises a text also if its last sentence is not delimited. Note that the empty text is a valid text.

\[
\text{init-group}(u, v) = u \rightarrow v \vee \text{text-group}(u, v) \vee (7.56) \\
\vee (\text{text-group}(u, T) \wedge \text{SentenceDelimiter} \in v) .
\]

Let me conclude this section with an important remark. The predicate 56 could be named appropriately Esperanto-group, as all the grammar of this QNL is coded through exactly 56 formulae, technically speaking. This means that predicate 56 is satisfied if and only if its models are true, i.e., they are series of tokens (texts) written in standard Esperanto. In other words, predicate 56 checks if an input text is an Esperanto text or not.

7.5.1 Structural rules

Structural rules are intended to aid the derivation process but they do not parse the current text.

The Struct rule destroys empty ranges. It should be noted that \(\lambda \)-ranges should not be canceled when empty, since empty \(\lambda \)-ranges have still...
Chapter 7. The formal model

7.5 Parsing rules

(6.1).

\[\lambda \text{-atom-range}(\overrightarrow{w}, v) \vdash \lambda \text{-spec-range}(u, w) \]
\[\lambda \text{-range}(u, v) \vdash \emptyset \]
\[\emptyset \vdash \emptyset \]
\[w \in \lambda \text{-range}(u, v) \land \lambda \text{-atom-group}(\overrightarrow{w}, v, n, a) \vdash \emptyset \]
\[A(\text{Rep}(\lambda), \text{Sign}(\emptyset), \text{Dir}(\rightarrow)) \]
\[\lambda \text{-range}(u, v) \]
\[\emptyset \]
\[\lambda \text{-atom-group}(u, v, n, a) \]
\[\vdash \lambda \text{-spec-range}(u, w, v) \]
\[\lambda \text{-spec-range}(u, v) \]
\[\emptyset \]
\[\lambda \text{-spec-group}(u, v, 0, a) \land \text{Rep}(k) \in \emptyset \]
\[\vdash \emptyset \]
\[\lambda \text{spec} \]

The empty range is easily parsed by the following rule. It is noteworthy that the structural rules have been conceived not to cancel this range.

\[\lambda \text{-range}(u, v) \]
\[\emptyset \]
\[w \rightarrow v \]
\[\lambda \text{-range}(u, v) \]
\[\emptyset \]

The specifier is parsed by constructing an adtree whose node above the root is the fundamental adposition. The following pair of rules do the job: the former treats the case when the fundamental adposition is absent, while the latter deals with the case in which the adposition is present.

\[\lambda \text{-prefix-range}(w, v) \]
\[\vdash k \]
\[\emptyset \]
\[\lambda \text{spec} \]

\[\lambda \text{-spec-range}(u, v) \]
\[\emptyset \]
\[\lambda \text{-spec-group}(u, v, 0, a) \land \text{Rep}(k) \in \emptyset \]
\[\vdash \emptyset \]
\[\lambda \text{spec} \]

7.5.2 The parsing of \(\lambda \)-subgroups

The whole group is parsed by the following rules. The first one parses the atom and the specifier when present, the second one parses the atom when the specifier is absent and the third one parses the empty group (see section...
Chapter 7. The formal model

\(\text{\{\text{\textcopyright}} \)
7.5. Parsing rules

The second rule is quite complex. The generated adtree has s as sign and d as direction. The first case copes with examples like

- (I’m going to the sea) both with the dogs and by car.

The sign and the direction of the hook are the same as seen for circumstantial, while its representation is the composition of the prepositions. 23

\[(7.74) \]
The formal model

When there is no proposition, the whole group may act as a stative so
its basis does not change accordingly.

Chapter 7: The formal model
the parsing rules are very similar to the previous ones, as expected.
% Parsing rules
\[\begin{align*}
\text{\texttt{stativ-range}(u, v)} & \mapsto 0 \\
\text{\texttt{stativ-range}(u, v)} & \mapsto \text{\texttt{stativ-range}(u, v)} \\
\text{\texttt{stativ-range}(u, v)} & \mapsto \text{\texttt{stativ-range}(v, u)} \\
\end{align*}\]
Chapter 7. The formal model

7.5. Parsing rules

The O-S-range is parsed by extracting the preposition if present.

\[
\begin{align*}
\Rightarrow & \text{O-S-range}(u, v) \\
\Rightarrow & \emptyset \\
\Rightarrow & \text{O}^+\text{-group}(u, v, p) \\
\Rightarrow & \{+\text{O}^+\text{-range}(u, v), -\text{O-S-range}(u, v)\} \\
\Rightarrow & \emptyset
\end{align*}
\]

\[\text{(7.81)}\]

\[
\begin{align*}
\Rightarrow & \{\text{O}^+\text{-range}(u, v)\} \\
\Rightarrow & \emptyset \\
\Rightarrow & \text{O-S-range}(u, v) \\
\Rightarrow & \emptyset \\
\Rightarrow & \text{O}\text{-group}(u, v, p) \\
\Rightarrow & \{+\text{O-range}(u, v), -\text{O}^+\text{-range}(u, v)\} \\
\Rightarrow & \emptyset
\end{align*}
\]

\[\text{(7.82)}\]

The O+-group is parsed as the stative1-group, except that there are no prepositions in the subgroups.

\[
\begin{align*}
\Rightarrow & \text{O}^+\text{-range}(u, v) \\
\Rightarrow & \emptyset \\
\Rightarrow & \text{O}\text{-group}(u, v, p) \\
\Rightarrow & \{+\text{O-range}(u, v), -\text{O}^+\text{-range}(u, v)\} \\
\Rightarrow & \emptyset
\end{align*}
\]

\[\text{(7.83)}\]
The `O-range` is defined by the following rules, which decompose the range according to the definition:

\[O^+\text{-range}(u, v) \]
\[O^-\text{-range}(u, v) \]
\[x \in O^+\text{-range}(u, v) \land \text{Ojunct}(j) \in x \land \text{Rep}(j) \in x \land \text{Sign}(s) \in x \land \text{Dir}(d) \in x \]
\[\text{Rep}(c, \text{Sign}(s), \text{Dir}(d)) \]
\[S_1 \text{Rep}(c, \text{Sign}(s), \text{Dir}(d)) \]
\[S_2 \text{Rep}(c, \text{Sign}(s), \text{Dir}(d)) \]
\[\text{Rep}(c, \text{Sign}(s), \text{Dir}(d)) \]

If a determiner is present, the `O-range` builds a complex double adjective at the base of the group, as already seen in section 6.3. The first rule places the `O-range` which forms the base of the group.
Chapter 7. The formal model

7.5. Parsing rules

\[\text{det-range}(u, v) \rightarrow \{ \text{Adj-range}(u, v) \} \]
\[\text{det-range}(u, v) \rightarrow \emptyset \]

\[\text{Det}(u, c) \rightarrow D \rightarrow \text{Sign}(\text{Rep}(u, c), \text{Dir}(\rightarrow)) \]

\[\text{o-det-range}(u, v) \rightarrow \{ \text{o-det-range}(u, v) \} \]

The fourth and fifth rules look on the right of the λ-subgroup. They parse the \(\lambda \) that ends the lexeme, along with the \(\lambda \) and the \(\lambda \), if present.

\[\text{o-det-2-range}(u, v) \rightarrow \text{o-det-1-range}(x, y) \]
\[\text{Det}(u, c) \rightarrow \emptyset \]

Finally, the sixth rule parses the adjectives at the end of the \(\lambda \)-group.

\[\text{det-range}(u, v) \rightarrow \emptyset \]

The determiner is parsed according to the definition of the \(\text{Det} \) predicate.

\[\text{det-range}(u, v) \rightarrow \emptyset \]

\[\text{Det}(u, c) \rightarrow \emptyset \]

297
Chapter 7. The formal model

7.5. Parsing rules

An o-pron-group is composed by a pronoun which is parsed by the first and the second rules of this group (Table 6.11).

\[\text{o-pron-range}(u, v) \]

\[\text{Rep}(p) \in u \]

\[\{+o-pron-1-range(\overline{u}, v), -o-pron-range(u, v)\} \]

\[\text{o-pron-range}(u, v) \]

\[\text{Rep}(p) \in u \]

\[\{+o-pron-1-range(\overline{u}, v), -o-pron-range(u, v)\} \]

Then, the following rule parses the accusative case marker of the pronoun, if present.

