Prediction of spatially variable unsaturated hydraulic conductivity using scaled particle-size distribution functions
Nasta, P.; Romano, N.; Assouline, S; Vrugt, J.A.; Hopmans, J.W.

Published in:
Water Resources Research

DOI:
10.1002/wrcr.20255

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Prediction of spatially variable unsaturated hydraulic conductivity using scaled particle-size distribution functions

Paolo Nasta,1,4 Nunzio Romano,2 Shmuel Assouline,3 Jasper A. Vrugt,4 and Jan W. Hopmans5

Received 12 September 2012; revised 10 April 2013; accepted 12 April 2013; published 26 July 2013.

[1] Simultaneous scaling of soil water retention and hydraulic conductivity functions provides an effective means to characterize the heterogeneity and spatial variability of soil hydraulic properties in a given study area. The statistical significance of this approach largely depends on the number of soil samples collected. Unfortunately, direct measurement of the soil hydraulic functions is tedious, expensive and time consuming. Here we present a simple and cost-effective hybrid scaling approach that combines the use of ancillary information (e.g., particle-size distribution and soil bulk density) with direct measurements of saturated soil water content and saturated hydraulic conductivity. Our results demonstrate that the presented approach requires far fewer laboratory measurements than conventional scaling methods to adequately capture the spatial variability of soil hydraulic properties.

1. Introduction

[2] The predictive ability and utility of large-scale distributed hydrologic models heavily relies on a detailed description of the spatial variability of the soil hydraulic properties, namely the water retention function (WRF) and the unsaturated hydraulic conductivity function (HCF). The WRF relates the volumetric water content \(\theta \) (L3 L−3) to the corresponding soil water matric head \(h \) (L). The HCF relates the unsaturated hydraulic conductivity \(K \) (LT−1) to the soil matric head or water content. The spatial distribution of WRF and HCF can be characterized with effective soil hydraulic parameters [Zhu and Mohanty, 2002; Zhu and Mohanty, 2003; Vrugt et al., 2004; Mohanty and Zhu, 2007]. Although this approach provides a reasonable description of the lumped behavior of the soil system, it does not accurately characterize the inherent spatially distributed soil water fluxes.

[3] In the past decades, the scaling approach has been developed as an effective method to describe the spatial variability of the soil hydraulic properties in a given study area [Warwick and Nielsen, 1980; Tillotson and Nielsen, 1984; Clausnitzer et al., 1992]. This approach was introduced in soil physics by the seminal paper of Miller and Miller [1956] and is based on the assumption that geometrically similar porous media differ only by a characteristic length of their respective pore-size distributions, which in turn provide a good proxy for the soil hydraulic properties. Spatial variability is defined through the statistical distribution of scaling factors that relate the soil hydraulic functions sampled in different locations to the corresponding average hydraulic properties of a reference porous medium (representative for the study area). This geometric scaling approach has been successfully applied for Kosugi’s soil hydraulic functions [Kosugi, 1996], assuming that scaling factors are lognormally distributed in the sampled soil domain. This includes individual scaling of soil WRFs only [Kosugi and Hopmans, 1998; Hayashi et al., 2009] or simultaneous scaling of soil water retention and unsaturated HCFs [Hendrayanto et al., 2000; Tidi et al., 2001].

[4] Notwithstanding this progress made, the inherent spatial variability of soils necessitates a very large number of samples to accurately characterize the hydraulic properties of the considered spatial domain [Hopmans et al., 2002a; Minasny and McBratney, 2007; Vereecken et al., 2007]. Unfortunately, direct measurement of the soil hydraulic properties (hereafter referred to as primary data or PD) is time consuming and tedious [Hopmans et al., 2002b]. Alternatively, pedotransfer functions (PTFs) can be used to indirectly estimate the soil hydraulic functions from soil physical and chemical data (hereafter defined as secondary data or SD) that are more readily available because of their ease in collection and simplicity in measurement [Haverkamp et al., 2002]. Most PTFs estimate the soil hydraulic functions through mathematical and statistical relations by using oven-dry bulk density, organic carbon content, and soil texture [Pachepsky and Rawls, 2004]. We emphasize that PTFs necessitate empirical
calibration procedures, and their validity is restricted only for the tested database [Chirico et al., 2007]. The majority of PTFs presented in the literature use simple nonlinear regression equations to relate the hydraulic properties to basic soil texture and structure data [Tietje and Tapkenheirichs, 1993; Weynants et al., 2009; Vereecken et al., 2011]. Such equations are easy to implement and are often favored over more complex fitting methods, such as artificial neural networks [Schaap and Bouten, 1996; Schaap et al., 1998].

