Chapter 4

Bayesian Inference for Kendall’s Rank Correlation Coefficient

Abstract

This chapter outlines a Bayesian methodology to estimate and test the Kendall rank correlation coefficient τ. The nonparametric nature of rank data implies the absence of a generative model and the lack of an explicit likelihood function. These challenges can be overcome by modelling test statistics rather than data (Johnson, 2005). We also introduce a method for obtaining a default prior distribution. The combined result is an inferential methodology that yields a posterior distribution for Kendall’s τ.

Keywords: Bayes factor, nonparametric inference.

4.1 Introduction

One of the most widely used nonparametric tests of dependence between two variables is the rank correlation known as Kendall’s τ (Kendall, 1938). Compared to Pearson’s ρ, Kendall’s τ is robust to outliers and violations of normality (Kendall and Gibbons, 1990). Moreover, Kendall’s τ expresses dependence in terms of monotonicity instead of linearity and is therefore invariant under rank-preserving transformations of the measurement scale (Kruskal, 1958; Wasserman, 2006). As expressed by Harold Jeffreys (1961, p. 231): “(...) it seems to me that the chief merit of the method of ranks is that it eliminates departure from linearity, and with it a large part of the uncertainty arising from the fact that we do not know any form of the law connecting X and Y”. Here we apply the Bayesian inferential paradigm to Kendall’s τ. Specifically, we define a default prior distribution
on Kendall’s τ, obtain the associated posterior distribution, and use the Savage-
Dickey density ratio to obtain a Bayes factor hypothesis test (Dickey and Lientz,

4.1.1 Kendall’s τ

Let $X^n = (X_1, \ldots, X_n)$ and $Y^n = (Y_1, \ldots, Y_n)$ be two random vectors each con-
taining measurements of the same n units. For example, consider the association
between French and maths grades in a class of $n = 3$ children: Tina, Bob, and
Jim; let $x^n = (8, 7, 5)$ be their observed grades for a French exam and $y^n = (9, 6, 7)$
be their realised grades for a maths exam. For $1 \leq i < j \leq n$, each pair (i, j) is
defined to be a pair of differences $(x_i - x_j)$ and $(y_i - y_j)$. A pair is considered to
be concordant if $(x_i - x_j)$ and $(y_i - y_j)$ share the same sign, and discordant when
they do not. In our data example, Tina has higher grades on both exams than
Bob, which means that Tina and Bob are a concordant pair. Conversely, Bob has
a higher score for French, but a lower score for maths than Jim, which means Bob
and Jim are a discordant pair. The observed value of Kendall’s τ, denoted τ_{obs}, is
defined as the difference between the number of concordant and discordant pairs,
expressed as proportion of the total number of pairs:

$$\tau_{obs} = \frac{\sum_{1 \leq i < j \leq n} Q((x_i, y_i), (x_j, y_j))}{n(n-1)/2},$$

(4.1.1)

where the denominator represents the total number of pairs and Q is the concor-
dance indicator function:

$$Q((x_i, y_i)(x_j, y_j)) = \begin{cases}
-1 & \text{if } (x_i - x_j)(y_i - y_j) < 0, \\
+1 & \text{if } (x_i - x_j)(y_i - y_j) > 0.
\end{cases}$$

(4.1.2)

Table 4.1 illustrates the calculation for our small data example. Applying Eq. (4.1.1)
gives $\tau_{obs} = 1/3$, an indication of a positive correlation between French and maths
grades.

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>$x_i - x_j$</th>
<th>$y_i - y_j$</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>8-7</td>
<td>9-6</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8-5</td>
<td>9-7</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7-5</td>
<td>6-7</td>
<td>-1</td>
</tr>
</tbody>
</table>

Table 4.1: The pairs (i, j) for $1 \leq i < j \leq n$ and the concordance indicator
function Q for the data example where $x^n = (8, 7, 5)$ and $y^n = (9, 6, 7)$.

When $\tau_{obs} = 1$, all pairs of observations are concordant, and when $\tau_{obs} = -1$, all pairs are discordant. Kruskal (1958) provides the following interpretation of
Kendall’s τ: in the case of $n = 2$, suppose we bet that $y_1 < y_2$ whenever $x_1 < x_2$, and that $y_1 > y_2$ whenever $x_1 > x_2$; winning 1 after a correct prediction and
losing 1 after an incorrect prediction, the expected outcome of the bet equals τ.
Furthermore, Griffin (1958) has illustrated that when the ordered rank-converted
values of \(X \) are placed above the rank-converted values of \(Y \) and lines are drawn between the same numbers, Kendall’s \(\tau_{\text{obs}} \) is given by the formula:
\[
1 - \frac{4z}{n(n-1)},
\]
where \(z \) is the number of line intersections; see Fig. 4.1 for an illustration of this method using our example data of French and maths grades. These tools allows us to straightforwardly and intuitively calculate and interpret Kendall’s \(\tau \).