\[\text{o-pron-1-range}(u, v) \]

\[P(\text{Rep}(\overline{u}), \text{Sign}(\overline{u}), \text{Dir}(d)) \]

\[\{+o-pron-1-range(\overline{u}, v), -o-pron-1-range(u, v)\} \]

\[n-pron \]

Then, the o-pron-group is concluded by a numerical expression. This is parsed by the following two rules, according to the absence or the presence of a modifier, respectively.

\[\text{o-pron-1-range}(u, v) \]

\[P(\text{Rep}(\overline{u}), \text{Sign}(\overline{u}), \text{Dir}(d)) \]

\[\text{ANum}(u, v, l, \overline{d}) \]

\[\{+o-pron-1-range(\overline{u}, v), -o-pron-1-range(u, v)\} \]

\[n-pron \]
Chapter 7. The formal model

\[\text{\texttt{\char124 o-pron-1-range}(u, v)} \]
\[\to P_{\text{line}, \text{Sign}, \text{Dir}}(e) \]
\[\to \text{ANum}(u, v, l, d) \land d \neq \emptyset \]
\[\to \{ -\text{\texttt{o-pron-1-range}(u, v)} \} \]
\[\text{\texttt{\char124 ANum}(u, v, l, d)} \land d \neq \emptyset \]
\[\{ -\text{\texttt{o-pron-1-range}(u, v)} \} \]
\[\text{\texttt{\char124 A}(u, v, l, d)} \land d \neq \emptyset \]
\[\{ +\text{\texttt{o-pron-1-range}(u, v)} \} \]

The o-emp-det-range, corresponding to the trace group, is parsed starting from the trace, represented by a void token (section 6.2.3).

\[\to \text{\texttt{\char124 o-emp-det-range}(u, v)} \]
\[\to \emptyset \]
\[\to T \]
\[\to \{ +\text{\texttt{o-emp-det-1-range}(u, v)}, -\text{\texttt{o-emp-det-1-range}(u, v)} \} \]

\[\text{\texttt{\char124 Trace}} \]

Then, the numerical expression is parsed.

\[\to \text{\texttt{\char124 o-emp-det-1-range}(u, v)} \]
\[\to T \]
\[\to w \in \text{\texttt{o-emp-det-range}(u, v)} \land \text{\texttt{\char124 ANum}(u, v, l, d)} \land d \neq \emptyset \]
\[\to \{ +\text{\texttt{o-emp-det-1-range}(u, v)}, -\text{\texttt{o-emp-det-1-range}(u, v)} \} \]

\[\text{\texttt{\char124 A}(u, v, l, d)} \land d \neq \emptyset \]
\[\to \{ +\text{\texttt{o-emp-det-1-range}(u, v)}, -\text{\texttt{o-emp-det-1-range}(u, v)} \} \]

When the numerical expression has been treated, the adjectives in front of it are parsed.

\[\to \text{\texttt{\char124 o-emp-det-1-range}(u, v)} \]
\[\to T \]
\[\to w \in \text{\texttt{o-emp-det-range}(u, v)} \land \text{\texttt{\char124 ANum}(u, v, l, d)} \land d \neq \emptyset \]
\[\to \{ +\text{\texttt{o-emp-det-1-range}(u, v)}, -\text{\texttt{o-emp-det-1-range}(u, v)} \} \]

\[\text{\texttt{\char124 A}(u, v, l, d)} \land d \neq \emptyset \]
\[\to \{ +\text{\texttt{o-emp-det-1-range}(u, v)}, -\text{\texttt{o-emp-det-1-range}(u, v)} \} \]
Finally, the determiner is parsed along with the pronoun.

\[\begin{align*}
\triangleright & \text{o-emp-det-1-range}(u, v) \\
\triangleright & T \\
\triangleright & y \in \text{o-emp-det-1-range}(u, v) \land \\
& \land \text{APron}(y, v, c, f) \land \text{DetVar}(u, y, c, a, d) \\
\triangleright & \{-\text{o-emp-det-1-range}(u, v)\} \\
\triangleright & \text{Rep}(c, \text{Sign}(\oplus), \text{Dir}(\rightarrow))
\end{align*} \]

\[\begin{align*}
\triangleright & \text{o-emp-det-1-range}(u, v) \\
\triangleright & T \\
\triangleright & y \in \text{o-emp-det-1-range}(u, v) \land \\
& \land \text{APron}(y, v, c, f) \land \text{DetVar}(u, y, c, a, d) \\
\triangleright & \{-\text{o-emp-det-1-range}(u, v)\} \\
\triangleright & \text{Rep}(c, \text{Sign}(\oplus), \text{Dir}(\rightarrow))
\end{align*} \]
rules.

\[\text{Adj-range}(u, v) \]
\[\text{Adj-group}(u, v, s, c) \quad \text{Adj,} \]
\[\{ \text{+Adj-range}(u, v), -\text{Adj-range}(u, v) \} \]
\[\emptyset \]

(7.117)

\[\text{Rep}(j_1) \in x \land \text{Rep}(j_2) \in x \land \text{Sign}(s) \in x \land \text{Dir}(d) \in x \]
\[\{ \text{–Adj-range}(u, v) \} \]
\[\emptyset \]

(7.118)

\[\{ \text{–Adj-range}(u, v) \} \]
\[\emptyset \]

(7.119)

\[\text{Rep}(c_1) \circ j_2 \text{Rep}(c_2) \}
\[\{ \text{–Adj-range}(u, v) \} \]
\[\emptyset \]

(7.120)
\[\forall x \in \text{Adj-range}(u, v) \land \text{Adj}(x) \land \text{Rep}(j) \land \text{Sign}(s) \land \text{Dir}(d) \in x\]

\[\bigtriangleup \text{Adj-range}(u, v) \bigtriangleup \{\text{Adj-range}(u, v)\} \bigtriangleup \{\text{Adj-range}(\overline{v}, v)\} \bigtriangleup \{\text{Adj-range}(u, \overline{v})\} \bigtriangleup \{\text{Adj-range}(u, \overline{v})\}\]

\[\text{Adj-range}(u, v)\]

\[\bigtriangleup \text{Adj-range}(u, v) \bigtriangleup \{\text{Adj-range}(u, v)\} \bigtriangleup \{\text{Adj-range}(\overline{v}, v)\} \bigtriangleup \{\text{Adj-range}(u, \overline{v})\} \bigtriangleup \{\text{Adj-range}(u, \overline{v})\}\]
Chapter 7. The formal model

7.5. Parsing rules

The first piece of structure on the right of the kernel is a sequence of e-groups. The following rule takes care of parsing them.

\[\rightarrow \text{A-range}(u, v) \]

An A1-group is a λ-group which forms its kernel with some additional structure. The kernel is parsed by the following rules.

\[\rightarrow \text{A-range}(u, v) \]

\[\rightarrow \{ \text{A-range}(u, v) \} \]

Then an ANum may be found. As usual, there are two rules depending on the presence or absence of a modifier.

\[\rightarrow \{ \text{A-range}(u, v) \} \]

309
Chapter 7. The formal model

7.5. Parsing rules

Sponding A1 rules.

\[A1 \text{-range}(u, v) \quad \text{\textasciitilde} \quad \{ \lambda \text{-range}(w, T) \} \]

\[\emptyset \]

\[w \in A2 \text{-range}(u, v) \quad \vdash \quad \upsilon \]

\[t \in A2 \text{-range}(u, v) \quad \wedge \]

\[\lambda \text{-group}(w, T) \quad \wedge \text{Ag}(T, v) \quad \vdash \quad T \]

\[\{ \text{\textasciitilde}A2 \text{-range}(u, w), \text{\textasciitilde}A2 \text{-range}(u, v) \} \]

\[\emptyset \]

\[\{ \text{\textasciitilde}A2 \text{-range}(u, w), \text{\textasciitilde}A2 \text{-range}(u, v) \} \]

\[\emptyset \]

\[\emptyset \]

\[\{ \text{\textasciitilde}E \text{-range}(w, T) \} \]

\[\emptyset \]

\[w \in A2 \text{-range}(u, v) \quad \vdash \quad \upsilon \]

\[t \in e \text{-group}(w, v) \quad \vdash \quad E \]

\[\{ \text{\textasciitilde}A2 \text{-range}(u, w), \text{\textasciitilde}A2 \text{-range}(u, v) \} \]

Since A2-groups are symmetrical to A-group, there is no need to comment their parsing rules. They have an analogous format as the corre-
Chapter 7. The formal model