Although PTFs may provide good estimates of the soil hydraulic properties [Romano, 2004], they depend on empirical relationships that do not offer physical understanding in the interpretation of their flaws [Haverkamp et al., 2002]. Alternatively, physical-empirical PTFs rely on pore-scale physical relationships that are adjusted through empirical calibrations [Chan and Govindaraju, 2004; Hwang and Choi, 2006; Nimmo et al., 2007]. Specifically, Arya and Paris [1981] proposed a method (hereinafter defined as AP method) to estimate the soil pore-size distribution by using the soil particle-size distribution (PSD) and oven-dry bulk density. The AP method postulates the fundamental assumption of shape similarity between WRF and HCF. This recently, Blank et al. [2009] proposed a geometric scaling approach that complements SD (PSD and oven-dry bulk density) with easily obtainable PD (saturated water content) to assess the spatial variability of both WRF and HCF. The main purpose of this work is to offer a methodological approach to significantly reduce experimental effort.

The remainder of this paper is organized as follows. In section 2.1, the conventional simultaneous scaling method is described using laboratory measurements of the soil hydraulic properties (PD) to obtain the reference soil WRF (REF-WRF_Pd) and HCF (REF-HCF_Pd), respectively, and the corresponding scaling factors \(\delta_{SD} \). The experimental data are subsequently described in section 3. In section 4, the results of our new hybrid scaling approach are compared against those of the conventional scaling method. Finally, section 5 concludes with a summary of the analysis presented herein.

2. Theory

2.1. Simultaneous Scaling Using PD

Assuming soil to be represented by a randomly distributed bundle of intersecting cylindrical capillary tubes (series-parallel statistical model) with a probability density function (pdf) of soil pore radii \(p(r) (L^{-1}) \)), the volumetric water content of the water-filled pores of radii \(r \rightarrow r+dr \) is computed from \(d\theta(r) = p(r)dr \) \((L^{-1}L) \) [Brutsaert, 2000]. Kosugi [1996] proposed to describe the \(p(r) \) function using a log-normal probability law with mean \(\ln r_m \) (\(\ln \) indicates the natural logarithm) and standard deviation (STD) \(\sigma \):

\[
\text{pdf}(ln r) = \frac{\theta - \theta_c}{\sigma \sqrt{2\pi}} \exp \left(\frac{-(ln r - \ln \theta_c)^2}{2\sigma^2} \right).
\]

where \(\theta_c \) \((L^3 \text{L}^{-3}) \) and \(\theta_s \) \((L^3 \text{L}^{-3}) \) represent the saturated and residual soil water content, respectively. The soil water matric head \(h \) \((L) \) is assumed to be proportional to the inverse of the equivalent pore radius \(r \) \((L) \) through the Young-Laplace capillary equation (i.e., \(r \approx 0.149/h \) if \(r \) and \(h \) are expressed in units of centimeters). The soil WRF \(S_r(ln h) \) is described as follows:

\[
S_r(ln h) = \frac{\theta - \theta_s}{\theta_c - \theta_s} - \frac{1}{2} \text{erfc} \left(\frac{\ln h - \ln \theta_m}{\sigma \sqrt{2}} \right).
\]

where erfc represents the complementary error function, \(\ln h_m \) and \(\sigma \) denote the mean and STD of \(\ln h \), respectively, and \(S_r \) represents the degree of saturation that varies from 0 (when \(\theta = \theta_s \)) to 1 (when \(\theta = \theta_c \)). The \(\ln \theta_m \) value is the median matric head corresponding to \(S_r = 0.5 \) [Kosugi, 1996; Kosugi et al., 2002].

According to Mualem [1976], the relative hydraulic conductivity \(K_r(S_r) \) is described as

\[
K_r(S_r) = \frac{K_r(S_0)}{K_c} = T(S_r)G(S_r) \left(\int_0^{S_0} \frac{1}{h} dS \right)^2 = S_r^2 \left(\int_0^{S_0} \frac{1}{h} dS \right)^2,
\]

where \(K_r (L \text{T}^{-1}) \) denotes the saturated hydraulic conductivity, \(T(S_r) \) is a tortuosity factor that corrects for the effective path length of the water-conducting noncylindrical tubes, and \(G(S_r) \) accounts for the connectivity among the water-conducting pores [Mualem, 1976; Touma, 2009; Lebeau and Konrad, 2010]. Note that the relative hydraulic conductivity \(K_r \) varies between 0 (when \(\theta = \theta_s \) or \(S_r = 0 \)) and 1 (when \(\theta = \theta_c \) or \(S_r = 1 \)).

The power of 2 in equation (3) originates from the assumption that the pore configuration can be replaced by a pair of capillary elements whose lengths are proportional to
their respective radii. Mualem [1976] simplified the relation in equation (3) by combining \(T(S_c) \) and \(G(S_c) \) into a single factor \(S_c^\alpha \), where the exponent \(\alpha \) enables the tortuosity connectivity to change as a function of soil water content. The value of the power \(\alpha \) depends on the specific soil-fluid properties and varies considerably among soils [Peters et al., 2011]. Based on a data set of 45 soils, Mualem [1976] proposed an optimal value of \(\alpha = 0.5 \). However, Leij et al. [1997] obtained a mean value of \(\alpha = -0.72 \) using another data set of 401 soils.