![French grades: 8 7 5, Ranks: 1 2 3, Math grades: 9 6 7, Ranks: 1 3 2.](image)

Figure 4.1: A visual interpretation of Kendall’s \(\tau_{\text{obs}} \) through the formula:
\[
1 - \frac{4z}{n(n-1)},
\]
where \(z \) is the number of intersections of the lines. In this case, \(n = 3 \), \(z = 1 \), and \(\tau_{\text{obs}} = 1/3 \).

Despite these appealing properties and the overall popularity of Kendall’s \(\tau \), a default Bayesian inferential paradigm is still lacking because the application of Bayesian inference to nonparametric data analysis is not trivial. The main challenge in obtaining posterior distributions and Bayes factors for nonparametric tests is that there is no generative model and no explicit likelihood function. In addition, Bayesian model specification requires the specification of a prior distribution, and this is especially important for Bayes factor hypothesis testing; however, for nonparametric tests it can be challenging to define a sensible default prior. Though recent developments have been made in two-sample nonparametric Bayesian hypothesis testing with Dirichlet process priors (Borgwardt and Ghahramani, 2009; Labadi et al., 2014) and Pólya tree priors (Chen and Hanson, 2014; Holmes et al., 2015), here we focus on a different approach, one that permits an intuitive and direct interpretation.

4.1.2 Modelling test statistics

In order to compute Bayes factors for Kendall’s \(\tau \) we start with the approach pioneered by Johnson (2005) and Yuan and Johnson (2008). These authors established bounds for Bayes factors based on the sampling distribution of the standardised value of \(\tau \), denoted by \(T^* \), which will be formally defined in Section 4.2.1. Using the Pitman translation alternative, where a non-centrality parameter is used to distinguish between the null and alternative hypotheses (Randles and Wolfe,
1979), Johnson and colleagues specified the following hypotheses:

\[H_0 : \theta = \theta_0, \]
\[H_1 : \theta = \theta_0 + \frac{\Delta}{\sqrt{n}}, \]

where \(\theta \) is the true underlying value of Kendall’s \(\tau \), \(\theta_0 \) is the value of Kendall’s \(\tau \) under the null hypothesis, and \(\Delta \) serves as the non-centrality parameter which can be assigned a prior distribution. The limiting distribution of \(T^* \) under both hypotheses is normal distributed (Hotelling and Pabs, 1936; Noether, 1955; Chernoff and Savage, 1958), that is,

\[H_0 : T^* \sim N(0, 1) \]
\[H_1 : T^* \sim N(\frac{3\Delta}{2}, 1). \]

The prior on \(\Delta \) is specified by Yuan and Johnson as

\[\Delta \sim N(0, g), \]

where \(g \) is used to specify the expectation about the size of the departure from the null-value of \(\Delta \). This leads to the following Bayes factor:

\[BF_{01}(d) = \sqrt{1 + \frac{9}{4g}} \exp \left(-\frac{gt^2}{2g + \frac{8}{9}} \right). \]

Next, Yuan and Johnson calculated an upper bound for \(BF_{10}(d) \), thus, a lower bound on \(BF_{01}(d) \), by maximising over the hyperparameter \(g \).

4.1.3 Challenges

Although innovative and compelling, the approach advocated by Yuan and Johnson (2008) does have a number of non-Bayesian elements, most notably the data-dependent maximisation over the hyperparameter \(g \) that results in a data-dependent prior distribution. Moreover, the definition of \(H_1 \) depends on \(n \): as \(n \to \infty \), \(H_1 \) and \(H_0 \) become indistinguishable and lead to an inconsistent inferential framework.

Our approach, motivated by the earlier work by Johnson and colleagues, sought to eliminate \(g \) not by maximisation but by a method we call “parametric yoking” (i.e., matching with a prior distribution for a parametric alternative). In addition, we redefined \(H_1 \) such that its definition does not depend on sample size. As such, \(\Delta \) becomes synonymous with the true underlying value of Kendall’s \(\tau \) when \(\theta_0 = 0 \).