7.5. Parsing rules

\[
\frac{\to \text{A2-range}(u, v) \quad \to T [\text{Rep}(u), \text{Sign}(u), \text{Dir}(d)] \quad \to x \in \text{A2-range}(u, v) \land \text{AProx}(x, u, v, l)}{\to \{ -\text{A2-range}(u, v) \}} \quad (7.137)
\]

\[
\frac{\to \text{A2-range}(u, v) \quad \to T [\text{Rep}(u), \text{Sign}(u), \text{Dir}(d)] \quad \to \text{ANum}(u, v, l, 0)}{\to \{ -\text{A2-range}(u, v) \}} \quad (7.138)
\]

\[
\frac{\to \text{A2-range}(u, v) \quad \to T [\text{Rep}(u), \text{Sign}(u), \text{Dir}(d)] \quad \to \text{ANum}(u, v, l, 0)}{\to \{ -\text{A2-range}(u, v) \}} \quad (7.139)
\]

\[
\frac{\to \text{A2-range}(u, v) \quad \to T [\text{Rep}(u), \text{Sign}(u), \text{Dir}(d)] \quad \to \text{ANum}(u, v, l, 0)}{\to \{ -\text{A2-range}(u, v) \}} \quad (7.140)
\]

\[
\frac{\to \text{A2-1-range}(u, v) \quad \to T [\text{Rep}(u), \text{Sign}(u), \text{Dir}(d)] \quad \to \text{ANum}(u, v, l, 0)}{\to \{ -\text{A2-1-range}(u, v) \}} \quad (7.141)
\]

7.5.6 The E-group

The circumstantial group contains the rules to parse the circumstantial - and the clauses applied to verbs too – appearing in the phrase. They are never part of the valence-based verbal tree and they never modify a stative group.
Chapter 7. The formal model

7.5. Parsing rules

An E-group may be composed by means of junctions. The rules are completely analogous to the ones for the O-group and the A-group. They are listed below without any further comment.

\[
\begin{align*}
& \triangleright \text{E-range}(u, v) \\
& \quad \triangleright \emptyset \\
& \quad \triangleright \text{E-group}(u, v) \\
& \quad \Rightarrow [\{+\text{E-range}(u, v), -\text{E-range}(u, v)\}] \\
& \quad \Rightarrow \emptyset
\end{align*}
\]
A simple E-group, E-S-group for short, is a circumstantial or a prepositional clause. Since it admits modifiers, it requires some rules to parse the various possibilities.

\[
\begin{align*}
\text{E-S-range}(u, v) & \quad \Rightarrow A \\
\text{Rep}(v) & \in v \land \text{EDETINV} \not\in u \\
T & \Rightarrow T
\end{align*}
\]

\[
\begin{align*}
\Rightarrow \{\text{E-S-range}(u, v)\} \\
\Rightarrow \emptyset
\end{align*}
\]
Chapter 7. The formal model

\[\{ \lambda \text{-range}(u, v) \} \]
\[\{ \lambda \text{-range}(u, v) \} \]
\[\{ \lambda \text{-range}(u, v) \} \]

\[\{ \lambda \text{-range}(u, v) \} \]
\[\{ \lambda \text{-range}(u, v) \} \]
\[\{ \lambda \text{-range}(u, v) \} \]

7.5. Parsing rules

to parse is circ-range.

\[\{ \text{circ-range}(u, v) \} \]
\[\{ \text{circ-range}(u, v) \} \]
\[\{ \text{circ-range}(u, v) \} \]

A post-clausal clause may be attached to the tree on the left or on the right, according to the sign of the adposition. Moreover, it should be noticed that the following rules are denoted to parse a sequence of clauses and circumstantial: this apparently counterintuitive format for the parsing rules becomes very useful in the parsing of phrase groups indeed.
\textbf{Chapter 7. The formal model}

\begin{align*}
\vdash \{ \text{prep-stative-range}(u, y) \} & \quad (7.156) \\
\vdash \emptyset & \quad \text{?prep-stative} \\
\vdash \text{circ-range}(x, y) & \quad \text{?prep-stative} \\
\vdash A & \quad \emptyset \\
\vdash u \in \text{circ-range}(x, y) & \quad \text{?prep-stative} \\
\vdash T(\text{Rep}(u), \text{Sign}(u), \text{Dir}(u)) & \\
\vdash \{ +\text{circ-range}(x, \overline{y}), -\text{circ-range}(x, y) \} & \text{Circ}_0 \\
\vdash & \\
\vdash \{ \text{prep-stative-range}(u, y) \} & \quad (7.157) \\
\vdash \emptyset & \quad \text{?prep-stative} \\
\vdash \text{circ-range}(x, y) & \quad \text{?prep-stative} \\
\vdash A & \quad \emptyset \\
\vdash u \in \text{circ-range}(x, y) & \quad \text{?prep-stative} \\
\vdash T(\text{Rep}(u), \text{Sign}(u), \text{Dir}(u)) & \\
\vdash \{ +\text{circ-range}(x, \overline{y}), -\text{circ-range}(x, y) \} & \text{Circ}_0 \\
\vdash & \\
\vdash \{ \text{E-range}(x, v) \} & \quad (7.158) \\
\vdash \emptyset & \quad \text{?E} \\
\vdash \text{circ-range}(u, v) & \quad \text{?E} \\
\vdash A & \quad \emptyset \\
\vdash x \in \text{circ-range}(u, v) & \quad \text{?E} \\
\vdash T(\text{Rep}(x), \text{Sign}(x), \text{Dir}(x)) & \\
\vdash \{ +\text{circ-range}(u, \overline{y}), -\text{circ-range}(u, v) \} & \text{Circ}_0 \\
\vdash & \\
\vdash \{ \text{phrase-range}(\overline{u}, v) \} & \quad (7.159) \\
\vdash \emptyset & \quad \text{?phrase} \\
\vdash \text{EJoined-range}(u, v) & \quad \text{?EJoined-range} \\
\vdash 0 & \quad \emptyset \\
\vdash \text{Rep}(u) \in u \land \text{Sign}(u) \land \text{Dir}(d) & \quad \text{?P} \\
\vdash \{ -\text{EJoined-range}(u, v) \} & \text{Aligned} \\
\vdash P(\text{Rep}(u), \text{Sign}(u), \text{Dir}(d)) & (7.160)
\end{align*}

\textbf{7.5. Parsing rules}

\textbf{7.5.7 The phrase group}

This group of rules is deputed to parse the structure of a phrase. They act by looking at the valence of the verb and then by constructing the appropriate tree.

\begin{align*}
\vdash \text{phrase-range}(u, v) & \quad \{ 1\text{-range}(x, y) \} \\
\vdash 0 & \quad \emptyset \\
\vdash x \in \text{phrase-range}(u, v) & \quad \{ 1\text{-range}(x, y) \} \\
\vdash x \in \text{phrase-range}(u, v) & \quad \emptyset \\
\vdash y \in \text{phrase-range}(u, v) & \quad \emptyset \\
\vdash \{ +\text{circ-range}(u, \overline{y}), -\text{phrase-range}(u, v) \} & \text{Phrase} \\
\vdash & \\
\vdash V(V) & \quad (7.161)
\end{align*}

321
Chapter 7. The formal model

The whole adtree is labelled as Phrase, while the verbal subtree is labelled as Verb. These labels are used to determine the actants after the whole text has been successfully parsed. To simplify the notation we introduce the following abbreviations:

\[\text{phrase-range}(u, v) \]
\[\text{verb-range}(u, v) \]

and

\[\text{subject-range}(u, v) \]

where the variables may be hidden when they are evident from the context.

The Verb rule is very similar to the corresponding zerovalent counterpart, as expected. The main difference is that the subject is no more a void token, but it has to be found in the subject-range by the derivation \(\tau_{\text{ subj}} \). In the subject-range there may be other parts that cannot be but circumstantial, hence the conclusion of the subderivation.

\[\text{phrase-range}(u, v) \]
\[\text{verb-range}(u, v) \]

The Verb rule assumes to find the subject on the left of the verb. Instead, when the subject appears on the right, mirroring has taken place.