[11] Alternatively, Assouline [2001, 2005] proposed a different analytical relationship for the unsaturated HCF that incorporates the tortuosity and connectivity factors into a single power value \(\eta \):

\[
K_r(S_c) = \left(\int_0^{S_c} \frac{1}{h} \frac{dS_c}{S_c^\eta} \right)^{\frac{1}{\eta}}.
\]

(4)

[12] If we now insert Kosugi’s water retention relation (i.e., equation (2)) into equation (4), we obtain the following expression for the relative HCF:

\[
K_r(S_c) = \left\{ \frac{1}{2} \text{erfc} \left[\frac{\text{erfc}^{-1}(2S_c) + \sigma}{\sqrt{2}} \right] \right\}^{\frac{1}{\eta}}.
\]

(5)

with parameter \(\eta \) hereafter referred to as the conductivity parameter.

[13] The scaling approach provides a convenient way to coalesce a group of j soil hydraulic properties onto a single reference hydraulic function [Kosugi and Hopmans, 1998; Tuli et al., 2001]. The reference soil WRF (REF-WRF) \(S_c(h) \) and the reference relative HCF (REF-HCF) \(K_r(S_c) \) are described by the following two parametric relations:

\[
S_c(h) = \frac{1}{2} \text{erfc} \left[\frac{\ln h - \ln h_m}{\sigma \sqrt{2}} \right]
\]

(6)

and

\[
K_r(S_c) = \left\{ \frac{1}{2} \text{erfc} \left[\frac{\text{erfc}^{-1}(2S_c) + \sigma}{\sqrt{2}} \right] \right\}^{\frac{1}{\eta}}.
\]

(7)

where \(\ln h_m, \sigma \), and \(\eta \) are the arithmetic mean values of all \(\ln h, \sigma \), and \(\eta \) values, respectively.

[14] The geometric similarity of Miller and Miller [1956] dictates the median pore radius, \(r_m,j \), as the characteristic length of the pore-size distribution of each soil sample \(j \). The scaling approach identifies a representative pore-size distribution for the entire soil domain with corresponding mean value of \(\ln r_m,j \) (ln \(r_m \)). Provided that \(r_m,j \) and \(h_m,j \) (as well as \(\ln r_m \) and \(\ln h_m \)) are linked by the capillary law, the scaling factors \(\delta_j \) are defined as follows [Miller and Miller, 1956; Kosugi and Hopmans, 1998]:

\[
\delta_j = \frac{r_m,j}{r_m} = \frac{h_m}{h_m,j}.
\]

(8)

[15] The scaling factors quantify the relative deviation (RD) of the \(r_m,j \) values pertaining to different locations with respect to the \(r_m \) value referred to the study area. The resulting distribution of the scaling factors will be assumed lognormal with the constraint that the mean value (\(\mu \)) of the log-transformed scaling factors is null, \(\mu (\ln \delta_j) = 0 \) [Kosugi and Hopmans., 1998]. Therefore, the geometric scaling describes the spatial variability of soil hydraulic properties through the reference hydraulic functions and the statistical distribution of scaling factors. A key advantage of this method is that one can directly draw scaling factors from the lognormal pdf to rapidly characterize the spatial variability of the soil hydraulic functions in large spatial domains [Nasta et al., 2013].

[16] The scaled soil water retention curves can now be expressed as

\[
S_c[\ln (\delta_j h)] = \frac{1}{2} \text{erfc} \left[\frac{\ln (\delta_j h) - \ln h_m}{\sigma \sqrt{2}} \right].
\]

(9a)

and the scaled unsaturated HCFs [Miller and Miller, 1956; Tuli et al., 2001] as

\[
\delta_j^{-2}K_r(S_c) = \left\{ \frac{1}{2} \text{erfc} \left[\frac{\text{erfc}^{-1}(2S_c) + \sigma}{\sqrt{2}} \right] \right\}^{\frac{1}{\eta}}.
\]

(9b)

[17] The parameters \(h_m,j, \sigma_j, \theta_{r,j} \), and \(\eta_j \) (hereafter indicated with the subscript PD) have to be estimated directly from the PD (water retention and hydraulic conductivity data points). While parameters \(\theta_{r,j} \) and \(K_{r,j} \) are easily measured, SD help in alleviating the demanding task of measuring the unsaturated hydraulic properties. The next section will introduce the main elements of a hybrid scaling approach that combines primary and SD to describe the spatial variability of the WRF and HCF.

2.2. Simultaneous Scaling Using SD

[18] We assume that the PSD function is described by Buchan’s equation [Buchan, [1989], Bah et al. [2009], Table 2]:

\[
W(\ln D) = \frac{1}{2} \text{erfc} \left[\frac{\ln D_m - \ln D}{\sigma_{PSD} \sqrt{2}} \right],
\]

(10)

where \(W(M^{-1}) \) defines the solid mass fraction associated with particles of diameter size \(D \), and \(\ln D_m \) and \(\sigma_{PSD} \) are the mean and STD of the log-transformed soil particle diameters, respectively. Note that equation (10) has an analytical form similar to Kosugi’s WRF, as defined by equation (2). The number of solid particles \(n_i \) (\(M^{-1} \)) for each soil particle diameter class \(i \) is calculated from

\[
n_i = \frac{6 W_i}{\pi D_i^3 \rho_s},
\]

