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Abstract

This paper derives put-call parity relations for barrier options via a probabilistic approach. As in
the case of standard options, the difference between call and put prices depends on the stock price
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provisions bring. Moments are also useful building blocks for the valuation of a wide variety
of time-depending rebate specifications that are interesting both from a theoretical as well as a
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1 Introduction

The put-call parity of Stoll (1969) establishes a simple arbitrage relation between the value of European

call and put options that share the same exercise price and time to maturity. The underlying static

hedge portfolio, however, requires that the put and the call exist both at the current point of time

as well as at the maturity date. This parity then cannot apply to barrier options as discussed in, for

instance, Kunitomo and Ikeda (1992) since knock-out options are cancelled when the underlying asset

price hits the barrier and knock-in options only create standard options when the asset touches the

barrier.

This paper employs a probabilistic approach in order to derive the relationship between prices of

put and call barrier options of the same type (knock-in or knock-out), with identical exercise price,

barrier level and time to maturity. The put-call parities for barrier options, similar to the parity for

standard options, also express the difference between put and call prices in terms of the discounted

exercise price and the stock price. However, the latter terms now are explicitly linked to the zeroth

and first moments, respectively, of the relevant defective distribution of the future stock price. This

modification of the standard put-call parity has a straightforward intuition. In fact, the connection

to the moments essentially corrects the put-call parity of Stoll (1969) for the loss of probability mass

(zeroth moment) and conditional expectation (first moment) that is associated with potential option

cancellation (knock-out options) and the possible failure to be created (knock-in options). This also

implies that the put-call parity for standard options must emerge as a limit case of the parity for

barrier options. In fact, letting the lower (upper) barrier decrease (increase) to 0 (+∞) produces the

familiar put-call parity as the probability loss is reduced to zero.

Moments are not only useful for the derivation of put-call parities, but also facilitate pricing of the

rebate provisions that often accompany barrier options. Rebates compensate the owner of the option

for potential cancellation of the option or the lack of creation of a standard option. Typically, rebates

are stipulated as fixed cash payments (see, for instance, Rubinstein and Reiner, 1991a), although more

elaborate and/or time-depending specifications could also be of interest to investors. For instance,

investors may want the rebate of a knock-in option to depend on market conditions at the maturity

date in order to let it be larger the further the stock price is situated below the upper barrier. Also,

higher rebates when the option is knocked out later would bring a larger compensation in line with the

fact that the option has immobilized funds over a longer period. Such alternative rebates are easily

valued via moment expressions for the distributions of the future stock price and the first-hitting time.

This paper derives in total 8 put-call parities for single-barrier options that have rebate provisions.

2



It also specifies the related 8 in-out parities, i.e. the relation between in- and out-options that are

otherwise identical. These parities then are used to obtain all 16 single-barrier option prices (call/put,

knock-in/knock-out, upper/lower barrier, exercise price above/below the barrier) on the basis of only

4 explicit prices. This allows us to reproduce the barrier option prices for fixed-sum rebates that are

derived in Rubinstein and Reiner (1991a) in a simple and intuitive framework and then extend them

towards including novel rebate specifications.

The remainder of the paper is organized as follows. Section 2 specifies the relevant densities for

the underlying geometric Brownian motion environment and derives all required moments. Section 3

illustrates how the moment expressions naturally emerge as building blocks for the valuation of various

(time-depending) rebates. The put-call parities for barrier options are derived in Section 4. Section 5

extends the familiar in-out parities towards contracts with rebate provisions and Section 6 replicates

all 16 barrier option prices via the various moment expressions, put-call and in-out parities. Section

7 concludes. The Appendix derives the closed-form solutions to 4 integrals that are used throughout

the paper. The 2 solutions that are based on the largely unknown results of Cho (1971) moreover may

well be of interest for various other (option) valuation exercises in which first-hitting time problems

arise.

2 The density functions and moments

The stock price is assumed to follow a risk-neutralized geometric Brownian motion with drift and

diffusion coefficients rSt and σ2S2t , respectively:

dSt = rStdt+ σStdWt,

where r is the risk-free interest rate and dW denotes the increment of a Wiener process. We restrict

attention in this paper to a single constant lower or upper barrier at the level H.

The various parities and rebate prices will be obtained in terms of the moments of the distributions

of the future stock price and the time untilH is reached, i.e. of the first-hitting time. We first derive the

required probabilistic concepts for the future stock price after which we obtain the relevant quantities

for the first-hitting time.
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2.1 The moments for the probability distribution of the future stock price

The n-th moment around zero, in short the n-th moment, for the continuous stochastic variable x

with domain (β1, β2) is defined as (see Mood, Graybill and Boes, 1974):

Mn =

β2Z
β1

xnp [x] dx,

where p [x] is the transition probability density function. The zeroth moment is the integral of the

transition density over (β1, β2). It specifies the total probability mass that is located between β1 and

β2 and thus excludes the latter two points as we will discuss in more detail below. The first moment

defines the conditional mean or conditional expectation over the domain (β1, β2).

The transition probability density function for the future stock price p [ST , T ;St, t], in short the

transition density, for the unrestricted geometric Brownian motion is the well-known log-normal den-

sity function:

p [ST , T ;St, t] =
1

ST
√
2πσ2∆

exp

"
−
¡
lnST − lnSt −

¡
r − 1

2σ
2
¢
∆
¢2

2σ2∆

#
, (1)

where ∆ denotes the time interval T − t. The function p [ST , T ;St, t] specifies the probability of

attaining ST at time T given that the process currently, i.e. at time t, is at the source point St.

Barrier options, however, are to be valued by conditioning the transition density on not reaching

the barrier H from below or from above.1 For instance, down-and-out options are cancelled when the

stock price hits H from above such that all paths that touch H must be excluded. Moreover, we also

need to ascertain that the underlying process cannot spend time on the barrier H since cancellation of

the option at touching H logically implies that the barrier should bring no probability and conditional

expectation. We therefore must employ transition densities for which H is a killing barrier such that

the stochastic variable is immediately sent to the so-called cemetery state upon first hitting of the

barrier H (see Knight, 1981; Borodin and Salminen, 2002). This guarantees both that all paths that

touch H are ended and that the underlying cannot spend finite time on the barrier. As a result, we

study defective transition densities since the killing boundary prevents the transition density from

integrating to unity and thus causes loss of probability mass.2

1We also use this conditioning on not reaching H within the analysis of knock-in options. Obviously, the relevant
transition density for these options should be conditional on hitting H, but the latter density can straightforwardly be
obtained by subtracting the density conditional on not hitting H from the unconditional density as noted in for instance
Rubinstein and Reiner (1991a) and Rich (1994).

2Absorbing barriers on the contrary keep the stochastic variable at H after it has reached that level. The continued
existence of the stochastic variable on H then would contribute to, for instance, the conditional expectation and this
clearly is to be avoided when valuing barrier options.
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The transition density conditional on not hitting H from above during the interval T − t will be

denoted by pnh,d [ST , T ;St, t], where the subscripts nh and d refer to the conditioning on not hitting

the barrier within a downward movement. Similarly, pnh,u [ST , T ;St, t] specifies the transition density

conditional on not hitting H from below, i.e. within an upward movement. Applying Itô’s lemma to

the transform st = lnSt generates an arithmetic Brownian motion with the barrier being located at

lnH. The required density functions for s then can easily be obtained via, for instance, the method of

images (see Cox and Miller, 1972). Re-introducing the stock price level then specifies the two required

transition densities for the time-T stock price as:

pnh,u [ST , T ;St, t] = pnh,d [ST , T ;St, t] =
1

ST
√
2πσ2∆

(
exp

"
−
¡
lnST − lnSt −

¡
r − 1

2σ
2
¢
∆
¢2

2σ2∆

#

−
µ
H

St

¶2(λ−1)
exp

"
−
¡
lnST + lnSt − 2 lnH −

¡
r − 1

2σ
2
¢
∆
¢2

2σ2∆

#)
(2)

with λ =
2r + σ2

2σ2
. The second term in the transition density (2) thus represents the loss of probability

that the barrier H brings. As required, pnh,u [ST , T ;St, t] and pnh,d [ST , T ;St, t] simplify into the

transition density for unrestricted geometric Brownian motion in (1) for H = +∞ and H = 0,

respectively.