7.5. Parsing rules

The following rule takes care of this situation.

\[\text{phrase-range}(u, v) \]
\[\text{verb-range}(u, v) \]

The following abbreviation is useful to compact notation:

\[\text{object-range}(u, v) \]

\[\text{object-range}(u, v) \]

The Verb rule assumes to find the subject on the left of the verb. Instead, when the subject appears on the right, mirroring has taken place.
Chapter 7. The formal model

The Verb₂ rule is an extension of the monovalence rule.

\[
\frac{\text{phrase-range}(u, v)}{\text{phrase-range}(u, v) \
\land \text{phrase-range}(u, v)
\land \text{phrase-range}(u, v)
\land \text{1-group}(x, y, 2, d, c)
\text{D}_{\text{verb}} \text{D}_{\text{sub}} \text{D}_{\text{obj}}(y, v, a_1, o_2, u, S)_{\text{verb}}}{\text{\{ +circ-range}(u, s_1), +circ-range}(s_2, \overline{X}), +circ-range}(\overline{Y}, a_1), +circ-range}(o_2, v), -\text{phrase-range}(u, v))_{\text{verb}}}
\]

\[
\frac{}{S}
\]

As usual, an abbreviation for the dative is used:

\[
\frac{}{s \oplus d}
\]

\[
\begin{align*}
\text{O} & \quad \Rightarrow (\text{Verb}) \\
\text{O} & \quad \Rightarrow V (\text{Verb})
\end{align*}
\]

7.5. Parsing rules

The Verb₁ rule is an extension of the rules for bivalent verbs.

\[
\frac{\text{phrase-range}(u, v)}{\text{phrase-range}(u, v)
\land \text{phrase-range}(u, v)
\land \text{phrase-range}(u, v)
\land \text{1-group}(x, y, 3, d, c)
\text{D}_{\text{verb}} \text{D}_{\text{sub}} \text{D}_{\text{obj}}(y, v, a_1, o_2, u, S)_{\text{verb}}}{\text{\{ +circ-range}(u, s_1), +circ-range}(s_2, \overline{X}), +circ-range}(\overline{Y}, a_1), +circ-range}(o_2, v), -\text{phrase-range}(u, v))_{\text{verb}}}
\]

\[
\frac{}{D}
\]

\[
\begin{align*}
\text{O} & \quad \Rightarrow (\text{Verb}) \\
\text{O} & \quad \Rightarrow V (\text{Verb})
\end{align*}
\]

7.5.8 The subject-object-dative group

These rules are deputed to parse the substructures directly related to a verb, i.e., the subject group, the object group and the dative group. Evidently, these are used to slightly simplify the notation in the phrase group or, at least, to allow the reader to intuitively interpret the meaning of the rules.

As the name suggests, the Subject rule parses the syntactic subject of the current phrase. Its action is to choose a static group in the nominative case inside the subject range and to parse it in the subderivation. The final tree contains the subject and the state has a pair of circumstantial ranges on the left and on the right of the subject. The tree is labelled to identify the position of the subject in the final tree so that actants can be correctly
Chapter 7. The formal model

derived.

\[\text{sentence-range}(x, y) \rightarrow \{ \text{static-range}(u, v) \} \]
\[\text{w} \in \text{subj-range}(x, y) \wedge \left(\right) \]
\[\text{u} \in \text{subj-range}(x, y) \wedge \left(\right) \]
\[\text{w} \in \text{non-static-group}(u, v) \rightarrow \{ \text{static-range}(u, v) \} \]
\[\text{w} \rightarrow \text{v} \wedge \text{non-static-group}(u, v) \rightarrow \{ \text{static-range}(u, v) \} \]

\[\text{phrase-group} \rightarrow \{ \text{phrase-range}(u, v), \text{sentence-range}(x, y) \} \]

\[\text{obj-range}(x, y) \rightarrow \{ \text{static-range}(u, v) \} \]
\[\text{w} \in \text{obj-range}(x, y) \wedge \left(\right) \]
\[\text{u} \in \text{obj-range}(x, y) \wedge \left(\right) \]
\[\text{w} = \text{v} \wedge \text{non-static-group}(u, v) \rightarrow \{ \text{static-range}(u, v) \} \]
\[\text{w} \rightarrow \text{v} \wedge \text{non-static-group}(u, v) \rightarrow \{ \text{static-range}(u, v) \} \]

\[\text{dat-range}(x, y) \rightarrow \{ \text{static-range}(u, v) \} \]
\[\text{w} \in \text{dat-range}(x, y) \wedge \left(\right) \]
\[\text{u} \in \text{dat-range}(x, y) \wedge \left(\right) \]
\[\text{w} = \text{v} \wedge \left(\right) \]
\[\text{w} \rightarrow \text{v} \wedge \left(\right) \]
\[\text{prep-nom-static-group}(u, v, \text{al} \text{v} \text{e}) \rightarrow \{ \text{static-range}(u, v) \} \]

\[\text{7.5. Parsing rules} \]

structure or E-groups, A-groups and O-groups (Table 6.20).
\[\text{sentence-range}(x, y) \rightarrow \{ \text{phrase-range}(u, v), \text{sentence-range}(x, y) \} \]
\[\text{phrase-group} \rightarrow \{ \text{phrase-range}(u, v), \text{sentence-range}(x, y) \} \]

\[\text{7.5.9 The sentence group} \]

This group of rules wants to divide a sentence into phrases. The structure of a sentence is composed by phrases in a completely analogous way to the

\[327 \]

\[328 \]
7.5.10 The text group

This group of rules divides the text into sentences, which are parsed independently. They are joined in a sequence by means of the sentence delimiters (section 5.4).

\[
\begin{align*}
\triangleright & \text{ text-range}(u, v) \\
\triangleright & \emptyset \\
\triangleright & \text{ sentence-group}(u, v) \\
& \{ +\text{sentence-range}(u, v), -\text{text-range}(u, v) \} \\
& \emptyset \\
\end{align*}
\]

\[
\begin{align*}
\triangleright & \text{ text-range}(u, v) \\
& T \\
& \{ \text{sentence-range}(u, T) \} \\
\triangleright & \emptyset \\
& x \in \text{text-range}(u, v) \land \\
& \text{sentence-group}(u, T) \land \\
& \text{Rep}(l) \in x \land \text{SentenceDelimiter} \in x \land \\
& \text{Sign}(s) \in x \land \text{Dir}(d) \in x \\
\triangleright & \emptyset \\
& S \\
& \{ +\text{text-range}(T, v), -\text{text-range}(u, v) \} \\
\end{align*}
\]

\[
\begin{align*}
\triangleright & \text{ init}(u, v) \\
\triangleright & \emptyset \\
\triangleright & \text{ text-group}(u, v) \\
& \{ +\text{text-range}(u, v), -\text{init}(u, v) \} \\
& \emptyset \\
\end{align*}
\]

\[
\begin{align*}
\triangleright & \text{ init}(u, v) \\
\triangleright & \emptyset \\
\triangleright & \text{ text-group}(u, v) \land \\
& \text{Rep}(l) \in x \land \text{SentenceDelimiter} \in x \land \\
& \text{Sign}(s) \in x \land \text{Dir}(d) \in x \\
\triangleright & \emptyset \\
& \{ +\text{text-range}(u, v), -\text{init}(u, v) \} \\
\end{align*}
\]

\[
\begin{align*}
\triangleright & \text{ init}(u, v) \\
\triangleright & \emptyset \\
\triangleright & \text{ text-group}(u, v) \land \\
& \text{Rep}(l) \in x \land \text{SentenceDelimiter} \in x \land \\
& \text{Sign}(s) \in x \land \text{Dir}(d) \in x \\
\triangleright & \emptyset \\
& \{ +\text{text-range}(u, v), -\text{init}(u, v) \} \\
\end{align*}
\]

\[
\begin{align*}
\triangleright & \text{ init}(u, v) \\
\triangleright & \emptyset \\
\triangleright & \text{ text-group}(u, v) \land \\
& \text{Rep}(l) \in x \land \text{SentenceDelimiter} \in x \land \\
& \text{Sign}(s) \in x \land \text{Dir}(d) \in x \\
\end{align*}
\]
Chapter 7. The formal model