(11)

where \(\rho_s \) (\(M L^{-3} \)) represents the soil particle density, which hereafter is assumed to be equal to 2.65 g cm\(^{-3}\). The pore radius \(r_i \) associated with the particle diameter \(D_i \) is calculated as follows [Arya and Paris, 1981]:

\[
r_i = \left(\frac{2 \pi \rho_s}{3} \right)^{\frac{1}{3}} D_i\left(1 - n_i \right)
\]

(12a)
The estimated retention data pairs corresponding to the diameter class $D_{i,j}$ are supposed equivalent $h_{i,j}$ and $\sigma_{i,j}$ are the mean values of the soil texture parameters, oven-dry bulk density, open porosity, and hydraulic conductivity, respectively. The measured PSD functions with the average sand, silt, and clay contents of 44.4%, 44.5%, and 11.1%, respectively, and corresponding STDs of 2.2 (sand), 1.6 (silt), and 2.2 (clay). Note that these soil properties exhibit a rather low variability (see CV values in Table 1). Figure 1 presents the measured PSD functions with the average sand, silt, and clay contents of 44.4%, 44.5%, and 11.1%, respectively, and corresponding STDs of 2.2 (sand), 1.6 (silt), and 2.2 (clay).

The undisturbed soil core was slowly wetted from the bottom, until reaching its complete saturation. The saturated water content θ_s (cm3 cm$^{-3}$) was measured by the gravimetric method [Topp and Ferré, 2002], whereas the saturated hydraulic conductivity K_s (cm h$^{-1}$) was determined by the falling-head method [Reynolds and Elrick, 2002]. For each soil core, the evaporation method enabled the simultaneous determination of the soil water retention θ (h) and hydraulic conductivity $K(h)$ data points [Wendroth et al., 1993; Peters and Durner, 2008]. During the evaporation experiments, matric head values at the soil depths of 3.0 cm and 6.0 cm were measured at irregular time intervals using horizontally inserted microtensiometers (measuring matric heads in the range of -600 cm < h < 0 cm) [Ciollaro and Romano, 1995; Romano and Santini, 1999].

Table 1. Statistical Properties of Sand, Silt, and Clay Contents, Oven-Dry Bulk Density (ρ_d), and Soil Porosity (ε), and Optimized Parameters of Buchan’s Relation ($\ln D_{m,j}$ and $\sigma_{PSD,j}$) for the 84 Soil Samples Collected in the Study Site

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sandy (%)</th>
<th>Silty (%)</th>
<th>Clays (%)</th>
<th>$\ln D_m$ (cm)</th>
<th>σ_{PSD}</th>
<th>ρ_d (g cm$^{-3}$)</th>
<th>ε (cm3 cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>44.36</td>
<td>44.48</td>
<td>11.16</td>
<td>-5.64</td>
<td>2.36</td>
<td>1.14</td>
<td>0.54</td>
</tr>
<tr>
<td>STD</td>
<td>2.21</td>
<td>1.60</td>
<td>2.22</td>
<td>0.14</td>
<td>0.15</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>CV (%)</td>
<td>4.98</td>
<td>3.61</td>
<td>19.90</td>
<td>2.47</td>
<td>6.49</td>
<td>5.79</td>
<td>4.83</td>
</tr>
<tr>
<td>min</td>
<td>40.07</td>
<td>40.57</td>
<td>6.69</td>
<td>-5.94</td>
<td>2.04</td>
<td>0.96</td>
<td>0.49</td>
</tr>
<tr>
<td>max</td>
<td>49.18</td>
<td>47.34</td>
<td>15.66</td>
<td>-5.34</td>
<td>2.66</td>
<td>1.28</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Table 2. Mean (μ), Standard Deviation (STD), Coefficient of Variation (CV), Maximum (max) and Minimum (min) Values of the Measured and the Optimized Soil Hydraulic Parameters, and the Scaling Factors ($\ln \varepsilon_{PD}$) for the 84 Soil Samples

<table>
<thead>
<tr>
<th>Parameter</th>
<th>θ_s (cm3 cm$^{-3}$)</th>
<th>K_s (cm h$^{-1}$)</th>
<th>$h_{n,PD}$ (cm)</th>
<th>σ_{PD}</th>
<th>θ_{PD}</th>
<th>θ_{PSD} (cm3 cm$^{-3}$)</th>
<th>$\ln \varepsilon_{PD}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.53</td>
<td>2.00</td>
<td>5.47</td>
<td>1.90</td>
<td>1.98</td>
<td>0.13</td>
<td>0</td>
</tr>
<tr>
<td>STD</td>
<td>0.02</td>
<td>0.72</td>
<td>0.32</td>
<td>0.28</td>
<td>0.39</td>
<td>0.02</td>
<td>0.33</td>
</tr>
<tr>
<td>CV (%)</td>
<td>4.73</td>
<td>35.75</td>
<td>5.93</td>
<td>14.83</td>
<td>19.52</td>
<td>16.15</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>0.46</td>
<td>-0.29</td>
<td>4.70</td>
<td>1.45</td>
<td>0.90</td>
<td>0.03</td>
<td>-1.25</td>
</tr>
<tr>
<td>max</td>
<td>0.60</td>
<td>3.50</td>
<td>6.72</td>
<td>3.20</td>
<td>2.87</td>
<td>0.17</td>
<td>0.77</td>
</tr>
</tbody>
</table>
All data were recorded automatically and preprocessed using a data logger. For each soil sample \(j\), the hydraulic parameters \(\ln h_{m,j}\), \(PD_{j}\), \(\eta_{PD,j}\), and \(\theta_{e,j}\) in equations (2) and (5) (included in the vector \(\mathbf{p}_{PD}\)) were derived using the MATLAB Optimization Toolbox by minimizing the residuals between observed and fitted soil data included in the following objective function [Simunek and Hopmans, 2002]:

\[
\min_{\mathbf{p}_{PD}} \Phi(\mathbf{p}_{PD}) = \sum_{j=1}^{n_{PD}} [\theta(h_{j}) - \theta(h_{j}, \mathbf{p}_{PD})]^2 + \xi \sum_{k=1}^{n_{HCF}} [\log_{10}K_{s}(h_{k}) - \log_{10}K_{s}(h_{k}, \mathbf{p}_{PD})]^2,
\]

where \(\theta(h_{j})\) and \(\theta(h_{j}, \mathbf{p}_{PD})\) denote the observed and modeled water retention values, respectively, whereas \(\log_{10}[K_{s}(h_{k})]\) and \(\log_{10}[K_{s}(h_{k}, \mathbf{p}_{PD})]\) are the observed and modeled decimal logarithms of the relative hydraulic conductivity values, respectively, \(n_{WRF}\) and \(n_{HCF}\) denote the number of observed data pairs for the water retention and relative hydraulic conductivity, respectively. The saturated water content \(\theta_{s,j}\) and the saturated hydraulic conductivity \(K_{s,j}\) are held fixed at their respective laboratory-measured values. The weighting factor \(\xi\) is computed as follows:

\[
\xi = \frac{n_{HCF} \sum_{k=1}^{n_{HCF}} \theta_{s}(h_{k})}{n_{WRF} \sum_{j=1}^{n_{PD}} \log_{10}K_{s}(h_{j})},
\]

ensuring that both data types contribute to the objective function with a virtual equal weight.

4. Results and Discussion
4.1. Simultaneous Scaling From PD

Table 2 presents some basic statistical indices (mean, STD, CV, minimum and maximum values) of the measured \((\ln h_{m,j}, \sigma_{PD,j}, \eta_{PD,j}, \theta_{e,j}, PD)\) and optimized \((\ln h_{m,j}, PD, \ln \delta_{PD}, \ln K_{s,j}, PD)\) soil hydraulic parameters featuring in equations (2) and (5), together with those derived for the scaling factors \(\ln \delta_{PD}\) calculated from equation (8). For the considered data set, the highest variability occurs, as expected, for the saturated hydraulic conductivity parameter \(\ln K_{s,j}\), but also for parameter \(\eta_{PD}\), with CV of about 36% and 20%, respectively. It is interesting to note that the CV of \(\ln K_{s,j}\) is about twice the value of \(\ln \delta_{PD}\), which is an indicator of the pore-size characteristics. Simultaneous scaling results for the directly measured soil hydraulic properties (PD) are presented in Figure 2. Solid black lines in Figures 2c and 2d represent the mean reference soil hydraulic functions (REF-WRFPD and REF-HCFPD), whereas the open circles indicate both unscaled (Figures 2a and 2b) and scaled WRFPD (Figure 2c) and HCFPD (Figure 2d) data pairs, respectively. The scaling theory assumes soil geometric

Figure 1. Measured PSDs with five diameter classes determined by the sieving method for sand (0.005 cm < \(D\) < 0.2 cm) and six diameter classes determined by the hydrometer method for silt and clay \((D < 0.005\) cm).

Figure 2. Simultaneous scaling with PD: (a) unscaled WRFPD, (b) unscaled HCFPD, (c) scaled WRFPD, and (d) scaled HCFPD. The black solid lines represent the REF-WRFPD (Figure 2c) and REF-HCFPD (Figure 2d), respectively. The RMSE values calculated in equation (15) are also reported.
the degree of saturation, diagnostic: using the root-mean-square error (RMSE) performance assumption is violated, hence the scaled hydraulic data cluster values are not identical (Table 2), the main underlying scaling individual calibrations (\(\alpha_{i,j}\)), whereas black dots represent the average calibration (\(\overline{\alpha}\)) for each \(S_e,i\) class.