The zeroth moment, i.e. the transition probability distribution function or in short the transition

distribution, for the unrestricted density in (1) is defined as:

M0 =

+∞Z
0

p [ST , T ;St, t] dST .

In order to standardize exposition, the Appendix presents the solution to this definite integral in terms

of the integration limits β1 and β2. The solution to this integral is denoted by J1;y1,β1,β2 for which

y1 = − lnSt−
¡
r − 1

2σ
2
¢
∆ represents the part of the argument in the exponential function in (1) that

is independent of the future stock price ST . The zeroth moment then can be written as:

M0 =

+∞Z
0

p [ST , T ;St, t] dST = J1;y1,0,+∞ = 1, (3)

where we used the properties Φ [−∞] = 0 and Φ [+∞] = 1 with Φ [q] = 1√
2π

qR
−∞

exp
£
−12x2

¤
dx being

the standard normal distribution function (see Zelen and Severo, 1964). The zeroth moment (3) is 1

as indeed no probability mass is located on the inaccessible values 0 and +∞.

The second integral expression in the Appendix allows us to specify the first moment for the
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unrestricted geometric Brownian motion as:

M1 =

+∞Z
0

ST p [ST , T ;St, t] dST = J2;y1,0,+∞ = St exp [r∆] . (4)

The conditional expectation equals St exp [r∆] as the stock price is expected to grow in a multiplicative

manner at the rate r.

Similarly, the zeroth and first moments conditional on not hitting the upper barrier H from below

with y1 = − lnSt −
¡
r − 1

2σ
2
¢
∆ and y2 = lnSt − 2 lnH −

¡
r − 1

2σ
2
¢
∆ in (2) are:

M0,nh,u =

HZ
0

pnh,u [ST , T ;St, t] dST = J1;y1,0,H −
µ
H

St

¶2(λ−1)
J1;y2,0,H

M0,nh,u = Φ

"
lnH − lnSt −

¡
r − 1

2σ
2
¢
∆

σ
√
∆

#
−
µ
H

St

¶2(λ−1)
Φ

"
lnSt − lnH −

¡
r − 1

2σ
2
¢
∆

σ
√
∆

#
(5)

and

M1,nh,u =

HZ
0

ST pnh,u [ST , T ;St, t] dST = J2;y1,0,H −
µ
H

St

¶2(λ−1)
J2;y2,0,H

M1,nh,u = St exp [r∆]Φ

"
lnH − lnSt −

¡
r + 1

2σ
2
¢
∆

σ
√
∆

#

−S1−2λt H2λ exp [r∆]Φ

"
lnSt − lnH −

¡
r + 1

2σ
2
¢
∆

σ
√
∆

#
. (6)

The integration limits in the moments (5) and (6) are 0 and H such that the latter two values gather

no probability mass or conditional expectation. As H is a killing barrier, the total probability now

is smaller than 1 and the total first moment likewise is below St exp [r∆]. Indeed, the values 1 and

St exp [r∆] only arise as limits of (5) and (6) for H to +∞, i.e. when hitting is precluded given that

+∞ is not accessible.

Likewise, the two moments when conditioning on not hitting the lower barrier H from above are:

M0,nh,d =

+∞Z
H

pnh,d [ST , T ;St, t] dST = J1;y1,H,+∞ −
µ
H

St

¶2(λ−1)
J1;y2,H,+∞ (7)

M0,nh,d = Φ

"
lnSt − lnH +

¡
r − 1

2σ
2
¢
∆

σ
√
∆

#
−
µ
H

St

¶2(λ−1)
Φ

"
lnH − lnSt +

¡
r − 1

2σ
2
¢
∆

σ
√
∆

#
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and

M1,nh,d =

+∞Z
H

ST pnh,d [ST , T ;St, t] dST = J2;y1,H,+∞ −
µ
H

St

¶2(λ−1)
J2;y2,H,+∞

M1,nh,d = St exp [r∆]Φ

"
lnSt − lnH +

¡
r + 1

2σ
2
¢
∆

σ
√
∆

#

−S1−2λt H2λ exp [r∆]Φ

"
lnH − lnSt +

¡
r + 1

2σ
2
¢
∆

σ
√
∆

#
. (8)

Again, the moments fall below the corresponding moments for the unrestricted process unless the

barrier H is effectively removed by lowering it to 0.

2.2 The moments for the probability distribution of the first-hitting time

The first time at which the stock price hits the barrier H, i.e. the first-hitting time τ , is a stochastic

variable. The transition probability density function of the first-hitting time, in short the first-hitting

time density, will be denoted by gu [H, τ ;St, t] when the stock price is conditioned to hit H from below

within an upward movement. This function specifies the probability of each first-hitting time τ given

that the process at time t is at St. Similarly, the first-hitting time density gd [H, τ ;St, t] conditions

on hitting H from above, i.e. in a downward direction. These two first-hitting time densities can be

obtained from the transition distributions, i.e. from the above zeroth moments for the distribution of

the future stock price, conditional on not hitting the barrier in question (see Cox and Miller (1972)

for more detail):

gu [H, τ ;St, t] = − ∂

∂t
[M0,nh,u] ,

gd [H, τ ;St, t] = − ∂

∂t
[M0,nh,d] .

Straightforward calculations and simplifications then give the well-known first-hitting time densities:

gu [H, τ ;St, t] =
lnH − lnSt

σ (τ − t)
3
2
√
2π
exp

"
−
¡
lnH − lnSt −

¡
r − 1

2σ
2
¢
(τ − t)

¢2
2σ2 (τ − t)

#
, (9)

gd [H, τ ;St, t] =
lnSt − lnH

σ (τ − t)
3
2
√
2π
exp

"
−
¡
lnH − lnSt −

¡
r − 1

2σ
2
¢
(τ − t)

¢2
2σ2 (τ − t)

#
. (10)

The general definition of the moments of the first-hitting time probability in our notation is:

M+∞
n,h =

+∞Z
t

(τ − t)n g [τ − t] dτ, (11)
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where g [τ − t] specifies the first-hitting time density and the subscript h denotes the conditioning on

hitting the barrier H. The superscript +∞ refers to the end point of the time interval that is relevant

in calculating the moments. For instance, the first moment or the mean first-hitting time obviously is

defined in terms of all possible future τ such that integration is to be performed from t until +∞. As

the option contracts in this paper have a finite time to maturity, we need to focus on the time interval

T − t:

MT−t
n,h =

TZ
t

(τ − t)n g [τ − t] dτ.

The term MT−t
n,h then specifies the part of the n-th moment of the first-hitting time distribution that

actually accrues between times t and T . All contingent contracts in this paper share the maturity

date T such that for notational convenience we drop the reference to the time interval and thus, with

some abuse of terminology, discuss MT−t
n,h as the n-th moment of the first-hitting time distribution.

However, we need to introduce an additional notion since rebates of knock-out options are typically

paid out immediately when H is hit. Such payments must be discounted from the first-hitting time τ

to the present date t, which adds an exponential term to the integrand:

Md,T−t
n,h =

TZ
t

(τ − t)n exp [−r (τ − t)] g [τ − t] dτ .

We refer to this quantity as the discounted n-th moment of the first-hitting time distribution for which

we use the notation Md,T−t
n,h where the superscript d refers to the embedded discounting.