<table>
<thead>
<tr>
<th>Tag</th>
<th>Argument description</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdjCorr</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>Action</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>AJoinct</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>APostJunct</td>
<td>an adtree</td>
<td>A</td>
</tr>
<tr>
<td>APreJunct</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Atom(x)</td>
<td>I-stem, O-atom, A-atom, E-atom</td>
<td>λ</td>
</tr>
<tr>
<td>Dir(x)</td>
<td>←, →</td>
<td>Parsing rules</td>
</tr>
<tr>
<td>EdetEnv</td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>EHJunct</td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>EJunct</td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>EPPostJunct</td>
<td>an adtree</td>
<td>E</td>
</tr>
<tr>
<td>EPreJunct</td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>Fundamental</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td>G-prefix</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td>G-suffix</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>I-prefix</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td>I-suffix</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td>InvAdjCorr</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>InvVar</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>Num</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>NumAtom(x)</td>
<td>numerical agreement</td>
<td>A</td>
</tr>
<tr>
<td>NumDet</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>O-prefix</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td>O-suffix</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td>OJunct</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>OPostJunct</td>
<td>an adtree</td>
<td>O</td>
</tr>
<tr>
<td>OPREJunct</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>Prep</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>Pron</td>
<td>O, A</td>
<td></td>
</tr>
<tr>
<td>Rep(x)</td>
<td>an adtree</td>
<td>λ, I, O, A, E</td>
</tr>
<tr>
<td>Sign(x)</td>
<td></td>
<td>Parsing rules</td>
</tr>
<tr>
<td>SentenceDelimiter</td>
<td>text</td>
<td></td>
</tr>
<tr>
<td>SJunct</td>
<td>sentence</td>
<td></td>
</tr>
<tr>
<td>Vall(x)</td>
<td>0, 1, 2, 3</td>
<td>λ</td>
</tr>
<tr>
<td>VarAdjCorr</td>
<td></td>
<td>O</td>
</tr>
</tbody>
</table>

Notes

1. Sometimes more adverbs are admitted after the parsing of the input string. If so, the final selection will be made on the basis of semantics, eventually lead by pragmatic information such as actors. In other words, semantic ambiguity should not be solved on a syntactic level. This is not covered by the formal model.

2. For Van Neumann’s architecture, e.g., von Neumann [1981] and Goldstone and von Neumann [1963].

3. For non-determinism in algorithms, see Savage [1997] and Cormen et al. [1990]. For the notion of backtracking, see Wirth [1986].

4. For a discussion about this point see, e.g., Partington [1997] or Ack-Kaci [1991].

5. It can be adapted to any NL in principle, but I have chosen Esperanto for the reasons already explained in chapter 4.

7. This list is partially based on Wienerger [2005, §1.2].

8. At the limit, the tag tgr(x) can be empty (ε = (ε) in phrases like w mva as fır. In other words, even fundamental finals can be lexicalized: in the case just offered, the 'lesm' as inherits the modul of the lexeme ε1 to be), in particular the valence.

9. Thus, if a ∈ T then u → 0 and h → s are both false.

10. Please note that the epsilon (ε) is also used to mark empty hooks in adverbs.

11. In a way, λ stands for a 'complex lesemi' – λ is the Greek (λ), the first letter in for-er: λ also stands for 'abstraction' in mathematical logic, therefore it seems to be highly appropriate.

12. In forimula, the string 'nom' – indicates 'nominitive', while 'acc' indicates 'accusative'.

13. I use the terms of traditional grammar if they are clear enough and know, as in the case of 'adative'.

14. This become clear to me at first actually writing the rules: the formalism let understand better NL mechanisms, while a better NL understanding permit to expand the formalism accordingly [Gualandi, 2008]. I prefer not to use the term 'complément' as it is really abused. For example, in systemic grammar, he has a pragmatic value, indicating adjectives or statives which refer either to the first or the second valence arguments anthropically or cataphorically.

15. As a technical detail, it should be noted that, if r = 0 or r = ε, then r * r = 0. So, empty adpositions act as neutral elements when calculating a composed adposition.

16. I use the terms 'proposition' as a specific type of propositions, prepositions, etc.

17. From now on, silently, I will treat the other particles in the same way.

18. A dever dictionary may be implemented by, e.g., a RDF or an OWL ontology. In this case, the deducive ability of the ontology is used to implement the complex finite state automaton depicted to recognize numerical objects.

19. As a last note, this justifies why I consider that theoretical linguistics should always test its models formally and computationally, as I claim in the introduction.

20. From a technical point of view, there is no need of mirroring shown in Figure 2.34 was not implemented yet, essentially for timing.

21. In a preliminary version of this dissertation, a derivation tree was planned to be put here: theoretically speaking, it could be useful for the over-formal reader once to see how the algorithm parse a string and builds an adverb. However, a monophrase sentence with five groups – not too simple, not too complex – would easily occupy 40 A4-pages of this dissertation. Let us consider as an example the O-group is 'the book', which is only
one group with only three tokens. Let us assume that we know in advance that it is a
finite group, let us say, a syntactic subject. Let us also assume that we do not need non-
determinism, i.e., that, thanks to an oracle, the machine always chooses the right direction
in the derivation tree. Even with a very simple group (not a phrase!), and two strong as-
sumptions, the parsing algorithm is too precise in order to be transcribed on paper. In fact,
the algorithm starts computing the first clause – as it is the simplest case – of the following
predicates: 9, 10, 11, 12, 14, 15. Only when arrived at predicate 15, it starts analysing the
inner structure of the group itself: what computed until here is of no interest for a human
reader, even an over-formal one.

In practice, the Struct is never used. But, in perspective, when dealing with a language
less regular than Esperanto, it seems to be unavoidable, so I preferred to leave it in the
system.

The adposition in the hook has ↔ as sign and ↔ as direction. This is a shortcut to say
that the sign is ↔ the sign of the adposition and the direction is ↔ the natural direction of
the adposition. The direction influences the positions of the \(S_1 \) and the \(S_2 \) trees: if the direction
is ↔, then \(S_1 \) is the left child while \(S_2 \) lies on the right, as shown in the rule; if the direction
is ↔, then \(S_2 \) is on the right and \(S_1 \) is on the left, in reverse order with respect to the tree
in the conclusion of the rule. From now on, I silently assume the above interpretation of ↔
and ↔.

I hope that this use of fonts helps the reader to understand what I am saying.

From now on, the variant rules required to cope with mirroring are omitted. The reader
may find it instructing to write them by himself.
Chapter 8

A machine translation example

In chapter 4 I have presented the theoretical paradigms of MT and their current implementations as corpora-driven system. In this small chapter I present the system architecture through an example.

8.1 The system architecture

The MT system proposed here is a rule-based, transfer system, where the input entry / source language L_s is always Esperanto, while the output / target language L_o can be any NL. MT is performed in two steps:

1. metataxis;
2. substitution.

A zero step is postulated to answer to the question of efficiency (computationally) and of the rule /list fallacy (linguistically). The zero step is a query in the TM, where correspondent adpositional patterns are stored: this means that the differences between T_s and T_t are registered, based on adtypes, grammar characters (and, eventually, in the future, actants).

If even a single difference is registered, the MT system performs the metataxis. The term 'metataxis' is a calque by Schubert [1987] of the Tenserian term metataxis. In adgrams, the term metataxis indicates the layer of the transformation; more specifically, from an adtree T_s belonging to the input language to an adtree T_t belonging to the output language L_o. At the end of the metataxis, the result is a sort of pivot language. In other words, the lexicon, i.e., the tags put on the leaves, including rep(d), still pertain L_o, i.e., the QNL Esperanto, while the adtree T_o pertains the NL in input.1

If there is no difference between T_s and T_t, or, when metataxis is finished, the second step takes place. I call the second step substitution, i.e., the substitution of the morphemes from the dictionary of the input language (D_s) to the dictionary of the output language (D_o). In the translation

8.2 A translation game example

game scenario, these two steps are performed twice, i.e., for the source and target language, until the user is satisfied, and then the results are put appropriately in the TM. This is the end.2

As an extreme rare case, the MT system can be successful in finding the whole text in input in its TMs: e.g., if an English Esperantophone write in input William Auld’s book La Mastro de l’ Ringoj, he or she will see on the screen J. R. R. Tolkien’s The Lord of the Rings, if this masterpiece is already in the dictionary, starting from Tolkien’s poem: Tri ringoj por la efsoj sub la helu ĉiel’, Sep por la gnomoj en salonoj el titon’. (Figure 8.1).

![Figure 8.1: The machine translation of The Lord of the Rings (specimen).](image)

8.2 A translation game example

Suppose that Alice is an English native and an Esperantophone, who accepted to use the system. She wants to write a letter to a Chinese friend of hers, Li. They do not have any (Q)NL in common.

* (46-eo.) La biblioteko kie mi olfe studas literaturon estas tre fore.
* (46-en.) The library where I often study literature is far away.

Alice types example 46 into the system, in Esperanto, and reads on the screen the English translation, that she consider satisfying. What happened in the machine when Alice finished typing her text in Esperanto, and has clicked the button ‘test’ so to control her Esperanto through the English translation? In fact, no metataxis was performed, as the two adtrees are structurally identical: only substitution was needed – see Figures 8.2 and 8.3. What Li is expected to read is the following sentence.

* (46-zh.) wǒ piān kǎng xué wèn xué de tóushi guān lǐ zhí hěn yuán.