similarity, meaning that soils vary only by their characteristic length (median pore radius) and have identical STDs of the pore size [Kosugi and Hopmans, 1998]. This statement ideally presumes that the scaled hydraulic data should perfectly overlie onto their reference functions. Since \(\sigma_{PD,i}\) values are not identical (Table 2), the main underlying scaling assumption is violated, hence the scaled hydraulic data cluster around the reference functions. This dispersion is quantified using the root-mean-square error (RMSE) performance diagnostic:

\[
RMSE_{WRF} = \sqrt{\frac{\sum_{j=1}^{J} \sum_{i=1}^{n_{PD}} [S_e(\ln h_{w,j}) - S_e(\ln h_{c,j})]_i^2}{J \cdot n_{WRF}}} \tag{15a}
\]

\[
RMSE_{HCF} = \sqrt{\frac{\sum_{j=1}^{J} \sum_{i=1}^{n_{HCF}} [\log_{10} K_r(S_e,k,i) - \log_{10} K_r(S_e,k,j)]^2}{J \cdot n_{HCF}}} \tag{15b}
\]

This enables the reference hydraulic functions \(REF-WRF_{SD} \) and \(REF-HCF_{SD} \) to be calculated. Subsequently, in section 4.2.2, the predicted scaling results using the SD will be compared with those computed using the PD (as described in section 4.1). This outcome is certainly the best case scenario and represents the benchmark result from soil texture data. In addition, in section 4.2.3, we evaluate how sensitive the scaling results are with respect to the number of PD employed for the empirical calibration, which is setup to minimize the experimental efforts.

4.2.1. Calibration Procedure

The following steps describe the procedure to calibrate average values of \(\alpha\) and \(\eta\) by matching estimated (SD) with measured (PD) reference soil hydraulic functions:

Step 1: The AP method. The parameter pairs of Buchan’s equation (\(\ln D_m\) and \(\sigma_{PSD,i}\)) retrieved from the 84 samples are used to generate the \(D_{m,i}\) values by inverting equation (10) for each \(j\)th soil sample using 18 prescribed \(W_i\) classes between 0.05 and 0.90 with a step size of 0.05.
We purposely fix the upper limit to 0.90 to avoid instabilities and experimental uncertainties near saturation [Arya et al., 1999a]. For each W_i class, n_{ij} is calculated using equation (11).

29 Step 2: Calibration of the parameter α. Given the assumption of shape similarity between the PSD and the WRF, the empirical calibration involves the direct computation of α_{ij} for each ith soil sample by matching the actual (measured) matric head, $h_{PD,i,j}$, with the corresponding diameter class, $D_{i,j}$ for each prescribed W_i class (or S_e,i class). For this purpose, we use the degree of saturation rather than the soil water content to eliminate the effect of the parameter b, (CV is about 16%). By inverting equation (12a) and substituting the matric head $h_{PD,i,j}$ with the pore radius $r_{PD,i,j}$ ($r_{PD,i,j} \approx 0.149h_{PD,i,j}$), we derive [Vaz et al., 2005]:

$$\alpha_{ij} = 1 - \frac{\log_{10}\left(\frac{n_{ij}}{\bar{\sigma}_{PD,i,j}}\right)^2}{\log_{10}(n_{ij})}. \quad (16)$$

30 As previously presented in Haverkamp et al. [2002, Fig. 3.3.5-5], we show analogously in Figure 3 the dependency of α on the degree of saturation S_e. The calibration is given by the mean values of α_{ij} ($\bar{\alpha}$) for each prescribed S_e,i class (black dots). We point out that $\bar{\alpha}(S_e = 0.5) = 1.14$ (loamy soils) is in agreement with other findings reported in the literature. Specifically, Arya and Paris [1981] found an average value of $\alpha = 1.38$ appropriate for coarse soils, whereas later investigations demonstrated average α values of 1.26 for silt loams, 2.10 for sandy clay loams [Arya et al., 1982], 0.95 for silt loams, and 1.30 for loams [Schuh and Cline, 1990], and α values of 1.46, 1.38, 1.15, 1.16 for sand, sandy loam, loam, silt loam, and clay textures, respectively [Arya et al., 1999a]. Note the variation of α with the degree of saturation, $\bar{\alpha}(S_e = 0.05) = 1.02$ and $\bar{\alpha}(S_e = 0.90) = 1.69$. This finding apparently contradicts the trend observed in Vaz et al. [2005, Figure 5], yet it is important to consider that α is a calibration parameter that provides an empirical correction for the ideal pore-size distribution represented by a bundle of straight capillary cylindrical tubes.

31 Step 3: Calibration of the parameter η. Using the calibrated $\bar{\eta}_i$ in equation (12a), the resulting retention data pairs $h_{PD,i,j}S_e,i$ can be estimated from the SD (PSD and bulk density). Combining these predicted retention data pairs with their corresponding measured relative conductivity values ($S_e,K_{PD,i,j}$), the parameters $\bar{\eta}_m$, $\bar{\eta}$, and $\bar{\eta}$ (see Figure 4) are derived using the objective function defined in equation (13). The calibrated value for $\bar{\eta} = 1.94$ is very close to the average value of $\bar{\eta} = 1.98$ presented in Table 2, as obtained from direct measurement of the soil hydraulic properties of all 84 samples.