The moment MT−t
0,h,u is the zeroth moment or the probability of hitting the upper barrier H from

below within an upward movement during the time interval T − t. Using y3 = lnH − lnSt > 0 and

s = τ − t then gives:

MT−t
0,h,u =

TZ
t

gu [H, τ ;St, t] dτ =

T−tZ
0

y3

σ
√
2π

1

s
3
2

exp

"
−
¡
y3 −

¡
r − 1

2σ
2
¢
s
¢2

2σ2s

#
ds

MT−t
0,h,u =

y3

σ
√
2π
exp

"
y3
¡
r − 1

2σ
2
¢

σ2

# T−tZ
0

1

s
3
2

exp

⎡⎣−(r − 1
2σ
2

σ
√
2

)2
s−

½
y3

σ
√
2

¾2 1
s

⎤⎦ ds.
This integral can be evaluated using expression J3,a,b,β1,β2 in the Appendix for which a =

r − 1
2σ
2

σ
√
2
,

b =
y3

σ
√
2
, β1 = 0 and β2 = T − t. Straightforward simplifications then yield:

MT−t
0,h,u = Φ

"
lnSt − lnH +

¡
r − 1

2σ
2
¢
∆

σ
√
∆

#
+

µ
H

St

¶2(λ−1)
Φ

"
lnSt − lnH −

¡
r − 1

2σ
2
¢
∆

σ
√
∆

#
. (12)
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The zeroth moment (12) can alternatively also be obtained by noting that the integral of the first-

hitting time density over t to T , i.e. the probability of first hitting in T − t, by definition is the

complement of the transition probability of not hitting the barrier H in T−t. Or,MT−t
0,h,u = 1−M0,nh,u

and this equality can easily be verified from the zeroth moments in (12) and (5) when noting that

1 − Φ [−x] = Φ [x] (see Zelen and Severo, 1964). As required, lifting H to +∞ reduces the zeroth

moment to 0 as +∞ is not accessible.

The first moment gives the mean first-hitting time over T − t conditional on hitting H from below

and is defined as:

MT−t
1,h,u =

TZ
t

(τ − t) gu [H, τ ;St, t] dτ,

which yields:

MT−t
1,h,u =

y3

σ
√
2π
exp

"
y3
¡
r − 1

2σ
2
¢

σ2

# T−tZ
0

1

s
1
2

exp

⎡⎣−(r − 1
2σ
2

σ
√
2

)2
s−

½
y3

σ
√
2

¾2 1
s

⎤⎦ ds.
Using expression J4,a,b,β1,β2 in the Appendix then allows us to write this first moment as:

MT−t
1,h,u =

lnH − lnSt
σ2 (λ− 1)

(
Φ

"
lnSt − lnH +

¡
r − 1

2σ
2
¢
∆

σ
√
∆

#
−
µ
H

St

¶2(λ−1)
Φ

"
lnSt − lnH −

¡
r − 1

2σ
2
¢
∆

σ
√
∆

#)
.

(13)

The discounted zeroth moment conditional on hitting H from below is specified as:

Md,T−t
0,h,u =

TZ
t

exp [−r (τ − t)] gu [H, τ ;St, t] dτ

and calculations similar to those employed for MT−t
0,h,u then give:

Md,T−t
0,h,u =

µ
H

St

¶λ−1−q
Φ

∙
lnSt − lnH + qσ2∆

σ
√
∆

¸
+

µ
H

St

¶λ−1+q
Φ

∙
lnSt − lnH − qσ2∆

σ
√
∆

¸
, (14)

with q =
2σ2r+(r− 1

2
σ2)

2

σ2 .

Likewise, the discounted first moment is defined as

Md,T−t
1,h,u =

TZ
t

(τ − t) exp [−r (τ − t)] gu [H, τ ;St, t] dτ,

which gives:

Md,T−t
1,h,u =

lnH − lnSt
qσ2

(µ
H

St

¶λ−1−q
Φ

∙
lnSt − lnH + qσ2∆

σ
√
∆

¸
−
µ
H

St

¶λ−1+q
Φ

∙
lnSt − lnH − qσ2∆

σ
√
∆

¸)
.

(15)

9



The moments conditional on hitting the lower barrier H in a downward direction are obtained along

similar lines. For brevity, we omit their definitions and only present the final expressions:

MT−t
0,h,d = Φ

"
lnH − lnSt −

¡
r − 1

2σ
2
¢
∆

σ
√
∆

#
+

µ
H

St

¶2(λ−1)
Φ

"
lnH − lnSt +

¡
r − 1

2σ
2
¢
∆

σ
√
∆

#
, (16)

MT−t
1,h,d =

lnSt − lnH
σ2 (λ− 1)

(µ
H

St

¶2(λ−1)
Φ

"
lnH − lnSt +

¡
r − 1

2σ
2
¢
∆

σ
√
∆

#

−Φ
"
lnH − lnSt −

¡
r − 1

2σ
2
¢
∆

σ
√
∆

#)
, (17)

Md,T−t
0,h,d =

µ
H

St

¶λ−1−q
Φ

∙
lnH − lnSt − qσ2∆

σ
√
∆

¸
+

µ
H

St

¶λ−1+q
Φ

∙
lnH − lnSt + qσ2∆

σ
√
∆

¸
, (18)

Md,T−t
1,h,d =

lnSt − lnH
qσ2

(µ
H

St

¶λ−1+q
Φ

∙
lnH − lnSt + qσ2∆

σ
√
∆

¸

−
µ
H

St

¶λ−1−q
Φ

∙
lnH − lnSt − qσ2∆

σ
√
∆

¸)
. (19)

3 The valuation of rebates

The above moments allow us to standardize valuation of a wide variety of rebates that also include

interesting time-depending specifications that, to the best of our knowledge, have not been examined

in the literature. For instance, Rubinstein and Reiner (1991a) and Rich (1994) restrict attention to

constant rebates, i.e. rebate payments that are independent of the actual time at with the barrier is hit.

However, time-depending rebates can be attractive from a theoretical but also from a practitioner’s

point of view since they, for instance, allow the amount of the rebate of a knock-out option to increase

with the time period that has passed since the inception date of the contract. Such specification can

offer a more stable value of the rebate-inclusive option position as the decrease in the option’s time

value can be (partly) offset by the increasing rebate value.

We examine rebates that are paid when the underlying stock fails to hit the barrier H, i.e. when

the knock-in option expires without having created a standard option. These payments will be referred

to as in-rebates. The notion of out-rebates then is employed for the rebate payments that arise when

knock-out options are cancelled after the underlying has hit the barrier H.
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3.1 In-rebates

We value two simple types of in-rebates and then briefly discuss alternative specifications such as a

path-dependent yet capped rebate payments.

The in-rebate of type 1 is the familiar fixed cash payment of RIu1 = RIu where RIu denotes the

constant in-rebate with respect to the upper level H. The value of this rebate at time t, V [RIu1 ], is the

discounted value of RIu multiplied by the probability that the upper barrier H is not hit within the

time interval T − t.3 The latter probability is the complement of the probability that the first-hitting

time lies between t and T or:

V [RIu1 ] = exp [−r∆]RIu
⎧⎨⎩1−

TZ
t

gu [H, τ ;St, t] dτ

⎫⎬⎭ = exp [−r∆]RIu
n
1−MT−t

0,h,u

o
.

Similarly, the current value of the in-rebate written against the lower barrier, RId1 = RId, is:

V
h
RId1

i
= exp [−r∆]RId

⎧⎨⎩1−
TZ
t

gd [H, τ ;St, t] dτ

⎫⎬⎭ = exp [−r∆]RId
n
1−MT−t

0,h,d

o
.

These values can alternatively also be calculated via the transition density for the future stock price.