4.2 Methods

4.2.1 Defining \(T^* \)

As mentioned above, Yuan and Johnson (2008) use the standardised version of \(\tau \), denoted \(T^* \) (Kendall, 1938) which is defined as

\[T^* = \frac{\sum_{1 \leq i < j \leq n} Q((X_i, Y_i), (X_j, Y_j))}{\sqrt{n(n-1)(2n+5)/18}}. \]
4.2. Methods

Here the numerator contains the concordance indicator function Q. Thus, T^* is not necessarily situated between the traditional bounds $[-1, 1]$ for a correlation; instead, T^* has a maximum of $\sqrt{\frac{9n(n-1)}{4n+10}}$ and a minimum of $-\sqrt{\frac{9n(n-1)}{4n+10}}$. This definition of T^* enables the asymptotic normal approximation to the sampling distribution of the test statistic (Kendall and Gibbons, 1990).

4.2.2 Prior distribution through parametric yoking

In order to derive a Bayes factor for τ we first determine a default prior for τ through what we term parametric yoking. In this procedure, a default prior distribution is constructed by comparison to a parametric alternative. In this case, a convenient parametric alternative is given by Pearson’s correlation for bivariate normal data. Ly et al. (2016a) use a symmetric stretched beta prior distribution ($\alpha = \beta$) on the domain $(-1, 1)$, that is,

$$\pi(\rho) = \frac{2^{1-2\alpha}}{B(\alpha, \alpha)}(1 - \rho^2)^{(\alpha-1)}, \quad \rho \in (-1, 1),$$

(4.2.2)

where B is the beta function. For bivariate normal data, Kendall’s τ is related to Pearson’s ρ by Greiner’s relation (Greiner, 1909; Kruskal, 1958):

$$\tau = \frac{2}{\pi} \arcsin(\rho).$$

(4.2.3)

We use this relationship to transform the beta prior in Eq. (4.2.2) on ρ to a prior on τ, which leads to

$$\pi(\tau) = \pi \left(\frac{2^{-2\alpha}}{B(\alpha, \alpha)}\cos\left(\frac{\pi\tau}{2}\right)^{(2\alpha-1)}\right), \quad \tau \in (-1, 1).$$

(4.2.4)

In the absence of strong prior beliefs, Jeffreys (1961) proposed a uniform distribution on ρ, that is, a stretched beta with $\alpha = \beta = 1$. This choice induces a non-uniform distribution on τ, i.e.,

$$\pi(\tau) = \frac{\pi}{4} \cos\left(\frac{\pi\tau}{2}\right).$$

(4.2.5)

In general, values of $\alpha > 1$ increase the prior mass near $\tau = 0$, whereas values of $\alpha < 1$ decrease the prior mass near $\tau = 0$. When the focus is on parameter estimation instead of hypothesis testing, we may follow Jeffreys (1961) and use a stretched beta prior on ρ with $\alpha = \beta = \frac{1}{2}$. As is easily confirmed by entering these values in Eq. (4.2.4), this choice induces a uniform prior distribution on Kendall’s τ.\(^1\) The parametric yoking framework can be extended to other prior distributions that exist for Pearson’s ρ (e.g., the inverse Wishart distribution; Berger and Sun, 2008; Gelman et al., 2014), by transforming ρ with the inverse of the expression given in Eq. (4.2.3), namely,

$$\rho = \sin\left(\frac{\pi\tau}{2}\right).$$

(4.2.6)

\(^1\)Additional examples and figures of the stretched beta prior, including cases where $\alpha \neq \beta$, are available online at https://osf.io/b9qhj/.
4.2.3 Posterior distribution and Bayes factor

Removing \sqrt{n} from the specification of H_1 by substituting $\Delta \sqrt{n}$ for Δ, we get an (approximate) normal distribution for T^* under H_1 with mean $\mu = \frac{3}{2} \Delta \sqrt{n}$ and standard deviation $\sigma = 1$, thus, the density of T^* at t^* is given by

$$f(t^* | \theta_0 + \Delta) = \frac{1}{\sqrt{2\pi}} \exp \left(- \frac{1}{2} [t^* - \frac{3}{2} \Delta \sqrt{n}]^2 \right). \quad (4.2.7)$$