4.2.2. Predicted Simultaneous Scaling With SD

32 As the calibration parameters $\bar{\eta}_i$ and $\bar{\eta}$ are known, we can use the SD to predict the retention and unsaturated HCFs and their spatial variability around the newly estimated reference soil hydraulic functions (REF-WRFSD and REF-HCFSD). The scaling factors of the SD $\delta_{SD,i,j}$ are computed using equation (8), with the statistical properties of the predicted scaling parameters presented in Table 3.

33 As expected, mean values of $\ln h_{m,SD}$ and σ_{SD} are approximately similar to the original $\ln h_{m,PD}$ and σ_{PD} values reported in Table 2; however, the STD values of the predictions of $\ln h_{m,SD}$, σ_{SD}, and δ_{SD} are reduced with about 50% compared to their corresponding values using primary soil hydraulic data. This result is not surprising. The texture parameters $\ln D_m$ and σ_{PD} (Table 1) exhibit insufficient variability to adequately explain the observed variability of the primary soil hydraulic parameters, which are also affected by soil structure and pore connectivity. We again emphasize that the calibration of α and η purposely adjusts only the estimated mean reference hydraulic properties to guarantee a similar global characterization of the soil domain.
The final predicted scaling results are shown in Figure 5 together with the computed RMSE values for the WRF (equation (15a) and for the HCF (equation (15b)). The RMSE values depicted in Figure 5 (SD) are significantly lower than those previously illustrated in Figure 2 (PD). This outcome is explained by the different basic statistics pertaining to the scaling parameters (ln h_m, C_{27}, and ln C_{14}) observed in Tables 2 (PD) and 3 (SD). The results confirm our previous conclusions that the hybrid scaling method reduces the variation of the predicted WRFs and HCFs. We also note that the effectiveness of the scaling is independent of using either primary or SD, reducing RMSE values from 0.07 to 0.05 after scaling of the WRF and reducing RMSE values from 0.59 to 0.42 after scaling of the HCFs.

We now verify the proposed scaling procedure in Figure 6a by comparing the original unscaled hydraulic conductivity PD log$_{10}K_{r,PD}$ with the descaled estimated hydraulic conductivity SD log$_{10}(\delta^2K_{r,SD})$. The best possible outcome would result in alignment of all data along the 1:1 line, if the proposed scaling method was perfect [Clausnitzer et al., 1992]. Our results show reasonable agreement between observations and predictions, with an $R^2 = 0.78$. Scaling errors are quantified by the RDs of individual conductivity pairs:

$$RD = \log_{10}K_{r,PD} - \log_{10}(\delta^2K_{r,SD})$$

with their frequency distribution presented in Figure 6b. The bias is relatively small with a mean RD value of -0.022, whereas the standard variation is much less than 1 order of magnitude, with a value of 0.31. The level of success of the proposed scaling is likely partly attributed to the relatively small spatial variability of our data set (Table 1).

We would certainly expect less agreement for more heterogeneous databases. Moreover, this hybrid scaling method is designed to maintain the direct measurement of saturated hydraulic conductivity (K_s) to reduce the uncertainty near saturation condition.

4.2.3. Minimum Number of PD Measurements for Calibration

The calibration method described in section 4.2.1 exploits all the direct measurements of the data set and, per definition, should therefore provide the most accurate results. In practice however, a much smaller number of PD might suffice for calibration purposes. In this section, we summarize the results of the calibration procedure for a different number of PD used to adjust the reference soil hydraulic properties.

The number of calibration samples was sequentially increased from 1 to 84 with a step size of 1. For each sample size, 10,000 replicates were randomly generated (without replacement) and the calibration procedure of section 4.2.2 executed. Figure 7a presents the CV values of (δK_r) derived from the replicates as a function of the calibration sample size. As expected, the smaller the number of PD used in the calibration procedure the larger the respective CV values. Logically, if all PD ($J = 84$ samples) are used, the original calibrated mean η value of 1.94 (resulting in section 4.2.2) is derived, with a corresponding CV$_\eta$ value of zero. For each soil sample size, the calibrated η values were used to calculate the RDs between primary unscaled and estimated descaled hydraulic conductivity data (equation (17)). The results of this analysis are presented in Figure 7b. The values of CV$_{RD}$ (derived from the replicates) range between 13% ($j = 1$) and 0% ($J = 84$). It appears that about 15 direct measurements are sufficient for calibration purposes with bias that is less than 5%. Thus, the black reference curves obtained for calibration samples sizes larger than 15 will be sufficiently close to those shown in Figures 5c and 5d, for the entire data set (REF-WRF$_{SD}$ and REF-HCF$_{SD}$). We conclude that a large part of the uncertainty of

Table 3. Mean (μ), Standard Deviation (STD), Coefficient of Variation (CV), Maximum (max) and Minimum (min) Values of Estimated Soil Hydraulic Parameters and Scaling Factors (ln δ) for the 84 Soil Samples