In this case metataxis comes into action, as Esperanto and Chinese are structurally different – Figure 8.4. Most notably, what in Esperanto and English is a special adpositional pattern, i.e., the circumstantial correliative
Chapter 8. A machine translation example

8.2. A translation game example

Figure 8.2: The MT sentence in Esperanto (example 46).

Figure 8.3: The MT sentence in English (example 46).

Figure 8.4: Metatex: from Esperanto to “Chinese-anto” (example 46)
Chapter 8. A machine translation example

8.3 Beyond the translation game

The MT architecture is based on Esperanto, because of the translation game, but it can be generalised. My aim is to implement adpositional grammars as an abstract, general linguistic model. In fact, the notions of adpositional space, adpositional type, grammar character, transferer and transferee are completely general: the translation game can be generalised with any couple of NLs, there L_s is the entry language and L_t is the target language.

$$A > L_s \iff B < L_t$$

Nonetheless, such an approach would be much more expensive in every sense: e.g., for English, adpositionally there would be a lot of transferers and transferees which can be applied only to some lexemes for phonological or historical reasons, as the small fragment presented in chapter 3 has attested. Most probably, an additional set of rules should be written to pass from a regularised quasi-natural English to a subset of natural English.

What I plan to do in the future is to refactor the rules, in a more abstract and polished way, so to generate all and only the cross-linguistic structures, while the intricacies of the Esperanto adpositional grammar – chapter 5 has shown that there are, even if far less than in NLs – being part of the lexicon. Perhaps, an additional layer would be needed, so not to complicate too much the linguistic rules in the dictionary, in case of NLs. In other words, it is worth to retain the QNL as a key concept, so that the model would produce before something like *mouse-s run-ed quick-y* in quasi-English. The resulting final architecture would be something like this:

- the **grammar level**: a general and cross-linguistic grammar (composed by the metatexts level, the substitution level, and maybe by the pragmatic layer);
- the **QNL-level**: a number of dictionaries for the various QNL (quasi-English, quasi-Italian, etc.);
- the **NL-level**: hard-coded rules for handling exceptions, and perhaps idioms and lexicalisations too.

The implementation of the pragmatic layer – i.e., how to compute actants and their relation with valence – was postponed after this dissertation, as it is important that that layer does not interfere with the metatexts level for linguistic reasons. In other words, before implementing actants, it makes sense to have a set of rules cross-linguistically valid but totally independent by the actual QNL used.

The final architecture can be considered belonging to the interlingua paradigm, but with an important difference: normally interlingua computed semantics, here what is computed is the core of adpositional grammars.
Notes

1 Adpositional patterns are similar to the concept of example as posed by Nagao [1984], with the exception that for him an example is made of words, while for me an adpositional pattern is made of pure structure, with dedicated morphemes as vehicles.

2 Under a theoretical point of view, this architecture can be described as a transfer system concerning metaphorics and as a direct system concerning substitution.

3 Note, that, because of Hanyu Pinyin, Chinese reveals lexicalisations, e.g., fúshí guān (often). This is only a technical fact.

4 For instance, see section 6.3 about the parsing of affixes, for intricacies in the Esperanto grammar.

5 Troyanskii, the forgotten pioneer of MT using Esperanto, would have written the same example in the following way: mouse→run→quick→f [Hutchins and Lovtukkii, 2000]. His would-be writing is equivalent.
Chapter 9

Conclusions

This dissertation presented adpositional grammars, a multilingual grammar formalism. The first part of the dissertation has shown that adpositional grammars are cognitively well-founded on the very general dichotomy trajectory/landmark, and linguistically robust, as provided by the examples in natural languages typologically very distant, like English, Turkish. Complex phenomena as mirroring are also covered in the model (chapters 1, 2). The translation game (chapter 4) has offered a representation of machine translation that is unique and it is free from prejudice.

The second part of this dissertation has shown that adpositional grammars are computable, as they can be implemented with a strong formalism such as a logical framework. For the purposes of this dissertation, the implementation in a simple, regular and powerful quasi-natural language as Esperanto has shown the linguistic viability of the model (chapter 5). I claim that the model presented here can parse and represent more than 95% of the standard register of contemporary Esperanto, testable through the existing monolingual and bilingual web corpora.

The third part has shown the implementation as an instance of the Esperanto grammar in a strong formalism (chapters 6, 7). In fact, the formal model let to find the number of Esperanto language: five. The main goal, i.e., to prove the consistency and robustness of the formal model both under a computationally and linguistically points of view: the implementation of Esperanto in exactly 56 formulae has shown it clearly. Furthermore, the grammar can be generalised for many natural language, and how to do this was explained in various points of the third part.

Current limits

There are some linguistic and computational limits in the current version of the adpositional grammar model. Linguistically, there is no resolution of anaphoras, actants, and non-neutral orders, such as the ones caused by mirroring (however, the appropriate structures are already in the model, or I know where to put them, if needed). On a more technical level, the adpositional space does not take into account neutral adpositions as posed by Pennacchi in his original work, as it is not clear how to represent them formally and therefore computationally.

From a computational point of view, the most evident limit is pretty obvious: the actual implementation is ‘only’ in LateX – by the way, me and Marco Benini plan to release the package for representing adtrees on CTAN as soon as possible (by now, it lacks only the necessary documentation). Furthermore, the implementation proposed is not necessarily efficient, also because of the rule/list fallacy, i.e., the fact that this formalism does not take into account any storage of rules, except for numbers and question correlatives. However, efficiency was never a goal here.

Finally, the model takes into account the adpositional tree structure of Esperanto, along with valence – modifiers included – but there is still no treatment of actants, i.e., the pragmatic layer. These evident limits are essentially caused by timing. In the next months, I plan to fill this gap starting from the example presented in the second part of this dissertation and giving a consistent fragment, eventually implementing the algorithm for actants, as described in chapter 2, analogously to what presented in chapter 7. The actants are important for machine translation purposes, as briefly shown in chapter 8.

Further research directions

After a polishing of the rules presented in chapters 7 and 8, two results should be obtained: first, a generalisation of the grammar, second, a even more robust formalism. The way seems to be to abstract lexemes, pronouns, etc., in general, pre-linguistic groups – e.g., δ-group for lexeme, σ-group for pronouns, δ-groups for determiners, etc. That means that adpositional grammars are an object more general than chomskian grammars, i.e., where terminals are no more terminals. Let me use a metaphor: adpositional grammars are a topology, where lexemes are like points, and hence the grammar of a [QNL] is a concrete topology, where the metataxis is a formal topology. As a corollary, this dissertation shows that linguistics can be considered an instance of contemporary mathematics. This fact has some concrete consequences in the current model. First, the entry language is transformed to an abstract representation of cognitive linguistic knowledge, and hence in the translation game any (quasi-)natural language can be source or target. In other words, the grammar will not be linked necessarily to Esperanto. The final goal is to cut off all non-deterministic points – as what was used is the satisfiability algorithm.

Also the nature of translation changes dramatically. In fact, from a more
Chapter 9. Conclusions

general and abstract point of view, the correct family of adtrees of a given sentence can be considered the place where every point is zero, i.e., a ‘variety’, in algebraic geometry. Consequently, the translation from natural language to natural language is the study of every possible manipulation of equations, without touching the lexicon. Eventually, this has lead us (me and Marco Benini) think that translation is solvable in P-Space.

Acknowledgements

I wish to acknowledge some people. Roberto, the owner of Pottery Cafe, via Solferino, Milan, who provided great vegan and non-vegan cakes to me and Marco Benini during our many brainstorming meetings. Emanuele Gualandri, Albertina Bonini and Caterina Schweizer, who gave me a house in Ginostra and the tranquility to work in one of the beautiful places I know in the world (in the meantime, they also gave a big help to me and my wife with our children). Umberto Mazza, who helped me with the psychological aspects related to the role of being a PhD. The album Accelerate by R.E.M. was my soundtrack during these difficult and exciting months. Ettore Brocca, Andrea Gervasi, Domenico Marin, Massimiliano Pepe, once students and now friends, were encouraging me keeping discreetly and gently in touch, even during the most difficult moments: thanks, guys! It is impossible to list here all other people who have influenced directly or indirectly this dissertation: please, accept a collective thank for all you have taught me.

Finally, I should give a big thank to A Giridhar Rao, who patiently read the first three chapters of the final manuscript and improved its (and my) English – the revised version is on line since 10 January 2009 in my web space, permalink: federicogobbo.name.