Filling in the observed value for T^* and combining this normal likelihood function with the prior from Eq. (4.2.4) then yields a posterior distribution for Kendall’s τ. Next, Bayes factors can be computed as

$$BF_{01}(d) = \frac{p(t^* | \theta_0)}{\int f(t^* | \theta_0 + \Delta) \pi(\Delta) d\Delta}, \quad (4.2.8)$$

which in the case of Kendall’s τ translates to

$$BF_{01}(d) = \frac{\exp(-\frac{1}{2} t^{*2})}{\int_{-1}^{1} \exp \left(- \frac{1}{2} [t^* - \frac{3}{2} \tau \sqrt{n}]^2 \right) \frac{2^\alpha}{\Gamma(\alpha, \alpha)} \cos(\frac{\pi \tau}{2})^{2\alpha-1} d\tau}. \quad (4.2.9)$$

4.2.4 Verifying the asymptotic normality of T^*

Our method relies on the asymptotic normality of T^*, a property established mathematically by Hoeffding (1948). For practical purposes, however, it is insightful to assess the extent to which this distributional assumption is appropriate for realistic sample sizes. By considering all possible permutations of the data, deriving the exact cumulative density of T^*, and comparing the densities to those of a standard normal distribution, Ferguson et al. (2000) concluded that the normal approximation holds under H_0 when $n \geq 10$. But what if H_0 is false?

Here we report a simulation study designed to assess the quality of the normal approximation to the sampling distribution of T^* when H_1 is true. With the use of copulas, 100,000 synthetic data sets were created for each of several combinations of Kendall’s τ and sample size n. For each simulated data set, the Kolmogorov-Smirnov statistic was used to quantify the fit of the normal approximation to the sampling distribution of T^*. Fig. 4.2 shows the Kolmogorov-Smirnov statistic as a function of n, for various values of τ when data sets were generated from a bivariate normal distribution (i.e., the normal copula). Similar results were obtained using Frank, Clayton, and Gumbel copulas. As is the case under H_0 (e.g., Ferguson et al., 2000; Kendall and Gibbons, 1990), the quality of the normal approximation increases exponentially with n. Furthermore, larger values of τ necessitate larger values of n to achieve the same quality of approximation.

The means of the normal distributions fit to the sampling distribution of T^* are situated at the point $\frac{3}{2} \Delta \sqrt{n}$. The data sets from this simulation can also be used to examine the variance of the normal approximation. Under H_0 (i.e., $\tau = 0$),

2For more information on copulas see Nelsen (2006), Genest and Favre (2007), and Colonius (2016).

3R-code, plots, and further details are available online at https://osf.io/b9qhj/.
4.3. Results

Figure 4.2: Quality of the normal approximation to the sampling distribution of T^*, as assessed by the Kolmogorov-Smirnov statistic. As n grows, the quality of the normal approximation increases exponentially. Larger values of τ necessitate larger values of n to achieve the same quality of approximation. The grey horizontal line corresponds to a Kolmogorov-Smirnov statistic of 0.038 (obtained when $\tau = 0$ and $n = 10$), for which Ferguson et al. (2000, p. 589) deemed the quality of the normal approximation to be “sufficiently precise for practical purposes”.

As shown in the online appendix, our simulation results provide specific values for the variance which respect this upper bound. This result has ramifications for the Bayes factor. As the test statistic moves away from 0, the variance falls below 1, and the posterior distribution will be more peaked on the value of the test statistic than when the variance is assumed to equal 1. This results in increased evidence in favour of H_1, so that our proposed procedure is somewhat conservative. However, for $n \geq 20$, the changes in variance will only surface in cases where there already exists substantial evidence for H_1 (i.e., $BF_{10}(d) \geq 10$).

4.3 Results

4.3.1 Bayes factor behaviour

Now that we have determined a default prior for τ and combined it with the specified Gaussian likelihood function, computation of the posterior distribution and the Bayes factor becomes feasible. For an uninformative prior on τ (i.e.,
\(\alpha = \beta = 1 \), Fig. 4.3 illustrates \(BF_{10}(d) \) as a function of \(n \), for three values of \(\tau_{\text{obs}} \). The lines for \(\tau_{\text{obs}} = 0.2 \) and \(\tau_{\text{obs}} = 0.3 \) show that \(BF_{10}(d) \) for a true \(H_1 \) increases exponentially with \(n \), as is generally the case. For \(\tau_{\text{obs}} = 0 \), the Bayes factor decreases as \(n \) increases.

Figure 4.3: Relation between \(BF_{10}(d) \) and sample size \((3 \leq n \leq 150)\) for three values of Kendall’s \(\tau \).