<table>
<thead>
<tr>
<th></th>
<th>ln h_m, SD (cm)</th>
<th>σ_{SD}</th>
<th>ln δ_{SD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>5.47</td>
<td>1.92</td>
<td>0.17</td>
</tr>
<tr>
<td>STD</td>
<td>0.17</td>
<td>0.19</td>
<td>0.17</td>
</tr>
<tr>
<td>CV (%)</td>
<td>3.10</td>
<td>9.81</td>
<td>0.37</td>
</tr>
<tr>
<td>min</td>
<td>5.12</td>
<td>1.54</td>
<td>-0.37</td>
</tr>
<tr>
<td>max</td>
<td>5.84</td>
<td>2.32</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Figure 6. (a) Comparison around the 1:1 line (dashed line) between original unscaled relative hydraulic conductivity data $K_{r,PD}$ and estimated descaled relative hydraulic conductivity data $\delta^2K_{r,SD}$ and (b) frequency distribution of the RD values.
the proposed hybrid scaling method is determined by the reduced variability in scaling factors estimated from PSD measurements as compared with those computed directly from laboratory measurement of the PD.

[38] The results presented in Figure 7 help to judge how many samples are needed for calibration purposes. Yet, the results pertain directly to the data set being used herein. It should be evident that if the spatial variability increases, so does the required number of calibration samples [Nasta et al., 2009].

5. Conclusions

[39] The scaling approach of Miller and Miller [1956] is still widely employed to characterize the spatial variability of soil hydraulic properties. This technique seems particularly appealing as it provides the opportunity to stochastically generate new soil hydraulic parameters in unknown locations of a study area through the lognormal pdf of the scaling factors and the corresponding reference soil hydraulic properties [Nasta et al., 2013]. Successful applications of this procedure to real cases require a relatively large number of soil samples for large-scale hydrological applications. This task is rather expensive, time consuming, and labor intensive. To characterize the spatial variation of soil hydraulic properties, in this paper, we have developed an alternative hybrid scaling approach that uses more easily to be determined secondary soil data coupled with easily obtainable PD (such as saturated soil water content and saturated hydraulic conductivity).

[40] This study is a followup of the work presented by Nasta et al. [2009], providing the prediction of both water retention and unsaturated HCFs. The proposed method is a compromise between effectiveness in describing the soil spatial variation over relatively larger scales and the sustainability of experimental efforts. However, we caution on the potential issues affecting this method since soil texture measurements are generally insufficient to explain all observed spatial variations in soil hydraulic functions, especially the hydraulic conductivity characteristic.

[41] A possible way to overcome this limitation in our hybrid scaling method is to consider bimodal hydraulic relationships in lieu of the conventional unimodal forms of Kosugi’s WRF and HCF. Such functions would better describe the effect of soil structure near saturation [Romano et al., 2011].

Notation

CV coefficient of variation.

\(D \) particle diameter (L).

\(e \) soil void ratio (L^3 L^{-3}).

\(G(S_e) \) connectivity factor.

\(h \) soil matric potential head (L).

HCF hydraulic conductivity function.

\(i \) counter for soil particle diameter class.

\(j \) counter for soil sample.

\(k \) counter for hydraulic conductivity data pairs.

\(K \) soil hydraulic conductivity (LT^{-1}).

\(K_r \) relative hydraulic conductivity.

\(K_s \) saturated hydraulic conductivity (LT^{-1}).

\(l \) tortuosity-connectivity factor.

\(\ln D_m \) log-transformed particle diameter (L).

\(\ln h_m \) mean log-transformed matric potential head (L).

\(\ln r_m \) mean log-transformed pore radius (L).

\(\text{max} \) maximum value.

\(\text{min} \) minimum value.

\(n \) number of solid particles (M/L^3).

\(n_{HCF} \) number of observed hydraulic conductivity data pairs.

\(n_{WRF} \) number of observed water retention data pairs.

PD primary data.

pdf(r) probability density function of soil pore radii (L^{-1}).

PSD particle-size distribution.

\(r \) pore radius (L).

RMSE root-mean-square error.

SD secondary data.

\(S_e \) degree of saturation.

STD standard deviation.

\(T(S_e) \) tortuosity factor.

\(W \) solid mass fraction (M M^{-1}).

WRF water retention function.

\(\alpha \) empirical parameter.

\(\delta \) scaling factor.

\(\varepsilon \) soil porosity (L^3 L^{-3}).

\(\eta \) conductivity parameter.

\(\mu \) mean value.
\[\theta \] soil water content (\(L^3 L^{-3} \))
\[\theta_r \] residual water content (\(L^3 L^{-3} \))
\[\theta_s \] saturated water content (\(L^3 L^{-3} \))
\[\rho_b \] oven-dry bulk density (\(M L^{-3} \))
\[\rho_s \] soil particle density (\(M L^{-3} \))
\[\sigma \] standard deviation of log-transformed matrix potential head.
\[\sigma_{PSD} \] standard deviation of log-transformed particle diameter.
\[\omega \] counter for water retention data pairs.
\[\xi \] weighting factor.

[42] Acknowledgments. The first author wishes to thank Vanessa Carfora and Antonella Puglia for their precious technical support. The comments and suggestions of the three anonymous reviewers are greatly appreciated and have significantly enhanced the current version of this manuscript.

References