Indeed, the cumulative likelihood of not hitting H between t and T coincides with the integral over

the relevant fluctuation range of the transition density of the future price conditioned on no hitting

in the time interval T − t:

V [RIu1 ] = exp [−r∆]RIu
HZ
0

pnh,u [ST , T ;St, t] dST = exp [−r∆]RIuM0,nh,u

and

V
h
RId1

i
= exp [−r∆]RId

+∞Z
H

pnh,d [ST , T ;St, t] dST = exp [−r∆]RIdM0,nh,d.

These rebate prices correspond with the values that are derived in for instance Rubinstein and Reiner

(1991a). As required, the value of the in-rebate simplifies into exp [−r∆]RIu (exp [−r∆]RId) when

H is lifted to +∞ (is decreased to 0) since this precludes hitting through which the in-rebate is certain

to be paid at time T .

The transition density of the future stock price also straightforwardly allows for the valuation of

rebate payments that are not constant but depend on the stock price at time T . In particular, the

3 In order to save on subscripts, the time subscript t in the value of rebates and later on in the option prices will be
omitted.
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rebate payments of type 2 are RIu2 = STRI
u and RId2 = STRI

d for which the current value is given

by:4

V [RIu2 ] = exp [−r∆]RIu
HZ
0

STpnh,u [ST , T ;St, t] dST = exp [−r∆]RIuM1,nh,u

and

V
h
RId2

i
= exp [−r∆]RId

+∞Z
H

STpnh,d [ST , T ;St, t] dST = exp [−r∆]RIdM1,nh,d.

The in-rebates of types 1 and 2 can be linearly combined into specifications that can offer tailor-made

solutions to investors. For example, the rebate payment with respect to the upper barrier H can

take the general form [aH + bST ]. With a = 1 and b = −1, for instance, the payment at time T

increases in the positive distance between H and ST such that volatility in the option holder’s total

position can be lowered. The value of such rebate is easily expressed in terms of the above moments

as exp [−r∆] (aHM0,nh,u + bM1,nh,u). A capped version of the in-rebate of type 2 still offers path-

dependency but sets a maximum on this type of insurance in order to reduce its cost. For example,

the rebate payment could be STRIu when ST < 0.8H and 0 otherwise. Such rebate then can easily

be valued by setting the upper integration limit in the pricing formula for V [RIu2 ] at 0.8H and then

evaluate J2,y1,0,0.8H and J2,y2,0,0.8H .

3.2 Out-rebates

Typically, out-rebates are specified as fixed cash payments that are to be paid at the first-hitting time

τ , i.e. when the knock-out option is cancelled. This type of rebate payment, for which we employ the

subscript 1, yields ROu
1 = ROu and ROd

1 = ROd. The time-t value of such rebate requires discounting

the payment at time τ to the present such that the above discounted moments are to be used:

V [ROu
1 ] =

TZ
t

ROu exp [−r (τ − t)] gu [H, τ ;St, t] dτ = ROuMd,T−t
0,h,u

and

V
h
ROd

1

i
=

TZ
t

ROd exp [−r (τ − t)] gd [H, τ ;St, t] dτ = ROdMd,T−t
0,h,d .

Some re-arranging confirms that these prices correspond with the well-known expressions for fixed-

value out-rebates in Rubinstein and Reiner (1991a). Note that the above moments can also value re-

bates under deferred payment. In fact, payment of the rebate at time T requires replacing exp [−r (τ − t)]

4Note that these values actually are the complements of the corresponding up- or down-and-in asset-(at-expiration)-
or-nothing binary barrier options in Rubinstein and Reiner (1991b).
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in the above pricing equations by exp [−r∆] such that we obtain V [ROu
1 ] = exp [−r∆]ROuMT−t

0,h,u and

V
£
ROd

1

¤
= exp [−r∆]ROdMT−t

0,h,d. For brevity, we restrict attention in what follows to rebates that

are paid immediately at time τ .

The above fixed-sum rebate has the advantage of clarity concerning the rebate’s level. However,

the rebate is independent of the time period that has elapsed until τ or that separates τ from the

maturity date T . The following 4 specifications introduce different types of time-dependency that

can straightforwardly be handled by the above moment expressions. The rebate payment of type 2 is

ROu
2 = ROu exp [r (τ − t0)] and ROd

2 = ROd exp [r (τ − t0)] where t0 denotes the time of inception of

the rebate contract that is situated before or at the time of valuation, i.e. t > t0. This rebate grows

in function of the period between the time of first hitting and the creation of the rebate contract

or investors are compensated more heavily the later the option is cancelled. Such specification may

be attractive for investors as the opportunity cost in holding an option that ultimately is cancelled

increases with the time until first hitting. The link to time here is exponential but a Taylor approx-

imation shows that such function for small r and time intervals, which typically apply to options, is

virtually identical to a linear specification.5 The current value of this rebate is:

V [ROu
2 ] =

TZ
t

ROu exp [r (τ − t0)] exp [−r (τ − t)] gu [H, τ ;St, t] dτ = exp [r (t− t0)]RO
uMT−t

0,h,u

and

V
h
ROd

2

i
=

TZ
t

ROd exp [r (τ − t0)] exp [−r (τ − t)] gd [H, τ ;St, t] dτ = exp [r (t− t0)]RO
dMT−t

0,h,d.

The rebate of type 3 shares the exponential relation to time but instead connects the payment to the

period that separates the first-hitting time from the maturity date with ROu
3 = ROu exp [−r (T − τ)]

and ROd
3 = ROd exp [−r (T − τ)]. Also here the rebate is larger when first hitting takes place later.

Its current value is:

V [ROu
3 ] =

TZ
t

ROu exp [−r (T − τ)] exp [−r (τ − t)] gu [H, τ ;St, t] dτ = exp [−r∆]ROuMT−t
0,h,u

and

V
h
ROd

3

i
=

TZ
t

ROd exp [−r (T − τ)] exp [−r (τ − t)] gd [H, τ ;St, t] dτ = exp [−r∆]ROdMT−t
0,h,d.

5The below rebates of types 4 and 5 instead posit a linear relation to time.
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The type-4 out-rebate postulates a linear relation between the time of first hitting and the rebate

payment of the following form: ROu
4 = ROu (τ − t0) and ROd

4 = ROd (τ − t0). This specification

offers a positive link between the rebate and the length of time until first hitting, yet ensures that the

payment is small when first hitting comes about quickly. The current value of this rebate is:

V [ROu
4 ] =

TZ
t

ROu (τ − t0) exp [−r (τ − t)] gu [H, τ ;St, t] dτ

V [ROu
4 ] = ROu

TZ
t

(τ − t) exp [−r (τ − t)] gu [H, τ ;St, t] dτ

+ROu (t− t0)

TZ
t

exp [−r (τ − t)] gu [H, τ ;St, t] dτ

V [ROu
4 ] = ROu

n
Md,T−t
1,h,u + (t− t0)M

d,T−t
0,h,u

o
and

V
h
ROd

4

i
=

TZ
t

ROd (τ − t0) exp [−r (τ − t)] gd [H, τ ;St, t] dτ

V
h
ROd

4

i
= ROd

TZ
t

(τ − t) exp [−r (τ − t)] gd [H, τ ;St, t] dτ

+ROd (t− t0)

TZ
t

exp [−r (τ − t)] gd [H, τ ;St, t] dτ

V
h
ROd

4

i
= ROd

n
Md,T−t
1,h,d + (t− t0)M

d,T−t
0,h,d

o
.