Last but not least, I must record my gratitude, once and again, to my wife Francesca and our children, Susanna and Leonardo, for their patience while I was writing this dissertation.

E.G.

345 346
Part IV

Appendix
Summary / Riassunto / Resumo

English

In the field of computational linguistics, the representation of natural languages (NL) in formal grammar terms is a well-known issue and a wicked problem indeed. In fact, some formal grammars lack of lexical and semantic information representation, reducing the linguistic structure to syntax. On the other side, approaches like dependency grammars lose expressive power, under a computational point of view. Adpositional grammars (adgrams) are a novel grammar formalism that overcomes these limitations. Adgrams are based on Pennacchiotti’s research, who put together Brondal’s logic description of prepositions, Tesnerian notion of valence, Langacker’s cognitive dichotomy trajectory/landmark and Silvio Coccato’s pioneer work in the field on machine translation (MT). The result is a quasi-formal description of adpositions, being the junctors of language structure. This description is called adpositional space. Each adpositional space is made of four adpositional types: Plus (+), Minus (−), Slash (/), Times (●). The resulting structure is cognitively sound and formally inspiring, as adpositional trees (adtrees) can be built as special Porphyrian trees, going beyond the Tesnerian somehow fuzzy concept of dependency.

This dissertation puts Pennacchiotti’s work a step forward. In fact, here adgrams consider the ultimate unit of NLs being the morpheme, not the word, and therefore they offer a coherent theory of both morphology and syntax. Hence, the collocation phenomena are considered like zero morphemes. Moreover, a sharp distinction in the dictionary between the adpositional space, essentially made of closed morphemes, and the lexicon, made of open morphemes. Moving again from Tesnerian structural syntax, open morphemes always have a fundamental grammar character: stative (O), adjunctive (A, as stative modifiers), and verbal (I), circumstantial (E, as verbal modifiers). The Tesnerian approach is validated through Whorf’s research results comparing grammars of typologically distant NLs.

The second part shows that adgrams are computable, as they can be implemented with a strong, robust formalism. A concrete instance of the formal model of adgrams is given through the quasi-natural language Esperanto (QNL, Lyons), showing the linguistic viability of the model. The formal model should be used appropriately in an ad hoc epistemological scenario, called ‘the translation game’, designed as a Gedankenexperiment à la Turing. A toy example is also given. In the third part the implementation is explained with all its details: the implementation of Esperanto is made in exactly 179 logic formulas, 56 of which are predicates. The formal model is promising to be generalised for any NLs, and how to do this was explained in various points of the third part. Finally, this dissertation shows that adgrams are a powerful NL grammar formalism which is at the same time cross-linguistic, cognitively grounded and formally robust and computationally sound.
Esperanto

En komputika lingvistiko, la formalo reprezentado de la gramatiko de et-naj lingvoj estas ankoruz malfermo kaj malfacila temo. Fakte, estas formalaj gramatikoj kiuj pretendas redukti la lingvan strukturon al sintakso, sen leksika aŭ semantika reprezentado. Troviĝas ankaŭ aliroj leksikaj pli riĉaj, kiuj ekzemple dependencc-gramatikoj, sed tiuj perdas esprimilon laŭ vidpunkto de la formaleco. Adpozicij gramatiko (adgramo) estas nova gramatika formalismo kiu preteras tiujn ĵmbarojn. Ĝi bazigas je intuicio de Penncachietti, kiu kunehe teze kaj priskribes de preparazi kaj fare de Brndal, tesneran nocio de valenco, dikotomiam altrafigilo/gvidosigno de Langacker, kaj pioniran laboron pri peraŭtomata tradukado fare de Súvio Cecato. La rezulto estas preskaŭ-formalan priskribon de adpozicij, kiuj estas la kunmetio de la lingva strukturo. Tiuj ĉi priskribos nomiĝas adpozicio spaco (adspaco). La adpozicio spaco de ĉiu lingvo faratas de kvar adpozicij topoj: Plus (.), Minus (.), Ónigo (.), Obligo (.). La rezulta strukturo estas konve solidaj kaj interesaj ala formala vidpunkto, ĉar adpozicio arbo (ad-arbo) povas konstruvi kiel speciala porfira arbo, preteriante la nebulan koncepton de dependenco laŭ Tesniere.

Ci tiu doktora diserto sukcesas fari kromon pasion post la laboro de Penncachietti. Fakte, ĉi tie adgramo ĝi konsektas ĉiel lasta unu de lingvoj la morfermon, ne la vorton, kaj sekve ili ofertas koherejon teorion pri morfologio kaj sintakso. Krome, faratas klaras disigilo en la vortaro inter adspaco, kies elementoj estas esence fermaj morfermoj, kaj ĝis leksiko, farata de mafermaj morfermoj. Derue ekde strukturo sintakso fare de Tesniere, mafermaj morfermoj havas fundamentan gramatikan karakteron: nomiga (O.), aldoneblaj (A, kiel modifanto de nomigiloj), kaj krome verba (I) kaj cirkonstanco (E, kiel modifanto de verboj). La tesnera aliro estas kontrollita per la rezulto en komparo inter gramatikoj de tipologio faraj lingvoj fare de Whoer.

La dua parto montras, ke adgramo estas komputebla, ĉar realigitaj per formalismo forta kaj ĉirka. Krome, ekzemplo de la formalo modelo estas prezentita por Esperanto, tie, ke la fajkazo de la modelo lingvavipunkte estu klara. Preper la formalo modelo estus uzata en ekkontexta scenaro, ĝuste ĉiuz la okazo. Tiu ĉi scenario nomigas la ‘ludo de la traduko’, kaj ĝi estas mensa eksperimento, samkiel Turing. Oni donas ĉi tiuj ekzemplon. La tria parto montras la rezulton en ĉiuj aspektoj: fakte la realigo de Esperanto faratas de entute 179 da logikaj formuloj, kaj ĉe la triu ndro 56 estas predikatoj kaj la resto reguloj. La formalo modelo esperigas pri generala valida al la ĉia anlingvo. Kiel fari tien klarigatas due en la tria parto. La diseritaj montras, ke adgramo estas plenumo formalismo de lingvaj gramatikoj, ĉar ili estas samtempe lingvoj trainporvaj, konve grundaj kaj komputike balsonaj.

Italiano

Nel campo della linguistica computazionale, la rappresentazione formale della grammatica delle lingue storico-naturali è un argomento a tutti oggi aperto e dibattuto. Infatti, certe grammatiche formali pretendono di ridur- re la struttura del linguaggio alla sintassi, senza rappresentazioni lessicali o semantiche. D’altra parte, approcci lessicalmente più ricchi, come le gram- matiche della dipendenza, perdono in capacità espressiva da un punto di vista formale. Le grammatiche adposizionali (adgrama) sono un formal- ismo grammaticale nuovo che supera questi limiti. Si basano sulle ricerche di Penncachietti, che ha messo insieme la descrizione logica delle prepo- sizizioni di Brndal, la nozione tesneriana di valenza, la dicotomia traietto- traiassegno di Langacker, e il lavoro pionieristico di Silvio Cecato nel campo della traduzione automatica. Il risultato è una descrizione pseudo- formale delle adposizioni, vale a dire i giunti della struttura linguistica. Questa descrizione viene detta spazio adposizionale (adspazio). Lo spazio adposizionale di ciascuna lingua è composto da quattro tipi adposizionali: Piu (.), Meno (.), Divisio (.), Per (.). La struttura risultante è cognitiva- mente solida e interessante da un punto di vista formale, perché un albero adposizionale (ad-albero) può essere costruito come un particolare albero porfiranio, andando oltre il concetto di dipendenza di Tesniere, che risulta nebuloso.

Questa tesi di dottorato fa un passo ulteriore sul lavoro di Penncachiet- ti. Infatti, qui le adgramam considerano l’unità ultima delle lingue storico- naturali il morfema, non la parola, e conseguentemente offrono una teoria coerente di morfologia e sintassi. Difatti, i fenomeni di collocazione sono trattati come morfemi zero. Inoltre, viene operata una distinzione netta nel dizionario tra lo spazio adposizionale, formato essenzialmente da morfemi legati, e il lessico, fatto di morfemi liberi. Partendo ancora una volta dalla sintassi strutturale tesneriana, i morfemi liberi hanno un carattere gram- maticale fondamentale: stativo (O), aggiuntivo (A, come modificatore di stativi), e inoltre verbale (I), e circumanziale (E, come modificatore di verbi). L’approccio tesneriano è validato attraverso i risultati di ricerca in grammatica comparata di lingue tipologicamente distanti effettuati da Whoer.

logiche, 56 delle quali sono predicati, il resto regole. Il modello formale dà speranza di poter essere generalizzato per qualsiasi lingua storico-naturale, e come farlo viene spiegato in diversi punti della terza parte. In conclusione, la tesi mostra che le adgram sono un formalismo delle grammatiche delle lingue storico-naturali potente, perché sono al contempo trasversali linguisticamente, fondate cognitivamente, formalmente robuste e buone a un punto di vista computazionale.
Copyright notice

© © © © 2008 Federico Golbo. Some rights reserved.