4.3.2 Comparison to Pearson’s \(\rho \)

In order to put the result in perspective, the Bayes factors for Kendall’s tau (i.e., \(BF_{10}^\tau(d) \)) can be compared to those for Pearson’s \(\rho \) (i.e., \(BF_{10}^\rho(d) \)). The Bayes factors for Pearson’s \(\rho \) are based on Jeffreys (1961), see also Ly et al., 2016a, who used the uniform prior on \(\rho \). Fig. 4.4 shows that the relationship between \(BF_{10}^\tau(d) \) and \(BF_{10}^\rho(d) \) for normal data is approximately linear as a function of sample size. In addition, and as one would expect due to the loss of information when continuous values are converted to coarser ranks, \(BF_{10}^\tau(d) < BF_{10}^\rho(d) \) in the case of evidence in favour of \(H_1 \) (left panel of Fig. 4.4). When evidence is in favour of \(H_0 \), i.e. \(\tau = 0 \), \(BF_{10}^\tau(d) \) and \(BF_{10}^\rho(d) \) perform similarly (right panel of Fig. 4.4).

4.3.3 Real data example

Willerman et al. (1991) set out to uncover the relation between brain size and IQ. Across 20 participants, the authors observed a Pearson’s correlation coefficient of \(r = 0.51 \) between IQ and brain size, measured in MRI count of grey matter pixels. The data are presented in the top left panel of Fig. 4.5. Bayes factor hypothesis testing of Pearson’s \(\rho \) yields \(BF_{10}^\rho(d) = 5.16 \), which is illustrated in the middle left panel. This means that the data are 5.16 times as likely to occur under \(H_1 \) than under \(H_0 \). When applying a log-transformation on the MRI counts (after subtracting the minimum value minus 1), however, the linear relation between IQ and brain size is less strong. The top right panel of Fig. 4.5 presents the effect of
4.4. Concluding comments

We outlined a nonparametric Bayesian framework for inference about Kendall’s tau based on modelling test statistics and by assigning a prior by means of a parametric yoking procedure. The framework produces a posterior distribution for Kendall’s tau, and –via the Savage-Dickey density ratio test– also yields a

Figure 4.4: Relation between the Bayes factors for Pearson’s ρ and Kendall’s $\tau = 0.2$ (left) and Kendall’s $\tau = 0$ (right) as a function of sample size (i.e., $3 \leq n \leq 150$). The data are normally distributed. Note that the left panel shows $BF_{10}(d)$ and the right panel shows $BF_{01}(d)$. The diagonal line indicates equivalence.

this monotonic transformation on the data. The middle right panel illustrates how the transformation decreases $BF_{10}^{0}(d)$ to 1.28. The bottom left panel presents our Bayesian analysis on Kendall’s τ, which yields a $BF_{10}^{7}(d)$ of 2.17. Furthermore, the bottom right panel shows the same analysis on the transformed data, illustrating the invariance of Kendall’s τ against monotonic transformations: the inference remains unchanged, which highlights one of Kendall’s τ most appealing features.
Figure 4.5: Bayesian inference for Kendall’s τ illustrated with data on IQ and brain size (Willerman et al. 1991). The left column presents the relation between brain size and IQ, analysed using Pearson’s ρ (middle panel) and Kendall’s τ (bottom panel). The right column presents the results after a log transformation of brain size. Note that the transformation affects inference for Pearson’s ρ, but does not affect inference for Kendall’s τ.

$\text{BF}_{10} = 5.158$ $\text{BF}_{01} = 0.194$ $\text{median} = 0.493$ $95\% \text{ CI: } [0.117, 0.774]$

$\text{BF}_{10} = 1.276$ $\text{BF}_{01} = 0.784$ $\text{median} = 0.365$ $95\% \text{ CI: } [-0.042, 0.694]$

$\text{BF}_{10} = 2.170$ $\text{BF}_{01} = 0.461$ $\text{median} = 0.296$ $95\% \text{ CI: } [-0.121, 0.647]$
Bayes factor that quantifies the evidence for the absence of a correlation.

Our general procedure (i.e., modelling test statistics and assigning a prior through parametric yoking) is relatively general and may be used to facilitate Bayesian inference for other nonparametric tests as well. For instance, Serfling (1980) offers a range of test statistics with asymptotic normality to which our framework may be expanded, whereas Johnson (2005) has explored the modelling of test statistics that have non-Gaussian limiting distributions.