Type 5 specifies a rebate that linearly decreases over time, namely ROu
5 = ROu (T − τ) and ROd

5 =

ROd (T − τ). Such specification may be attractive for investors that expect a sharp decline in volatility

as it allows them to economize on the cost of the rebate. The value at time t is:

V [ROu
5 ] =

TZ
t

ROu (T − τ) exp [−r (τ − t)] gu [H, τ ;St, t] dτ

V [ROu
5 ] = ROu (T − t)

TZ
t

exp [−r (τ − t)] gu [H, τ ;St, t] dτ

−ROu

TZ
t

(τ − t) exp [−r (τ − t)] gu [H, τ ;St, t] dτ

V [ROu
5 ] = ROu

n
(T − t)Md,T−t

0,h,u −Md,T−t
1,h,u

o
14



and

V
h
ROd

5

i
=

TZ
t

ROd (T − τ) exp [−r (τ − t)] gd [H, τ ;St, t] dτ

V
h
ROd

5

i
= ROd (T − t)

TZ
t

exp [−r (τ − t)] gd [H, τ ;St, t] dτ

−ROd

TZ
t

(τ − t) exp [−r (τ − t)] gd [H, τ ;St, t] dτ

V
h
ROd

5

i
= ROd

n
(T − t)Md,T−t

0,h,d −Md,T−t
1,h,d

o
.

These 5 types of out-rebates present a subset of specifications that can be handled via the above

moment expressions and the integral expressions in the Appendix. In fact, various other specifications

may also appeal to investors. For instance, linear combinations of the above 5 types yield rebates in

which time-depending payments are superimposed on constant rebates. The rebates of types 2 and

5 can also be merged into ROu (T − τ) exp [r (τ − t0)] such that the negative link between the rebate

payment and time is mitigated. Furthermore, the integral expressions in the Appendix can handle

growth rates in the exponential term in the rebates of types 2 and 3 that differ from r. Investors

that expect high short-term but lower medium- and long-term volatility can reduce costs by opting

for rebates that are only active in the initial period until t1 with t < t1 < T . In the case of a fixed

payment as in type 1, the current value of such rebate would then simply be ROuMd,t1−t
0,h,u .

4 The put-call parities

The static hedge portfolio of Stoll (1969) for standard options starts from the sale of a call and the

purchase of a put at time t with both options having the same exercise price and time until maturity.

This portfolio then is completed by buying a stock at the price St and borrowing K exp [−r (T − t)].

It guarantees a zero payoff at time T and to ensure that is does not dominate nor is dominated, its

value at time t must be 0. The put-call parity for standard options then is:

P − C = exp [−r∆]K − St. (20)

The put-call parity (20) cannot apply to barrier options. Indeed, hitting the barrier cancels the

option’s payoff at time T (knock-out option) or introduces it (knock-in option) such that the portfolio

value at time T becomes uncertain. However, a probabilistic approach will allow us to specify also

put-call parities for barrier options that share the same barrier, exercise price and expiration date.
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This section first derives 8 put-call parities: for up-and-out, down-and-out, up-and-in and down-

and-in options with in each case the additional distinction in function of the exercise price K being

smaller or larger than the barrier H. We then show that our probabilistic approach is actually

equivalent to a strategy in which the static hedge of Stoll (1969) is extended by a binary barrier

option. All options in this section contain a rebate provision. The 2 in-rebates will be indexed by

i with i = {1, 2} and the 5 specifications for the out-rebates are indexed by j with j = {1, ..., 5}.

Their current value for the upper (lower) barrier H will be denoted by V [RIui ] and V
h
ROu

j

i
(V
£
RIdi

¤
and V

h
ROd

j

i
), respectively. For brevity, the rebates are assumed to be of the same type within each

put-call parity such that, for instance, the out-rebate ROd
j applies to both the knock-out call as well

as the knock-out put. Or, the value of i and j is identical across the options pairs in each of the 8

parities.6

We start with the parity between puts and calls that are cancelled when the barrier H is reached

from below with the exercise price K being located below H. These knock-out call and put prices

are denoted by Cu,o,K<H and Pu,o,K<H where the subscripts u and o refer to their up-and-out nature.

The derivation of the put-call parity starts with subtracting the risk-neutral call price inclusive of the

out-rebate from the corresponding rebate-inclusive put price. The integrals in the option prices then

are combined into the above moment expressions:

Pu,o,K<H − Cu,o,K<H = exp [−r∆]
KZ
0

[K − ST ] pnh,u [ST , T ;St, t] dST + V
£
ROu

j

¤

− exp [−r∆]
HZ

K

[ST −K] pnh,u [ST , T ;St, t] dST − V
£
ROu

j

¤

Pu,o,K<H − Cu,o,K<H = exp [−r∆]
HZ
0

[K − ST ] pnh,u [ST , T ;St, t] dST

Pu,o,K<H − Cu,o,K<H = exp [−r∆]

⎧⎨⎩K

HZ
0

pnh,u [ST , T ;St, t] dST −
HZ
0

STpnh,u [ST , T ;St, t] dST

⎫⎬⎭
Pu,o,K<H − Cu,o,K<H = exp [−r∆] {KM0,nh,u −M1,nh,u} . (21)

The discounted exercise price in the parity (20) for standard options now is multiplied by the zeroth

moment conditioned onH not being reached from below during the option’s life. The remaining term in

the put-call parity (21) is the discounted value of the first moment, i.e. of the conditional expectation,

again conditional onH not being reached from below. Intuitively, the presence of moments expressions
6This restriction is not necessary and can easily be dropped. However, it considerably shortens the below expressions

with the advantage of not obscuring the basic intuition.

16



in the parity (21) corrects the right-hand side terms of the put-call parity (20) for the loss of probability

and expected value that option cancellation brings. Such correction obviously no longer will be required

when lifting the barrier H to +∞ since this precludes option cancellation. The terms M0,nh,u and

M1,nh,u then simplify into 1 and St exp [r∆], respectively, and the familiar put-call parity of Stoll

(1969) results.

The moments that emerge in the put-call parity (21) relate to the defective density and thus do

not depend on the relative position of K versus H. Or, exactly the same expression for the put-call

parity must arise for K > H. This intuition is confirmed when calculating the difference between

risk-neutral option prices whilst noting that the call now can never obtain intrinsic value:

Pu,o,K>H − Cu,o,K>H = exp [−r∆]
HZ
0

[K − ST ] pnh,u [ST , T ;St, t] dST + V
£
ROu

j

¤
− 0− V

£
ROu

j

¤

Pu,o,K>H − Cu,o,K>H = exp [−r∆]

⎧⎨⎩K

HZ
0

pnh,u [ST , T ;St, t] dST −
HZ
0

ST pnh,u [ST , T ;St, t] dST

⎫⎬⎭
Pu,o,K>H − Cu,o,K>H = exp [−r∆] {KM0,nh,u −M1,nh,u} . (22)

Similarly, the down-and-out put for K < H has zero intrinsic value or its value equals the current

price of the rebate:

Pd,o,K<H − Cd,o,K<H = 0 + V
h
ROd

j

i
− exp [−r∆]

+∞Z
H

[ST −K] pnh,d [ST , T ;St, t] dST − V
h
ROd

j

i
Pd,o,K<H − Cd,o,K<H = exp [−r∆] {KM0,nh,d −M1,nh,d} . (23)

Again, the same put-call parity emerges for the case in which the exercise price exceeds H or:

Pd,o,K>H − Cd,o,K>H = exp [−r∆] {KM0,nh,d −M1,nh,d} . (24)

Note that the put-call parity (24) collapses into the expression for standard options when decreasing

the barrier to 0. Indeed, the moments M0,nh,d and M1,nh,d in (7) and (8), respectively, then simplify

into the moments for the unrestricted process since lim
H→0

[M0,nh,d] =M0 = 1 and lim
H→0

[M1,nh,d] =M1 =

St exp [r∆].