Pubblicato in Italia.

Università degli Studi dell’Insubria
Dipartimento di Informatica e Comunicazione (DICOM)
via Marzini 5
IT-21100
Varese
Italy
Attribuzione – Non commerciale – Condividi allo stesso modo 2.5.

Table 9.1: Translation of the most important keywords

<table>
<thead>
<tr>
<th>English</th>
<th>Esperanto</th>
<th>Italian</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjunctive</td>
<td>aldonebla</td>
<td>aggiuntivo</td>
</tr>
<tr>
<td>circumstantial</td>
<td>cirkonstancja</td>
<td>circostanziale</td>
</tr>
<tr>
<td>clause</td>
<td>subfrablo</td>
<td>clausola</td>
</tr>
<tr>
<td>landmark</td>
<td>gvidosigno</td>
<td>contrasigno</td>
</tr>
<tr>
<td>phrase</td>
<td>frazero</td>
<td>frase</td>
</tr>
<tr>
<td>sentence</td>
<td>stativo</td>
<td>periodo</td>
</tr>
<tr>
<td>stative</td>
<td>stative</td>
<td>stativo</td>
</tr>
<tr>
<td>trajector</td>
<td>altrfigilo</td>
<td>triettoria</td>
</tr>
<tr>
<td>transference</td>
<td>transfigilo</td>
<td>traslato</td>
</tr>
<tr>
<td>transferer</td>
<td>transfigilo</td>
<td>traslatore</td>
</tr>
<tr>
<td>verbal</td>
<td>verbipla</td>
<td>verbante</td>
</tr>
</tbody>
</table>
Bibliography

Eckhard Bick. Tagging and Parsing and Artificial Language: An Annotated Web-Corpus of Esperanto. In Davies et al. [2007]. 149

Bibliography

Detlev Blanke. *Interlinguistische Beiträge. Zum Wesen und zur Funktion internationaler Plansprachen*. Peter Lang, Frankfurt am Main u. a., 2006. Sabine Fiedler (Hg.). 152

Sélio Cecatto. La traduzione nell’uomo e nella macchina. *Civiltà delle macchine,* (5):55–61, 1961b. 46, 92, 93

André Cherfillo. La vortfarado en dek lecionoj. Speciale elpensita por la malgramatikumuloj. Eldonejo La Blanchetiére, FR-72320 Cougenard, 2003. 199, 229, 253

Thierry Coquand, Bengt Nordstrom, Jan M. Smith, and Bjorn Von Sydow. Type theory and programming. EATCS, 52:203–228, 1994. 332

Louis Couturat. *Opuscules et fragments inédits de Leibniz.* Alcan, Paris, 1903. 32, 152

Bibliography

Sabine Fiedler. Plansprache und Phrasologie. Peter Lang, Frankfurt am Main, 1999. 144

Bibliography

Francesca Gualandri. The relationship between natural languages and formalisms, December 2008. Personal communication. 332

Adolf Holzhaus. Provo de gramatiko de varjudan lingvo kaj alvokon al la juda intelektularo. Fondamento Esperanto, Helsinki, 1982. 152, 227

Kanzi Itó. senlegenda biografio de L. L. Zamenhof. Ludovikito, Kiotó, 1982. 152

Kanzi Itó, editor. unuij liberoj. Ludovikito, Kiotó, 1991. 146, 152

363

364
Bibliography

Fabrizio A. Pennacchietti. Sull’etimologia e sul significato della preposizione araba an, pages 283–306. In, Bodgan et al. [2005], 2005. 32

Fabrizio A. Pennacchietti. Come classificare le preposizioni? una nuova proposta. Quaderni del Laboratorio di Linguistica, 6.1–18, 2006b. 32, 40, 92

Claude Pinon. Esperanto: European or Asiatic Language?, volume 22A. Universala Esperanto-Asocio, Rotterdam, The Netherlands, 1981. 228

Bibliography

VictorSadler. Working with Analogical Semantics: Disambiguation Techniques in DLT. Number 5 in DLT. Foris Publications, Dordrecht, the Netherlands, 1989. 147

Klaus Schubert. Syntactic Tree structures in DLT. DLT Distribution Language Translation Series. Foris, Dortrecht, 1986. 147

Bibliography

Syntaró Tida. Kial multas lokaj adposicioj en esperanto? In Gotoo et al. [2007]. 175, 228

Sebastiano Timpanaro. La genesi del metodo del Lachmann. Liviana Editrice, Padova, 1990. 93

Humphrey Tonkin, Grant Goodall, Ian Richmond, Mark Fettes, and Tim Reagan. Esperanto corpus available online to researchers. Esperantic Studies, (16):2, 2005. 149

Federica Venier, editor. Relative e pseudorelative tra grammatica e testo. Edizioni dell’Orso, 2007. 94, 367

Bibliography

Seikô Yamasaki. Enkomundo en la japano. Fonto, Chapecó, Brasil, 2000. 94, 228
Index

actant, 29, 48, 49
adjacent, 22
adjunct, 103
adjunction, 103
adposition, 22
 basic level, 72
derivational, 116
false adpositions, 64, 66, 86, 121
lexical definition, 107
main, 269
Minus, 40
pattern, 42
phrasal adpositions, 72
phrasal level, 72
Plus, 40
proper, 116
zero adpositions, 39, 42, 44, 46, 75
adspace
 of English, 40, 43
 of Turkish, 82
 phrasal adspace, 74
adspace, 43
adtree, 24, 44
adpositional morphemes, 46
 arrow, 45
colours, 46
family of adtrees, 115, 166
hook, 45, 203
type, 45
adtype, 107
adverb, 103, 124
affixes
 general, 196
 static, 196
 verbal, 196
 agreement, 103
 allomorph, 117, 160
 allomorphy, 139
 anaphora, 111, 216, 235, 241, 251
 argument extra, 269
 valence, 269
 atom, 196
 axis
 paradigmatic axis, 101
 southeast-northwest, 46
 southwest-north-east, 46
 syntagmatic axis, 157
backtracking, 256
Basque, 52, 92
bold-face, 3
borrowing
calque, 156
importation, 156
calque, 156
CAT, 138
concatenation, 111, 216, 241, 251
Chinese, 26
circumstance, 103, 124
circumstantiation, 103
clause, 184
governor, 184
prepositional, 277
question, 184
relative, 183
collocation, 24, 31, 44
 of Esperanto, 157
 syntagmatic axis, 99

concept, 27, 30
conceptual space, 29
conceptualisation, 27
conceptualism, 26
construal, 29, 98, 111, 112, 137
 Esperanto, 166
construction, 48
content, 29
contrast, 31
convention
 for circumstantials, 54, 55
Phrasal Adtree Specification, 55
correlative, 183
C, 186
diathesis, 77
dictionary, 97
encyclopedia, 97, 246
equivalence, 101
equivalent, 39
Esperanto
 -ci, 212
 -ci, 204
 -ci, 213
 -ci, 177
 -ci, 206
 -ci, 212
 -ci, 214
 -ci, 207
 -ci, 213
 -ci, 205
 -ci, 207
 -ci, 212
 -ci, 212
 -ci, 219
 -ci, 219
 -ci, 170, 175
ci, 196
ekster, 170, 178
el, 170, 175
ek, 170, 175
en, 170, 175
esti, 202
far, 170
forma, 183
inter, 170, 178
je, 170, 174
kaj, 170
ki, 184
kontra, 170, 177
krom, 170, 181
kun, 170, 182
kvaza, 180
la, 170
malanta, 170, 177
malgra, 170, 180
numerical lexemes, 218
por, 170, 182
po, 220
por, 170, 181
post, 170, 178
preskaj, 180
preter, 170, 178
pri, 170, 182
pro, 170, 181
pro forma, 183
pronouns, 169, 215
sen, 170, 182
Index

valence, 48
 overvalence, 68
 saturation, 53
verb, 99

word, 98, 257
world model agnosticism, 30