The derivation of the put-call parity for up-and-in options is somewhat lengthier. In fact, we

desire to work with transition densities conditional on no hitting, rather than hitting, in order to

be able to employ the above moment expressions. Hereto, we start from the property that the

cumulative transition probability for the stock price at time T per definition can be split up as
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follows: P [ST , T ;St, t] = Pnh,u [ST , T ;St, t] + Ph,u [ST , T ;St, t], where the term P [ST , T ;St, t] de-

notes the unrestricted transition probability and where Pnh,u [ST , T ;St, t] and Ph,u [ST , T ;St, t] con-

dition the transition probability on hitting not taking place and hitting taking place, respectively.

Evaluating the derivative to ST preserves the same identity but allows us to move towards the

transition densities with p [ST , T ;St, t] = pnh,u [ST , T ;St, t] + ph,u [ST , T ;St, t]. The transition den-

sity of the future stock price conditional on hitting taking place at the upper barrier H thus is

ph,u [ST , T ;St, t] = p [ST , T ;St, t]−pnh,u [ST , T ;St, t].7 Using the latter relation and carefully account-

ing for the domain then gives the following put-call parity for the up-and-in case with K < H:

Pu,i,K<H − Cu,i,K<H = exp [−r∆]
KZ
0

[K − ST ] ph,u [ST , T ;St, t] dST + V [RIui ]

− exp [−r∆]
+∞Z
K

[ST −K] ph,u [ST , T ;St, t] dST − V [RIui ]

Pu,i,K<H − Cu,i,K<H = exp [−r∆]

⎧⎨⎩
KZ
0

[K − ST ] p [ST , T ;St, t] dST

−
KZ
0

[K − ST ] pnh,u [ST , T ;St, t] dST

⎫⎬⎭− exp [−r∆]
⎧⎨⎩

+∞Z
K

[ST −K] p [ST , T ;St, t] dST

−
HZ

K

[ST −K] pnh,u [ST , T ;St, t] dST

⎫⎬⎭
Pu,i,K<H − Cu,i,K<H = exp [−r∆]

⎧⎨⎩
+∞Z
0

[K − ST ] p [ST , T ;St, t] dST

−
HZ
0

[K − ST ] pnh,u [ST , T ;St, t] dST

⎫⎬⎭
Pu,i,K<H − Cu,i,K<H = exp [−r∆] {K (M0 −M0,nh,u)− (M1 −M1,nh,u)} . (25)

The put-call parity for up-and-in options in (25) thus is expressed in terms of the difference between

the zeroth and first moments for the unrestricted and the no-hitting distributions. Lifting the barrier

H to +∞ ensures that hitting cannot occur. The difference between put and call prices then must be

zero since the non-rebate part of both options will have no value since creation of standard options is

precluded. This is confirmed by the limit of the right-hand side of the parity (25) since M0,nh,u and

M1,nh,u simplify into M0 and M1.

7This argument can also be seen as the probabilistic underpinning of the in-out parity that states that the up-and-in
call price equals the price of the standard call minus the up-and-out call price.
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As the moments do not depend on the relative position of K to H, the same right-hand side

emerges for up-and-in options with K > H:

Pu,i,K>H − Cu,i,K>H = exp [−r∆] {K (M0 −M0,nh,u)− (M1 −M1,nh,u)} . (26)

The derivation of the put-call parity for down-and-in options with K < H is similar to that for the

up-and-in case:

Pd,i,K<H −Cd,i,K<H = exp [−r∆]
KZ
0

[K − ST ] ph,d [ST , T ;St, t] dST + V
h
RIdi

i

− exp [−r∆]
+∞Z
K

[ST −K] ph,d [ST , T ;St, t] dST − V
h
RIdi

i

Pd,i,K<H −Cd,i,K<H = exp [−r∆]

⎧⎨⎩
KZ
0

[K − ST ] p [ST , T ;St, t] dST

−
KZ
0

[K − ST ] pnh,d [ST , T ;St, t] dST

⎫⎬⎭− exp [−r∆]
⎧⎨⎩

+∞Z
K

[ST −K] p [ST , T ;St, t] dST

−
+∞Z
K

[ST −K] pnh,d [ST , T ;St, t] dST

⎫⎬⎭
Pd,i,K<H −Cd,i,K<H = exp [−r∆]

⎧⎨⎩
KZ
0

[K − ST ] p [ST , T ;St, t] dST − 0

⎫⎬⎭
− exp [−r∆]

⎧⎨⎩
+∞Z
K

[ST −K] p [ST , T ;St, t] dST −
+∞Z
H

[ST −K] pnh,d [ST , T ;St, t] dST

⎫⎬⎭
Pd,i,K<H −Cd,i,K<H = exp [−r∆]

⎧⎨⎩
+∞Z
0

[K − ST ] p [ST , T ;St, t] dST

−
+∞Z
H

[K − ST ] pnh,d [ST , T ;St, t] dST

⎫⎬⎭
Pd,i,K<H −Cd,i,K<H = exp [−r∆] {K (M0 −M0,nh,d)− (M1 −M1,nh,d)} (27)

with the same right-hand side also emerging for the case of K > H:

Pd,i,K>H − Cd,i,K>H = exp [−r∆] {K (M0 −M0,nh,d)− (M1 −M1,nh,d)} . (28)

The limit for H decreasing to 0 removes the possibility of ever creating standard options and the

right-hand side in the parity (28) indeed reduces to zero.
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The moment expressions for the relevant (defective) distributions thus allow us to derive 8 put-call

parities by combining risk-neutral call and put prices. Note that these parity relations also can be

obtained via the static hedge argument of Stoll (1969) when extending the portfolio with a binary

barrier option. We illustrate this for the case of up-and-out options with K < H. The potential

of option cancellation and the presence of rebate provisions generate two differences when compared

with the portfolio of Stoll (1969). First, intermediate payments, namely the out-rebates, will arise

when the stock price hits H before date T .8 Given our assumption of calls and puts having identical

rebates, these intermediate payments cancel out.9 Second, the overview of the value of the portfolio

positions at time T in Table 1 now must take account of an additional dimension, namely whether or

not options have been knocked out prior to time T . The option positions do not create value at T if

hitting takes place before T , but the loan is to be paid back and the long position in the stock still

exists. To ensure a combined value of 0 under all eventualities at time T , the investment strategies

at time t must include the sale of a binary barrier option, BI, that pays ST −K conditional on the

stock price having hit H prior to T . The value at time t of this claim will be denoted by V [BI].

Table 1: Value of the extended static hedge portfolio for the put-call parity in the case
of up-and-out options with the exercise price located below the barrier.

Value at time t Payments between t and T Value at time T
Hit prior No hit prior Hit prior No hit prior to T
to T to T to T ST > K ST < K

Cu,o,K<H −ROu
j 0 0 − (ST −K) 0

−Pu,o,K<H +ROu
j 0 0 0 + (K − ST )

K exp [−r∆] 0 0 −K −K −K
−St 0 0 +ST +ST +ST

V [BI] 0 0 − (ST −K) 0 0

0 0 0 0 0 0

Table 1 shows that the put-call parity then can be written as:

Pu,o,K<H − Cu,o,K<H = exp [−r∆]K − St + V [BI] . (29)

The put-call parity (29) is identical to the parity in (21) as will be illustrated by expressing the value

of the binary barrier option in terms of the above moments. The value of the binary barrier option

8First hitting, and thus payment of out-rebates, can also take place precisely at time t or at time T . For brevity,
we assume that first hitting does not occur at these two points of time. This restriction greatly simplifies the below
exposition, but is obviously not essential to the argument.

9Differences in rebate provisions for puts and calls can easily be dealt with via the inclusion of an additional binary
barrier option in the hedge portfolio.
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measures its payoff with respect to the probability of hitting H between t and T :

V [BI] = exp [−r∆]
HZ
0

[ST −K] ph,u [ST , T ;St, t] dST

V [BI] = exp [−r∆]

⎧⎨⎩
+∞Z
0

[ST −K] p [ST , T ;St, t] dST −
HZ
0

[ST −K] pnh,u [ST , T ;St, t] dST

⎫⎬⎭
V [BI] = exp [−r∆] {K (M0,nh,u −M0)− (M1,nh,u −M1)} .

Plugging the latter value into the put-call parity (29) yields:

Pu,o,K<H − Cu,o,K<H = exp [−r∆]K − St + {exp [−r∆] (K {M0,nh,u −M0}− {M1,nh,u −M1})}

Pu,o,K<H − Cu,o,K<H = exp [−r∆]K − St + {exp [−r∆] (K {M0,nh,u − 1}− {M1,nh,u − St exp [r∆]})}

Pu,o,K<H − Cu,o,K<H = exp [−r∆] {KM0,nh,u −M1,nh,u} ,

which, as required, corresponds with the parity (21).

5 The in-out parities

The in-out parities express the relation between in- and out-options of the same type (call or put) that

furthermore share the same exercise price, time to maturity and barrier. It is well-known for the case

without rebates that the sum of the value of an in- and out-option gives the corresponding Black and

Scholes (1973) price (see for instance Rubinstein and Reiner, 1991a). As all option contracts in this

paper have rebate provisions, the familiar in-out parity must be slightly modified. Table 2 illustrates

the hedge argument for the in-out parity for up-and-out and up-and-in calls with K < H, where CBS

is the Black and Scholes (1973) call price.

In order to simplify exposition in Table 2, we again assume that first hitting cannot come about

precisely at time t or at time T . The first three rows give the values that emerge from selling an

up-and-out call as well as an up-and-in call, termed up-options, and buying a Black and Scholes

(1973) call at time t. The rebate provisions can require the payment of an out-rebate by the seller

of the barrier option between times t and T or the payment of an in-rebate at time T . Hence, the

familiar strategy must be extended by buying an out- as well as an in-rebate contract at time t. Then,

intermediate payments cancel out and values at time T are always 0 such that the in-out parity can

be written as:

Cu,o,K<H + Cu,i,K<H = CBS + V [RIui ] + V
£
ROu

j

¤
. (30)
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Table 2: Value of the extended static hedge portfolio for the in-out parity in the case of
up-options with the exercise price located below the barrier.

Value at time t Payments between t and T Value at time T
Hit prior No hit prior Hit prior to T No hit prior to T
to T to T ST > K ST < K ST > K ST < K

Cu,o,K<H −ROu
j 0 0 0 − (ST −K) 0

Cu,i,K<H 0 0 − (ST −K) 0 −RIui −RIui
−CBS 0 0 + (ST −K) 0 + (ST −K) 0
−V [RIui ] 0 0 0 0 +RIui +RIui
−V

h
ROu

j

i
+ROu

j 0 0 0 0 0

0 0 0 0 0 0 0

As the rebates carry no reference to the relative position of K to H, the right-hand side of the in-out

parity (30) also holds for the case of K > H or:

Cu,o,K>H + Cu,i,K>H = CBS + V [RIui ] + V
£
ROu

j

¤
. (31)

Similar arguments apply to the remaining cases and for brevity we only give the final form of these 6

in-out parities:

Cd,o,K<H + Cd,i,K<H = CBS + V
h
RIdi

i
+ V

h
ROd

j

i
, (32)

Cd,o,K>H + Cd,i,K>H = CBS + V
h
RIdi

i
+ V

h
ROd

j

i
, (33)

Pu,o,K<H + Pu,i,K<H = PBS + V [RIui ] + V
£
ROu

j

¤
, (34)

Pu,o,K>H + Pu,i,K>H = PBS + V [RIui ] + V
£
ROu

j

¤
, (35)

Pd,o,K<H + Pd,i,K<H = PBS + V
h
RIdi

i
+ V

h
ROd

j

i
, (36)

Pd,o,K>H + Pd,i,K>H = PBS + V
h
RIdi

i
+ V

h
ROd

j

i
, (37)

where PBS denotes the put price of Black and Scholes (1973).

6 Retrieving barrier option prices via the parities and moments

The above moments together with the put-call and in-out parities can also express barrier option

prices in a simple and intuitive manner. In fact, all 16 barrier option prices can be obtained via the

parities obtained in this paper when starting from only 4 explicit price equations. In what follows,

we distinguish 4 cases: barrier options written on an upper barrier (up-options) and a lower barrier
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(down-options) with in each case two set-ups depending on the relative position of the exercise price

with respect to the barrier.

6.1 Up-options with K > H

We have 4 possible up-options, namely the up-and-out call and put as well as the up-and-in call

and put. In order to value these 4 barrier options, we need only one explicit price equation and we,

arbitrarily, choose for the value of Pu,o,K>H that, inclusive of an out-rebate, emerges as:

Pu,o,K>H = exp [−r∆]
HZ
0

[K − ST ] pnh,u [ST , T ;St, t] dST + V
£
ROu

j

¤
Pu,o,K>H = exp [−r∆] (KM0,nh,u −M1,nh,u) + V

£
ROu

j

¤
, (38)

where it is to be remembered that also the value of the rebate can be expressed in terms of moments.

Rubinstein and Reiner (1991a) specify this put price for j = 1, i.e. for the case of a constant out-

rebate, which can easily be confirmed by inserting the moment expressions (5) and (6) and the value

of the rebate V [ROu
1 ] into the put price (38).

The prices of the other 3 up-options then can be obtained from Pu,o,K>H together with the parities

(22), (35) and (31), respectively:

Cu,o,K>H = Pu,o,K>H − exp [−r∆] {KM0,nh,u −M1,nh,u} , (39)

Pu,i,K>H = PBS − Pu,o,K>H + V [RIui ] + V
£
ROu

j

¤
,

Cu,i,K>H = CBS − Cu,o,K>H + V [RIui ] + V
£
ROu

j

¤
. (40)

These 3 option values correspond with the expressions, for i = j = 1, that are derived in Rubinstein

and Reiner (1991a). Note that the above 3 expressions still allow for some simplifications. For instance,

the up-and-out call for K > H can never attain intrinsic value since the stock price cannot move above

K without first touching the barrier H. The price of this barrier option then must be V
h
ROu

j

i
. This

is immediately confirmed when plugging the put price (38) into the expression of the call price in

(39). Similarly, the value of the up-and-in call must equal the call price of Black and Scholes (1973)

augmented by the current value of the in-rebate. Indeed, both give the same payoff at time T , namely

RIui when no hitting takes place and max[0, ST −K] when hitting takes place since moving above K

can only take place after hitting H. As argued earlier, Cu,o,K>H = V
h
ROu

j

i
such that indeed the call

price (40) simplifies into Cu,i,K>H = CBS + V [RIui ].
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6.2 Up-options with K < H

The put price Pu,o,K<H can be taken from the extant literature, e.g. from Rubinstein and Reiner

(1991a), when j = 1. This price as well as the prices for other values of j can be calculated via the

integral solutions in the Appendix as:

Pu,o,K<H = exp [−r∆]
KZ
0

[K − ST ] pnh,u [ST , T ;St, t] dST + V
£
ROu

j

¤

Pu,o,K<H = exp [−r∆]

⎧⎨⎩K

KZ
0

pnh,u [ST , T ;St, t] dST −
KZ
0

STpnh,u [ST , T ;St, t] dST

⎫⎬⎭+ V
£
ROu

j

¤
Pu,o,K<H = exp [−r∆]

(
K

Ã
J1;y1,0,K −

µ
H

St

¶2(λ−1)
J1;y2,0,K

!
−
Ã
J2;y1,0,K −

µ
H

St

¶2(λ−1)
J2;y2,0,K

!)
+V

£
ROu

j

¤
.

The other 3 up-option prices for K < H then can be retrieved by employing the parities (21), (34)

and (30):

Cu,o,K<H = Pu,o,K<H − exp [−r∆] {KM0,nh,u −M1,nh,u} ,

Pu,i,K<H = PBS − Pu,o,K<H + V [RIui ] + V
£
ROu

j

¤
,

Cu,i,K<H = CBS − Cu,o,K<H + V [RIui ] + V
£
ROu

j

¤
.

6.3 Down-options with K > H

The put price Pd,o,K>H is documented in the literature for j = 1. However, for all values of j also the

following derivation can be employed:

Pd,o,K>H = exp [−r∆]
KZ

H

[K − ST ] pnh,d [ST , T ;St, t] dST + V
h
ROd

j

i

Pd,o,K>H = exp [−r∆]

⎧⎨⎩K

KZ
H

pnh,d [ST , T ;St, t] dST −
KZ

H

STpnh,d [ST , T ;St, t] dST

⎫⎬⎭+ V
h
ROd

j

i

Pd,o,K>H = exp [−r∆]
(
K

Ã
J1;y1,H,K −

µ
H

St

¶2(λ−1)
J1;y2,H,K

!
−
Ã
J2;y1,H,K −

µ
H

St

¶2(λ−1)
J2;y2,H,K

!)
+V

h
ROd

j

i
.

24



The other 3 down-option prices for K > H then follow from the parities (24), (37) and (33) as:

Cd,o,K>H = Pd,o,K>H − exp [−r∆] {KM0,nh,d −M1,nh,d} ,

Pd,i,K>H = PBS − Pd,o,K>H + V
h
RIdi

i
+ V

h
ROd

j

i
,

Cd,i,K>H = CBS − Cd,o,K>H + V
h
RIdi

i
+ V

h
ROd

j

i
.

6.4 Down-options with K < H

The expression for the put price Pd,o,K<H is particularly simple since the option part of the contract

can never attain intrinsic value such that:

Pd,o,K<H = V
h
ROd

j

i
.

The parities in (23), (36) and (32) then specify the other 3 down-option prices as:

Cd,o,K<H = Pd,o,K<H − exp [−r∆] {KM0,nh,d −M1,nh,d} ,

Pd,i,K<H = PBS − Pd,o,K<H + V
h
RIdi

i
+ V

h
ROd

j

i
,

Cd,i,K<H = CBS − Cd,o,K<H + V
h
RIdi

i
+ V

h
ROd

j

i
.

7 Conclusions

The put-call parity for standard options establishes a simple relationship between the prices of Eu-

ropean put and call options that share the same exercise price and time to maturity. However, the

static hedge argument of Stoll (1969) relies on the assumption that options exist at the present point

of time and remain alive until the maturity date. It then cannot apply to barrier options since knock-

out options are cancelled when the underlying asset price touches a prespecified barrier and knock-in

options only create standard options when the underlying touches the barrier.

However, a probabilistic argument allows us to derive put-call parities also for barrier put and

call options that have the same exercise price, the same barrier and identical time until maturity.

The resulting parity is very similar to the familiar put-call parity and has an intuitive, probabilistic

interpretation. In fact, the difference between put and call prices still is expressed in terms of the stock

price and the discounted exercise price, but these will now be linked to the moments of the relevant

defective distributions. Intuitively, the link to the zeroth and first moments acts as a probability

adjustment when compared with the traditional put-call parity. Such adjustment is required since

option cancellation and the potential lack of option creation in barrier options bring a reduction in

probabilities and expectations. This argument also offers a probabilistic interpretation of the put-call
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parity of Stoll (1969). Indeed, lifting (decreasing) the upper (lower) barrier to +∞ (0) in the put-call

parities for barrier options removes the possibility of hitting the barrier. The need for the probability

adjustment then vanishes which causes the put-call parities for barrier options to collapse into the

parity for standard options.

The moment expressions derived in this paper are also useful building blocks for the valuation of

rebates. In fact, we employ them to easily value various novel types of for instance time-depending

rebate specifications. For instance, we allow the rebates in knock-out options to linearly and exponen-

tially depend upon the time that remains between the time of first hitting and the expiration date of

the option. Indeed, investors may well be interested in (combinations of) such time-depending rebates

in order to bring the rebate payment in line with the higher opportunity costs involved in holding an

option that is cancelled at a later date and/or to finetune the rebate in function of cash management

and risk profile. The moments together with the put-call parities and the in-out parities also express

all published 16 single-barrier option values in a simple and intuitive manner. In fact, only 4 explicit

pricing equations are required as the other 12 prices then can be retrieved via the barrier put-call and

in-out parities.

The methods and results in this paper allow for several interesting extensions. The above relations

can easily be modified for alternative underlying instruments such as foreign exchange and dividend-

paying stocks. The results also can be extended towards double-barrier set-ups both for constant

barriers as well as the curved boundaries in Kunitomo and Ikeda (1992) for which the required al-

location of first-hitting time density across the barriers can be handled via Lemma 5.2.9 in Knight

(1981). The integral expressions of Cho (1971) that are at the center of part of the solutions in the

Appendix actually can be used to value a wide variety of additional time-depending rebates. For

instance, rebates that grow over time but that are only active within one or more subperiods of the

option’s life can easily be valued via these integral expressions. Given the close relation of our results

to the valuation of binary barrier options, the results in Rubinstein and Reiner (1991b) can likewise

be extended in various useful directions.
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Appendix: Useful integral expressions

The solutions to the definite integrals J1;yi,β1,β2 and J2;yi,β1,β2 are obtained via repeated substitutions

that transform the integrand into the standard normal density function. This yields:

J1;yi,β1,β2 =
1√

2πσ2∆

β2Z
β1

1

ST
exp

"
−(lnST + yi)

2

2σ2∆

#
dST = Φ

∙
lnβ2 + yi

σ
√
∆

¸
−Φ

∙
lnβ1 + yi

σ
√
∆

¸

and

J2;yi,β1,β2 =
1√

2πσ2∆

β2Z
β1

exp

"
−(lnST + yi)

2

2σ2∆

#
dST = exp

∙
−yi +

1

2
σ2∆

¸

×
½
Φ

∙
lnβ2 + yi − σ2∆

σ
√
∆

¸
−Φ

∙
lnβ1 + yi − σ2∆

σ
√
∆

¸¾
,

where Φ [q] = 1√
2π

qR
−∞

exp
£
−12x2

¤
dx is the standard normal distribution function.

The solutions to the definite integrals J3;a,b,β1,β2 and J4;a,b,β1,β2 are obtained on the basis of two

expressions that were derived in Cho (1971) and later were reproduced as integrals 12 and 13 on p.

428 in Beck et al. (1992):10

J3;a,b,β1,β2 =
β2Z

β1

s−
3
2 exp

∙
−a2s− b2

s

¸
ds =

√
π

b
exp [−2ab]

(
Φ

"
√
2

(
a
p
β2 −

bp
β2

)#
−

Φ

"
√
2

(
a
p
β1 −

bp
β1

)#)
−
√
π

b
exp [2ab]

(
Φ

"
√
2

(
a
p
β2 +

bp
β2

)#
−

Φ

"
√
2

(
a
p
β1 +

bp
β1

)#)

and

J4;a,b,β1,β2 =
β2Z

β1

s−
1
2 exp

∙
−a2s− b2

s

¸
ds =

√
π

a
exp [2ab]

(
Φ

"
√
2

(
a
p
β2 +

bp
β2

)#
−

Φ

"
√
2

(
a
p
β1 +

bp
β1

)#)
+

√
π

a
exp [−2ab]

(
Φ

"
√
2

(
a
p
β2 −

bp
β2

)#
−

Φ

"
√
2

(
a
p
β1 −

bp
β1

)#)
.

10The expressions in Cho (1971) and Beck et al. (1992) are presented in terms of the error function Erf[x] that is
related to the standard normal distribution function via the relationship Erf[x] = 2Φ

√
2x − 1 (see Zelen and Severo,

1964).
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