Cell-based models

Tamulonis, C.V.T.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Contents i
Summary v
Samenvatting ix
1 Introduction 1

2 Lattice-based Models 11
 2.1 A Lattice Model of Cancer Growth 13
 2.2 General Characteristics of Lattice Models 14
 2.3 Cellular Automata . 17
 2.4 The Importance of Locality . 20
 2.5 A Model of Embryogenesis . 21
 2.6 Lattice Gas Cellular Automata 25
 2.6.1 A Model of Adhering Cells 26
 2.6.2 A Model of Gliding Myxobacteria 27
 2.7 The Mechanics of Cell Aggregates 30
 2.8 The Cellular Potts Model . 36
 2.8.1 The Modified Metropolis Algorithm 36
 2.8.2 The CPM Hamiltonian . 38
 2.8.3 Modeling Cell-sorting Using the CPM 38
 2.8.4 Extensions of the CPM Hamiltonian 39
 2.8.5 Other Applications of the CPM 46
 2.9 Discussion . 48

3 Lattice-free Models 51
3.1 Newtonian Mechanics and Microbiological Systems

3.1.1 The Movement of a Single Particle

3.1.2 The Movement of a System of Particles

3.1.3 Bodies Immersed in Fluids

3.1.4 The Motility of Microorganisms

3.1.5 Specifying Forces

3.1.6 Numerical Integration of the Equations of Motion

3.2 Cells as Spheres and Ellipsoids

3.2.1 A Model of Swimming Bacteria

3.2.2 The Hertz Model for Elastic Spheres

3.2.3 Adhesion Between Spheres

3.2.4 Brownian Motion

3.2.5 Cells as Viscoelastic Ellipsoids

3.3 Cells as Simple Polygons

3.3.1 Voronoi Tessellation

3.3.2 Modeling Cells as Voronoi Domains

3.3.3 Honda’s Vertex Dynamics

3.3.4 The Finite Element Method

3.4 Cells as Complex Polygons

3.4.1 Intracellular Forces

3.4.2 Intercellular Forces

3.4.3 The Immersed Boundary Method

3.5 Cells as Particle Clouds

3.6 Discussion

4 Modeling Nematostella Gastrulation

4.1 Introduction

4.2 Methods

4.2.1 Embryo Preparation

4.2.2 Morphometrics

4.2.3 The Model

4.3 Results

4.3.1 Morphometrics

4.3.2 Mechanical Equilibrium of the Blastula

4.3.3 Bottle Cells are a Consequence of Cell Contractility, Low Cell-cell Adhesion and Mechanical Constraint

4.3.4 Simulating Gastrulation
Contents

4.4 Discussion 124
4.4.1 Bottle Cell Formation 124
4.4.2 Model Validity 128
4.4.3 Apico-basal Contraction of the Endoderm 130
4.4.4 Volume Regulation 130
4.4.5 Two- vs Three-Dimensional Models 131
4.4.6 Outlook 132

5 Modeling Filamentous Cyanobacteria 135
5.1 Introduction 135
5.2 Methods 139
5.2.1 A Model of Filamentous Cyanobacteria 139
5.2.2 Simulation Setup 144
5.2.3 Programming and Data Analysis 144
5.3 Results 145
5.3.1 Modeling Cyanographs 145
5.3.2 A Heterogeneous Population in a Static Light Field 149
5.3.3 A Heterogeneous Population in a Dynamic Light Field 151
5.4 Discussion 154
5.4.1 Photophobia as an Exposure Optimization Mechanism 154
5.4.2 Long Trichomes Enhance Exposure Optimization 155
5.4.3 Fast Gliding Enhances Exposure Optimization 156
5.4.4 Is the Trichome Optimal for Photomovement? 157
5.4.5 Future Work 158

6 Modeling Reticulate Biofilms 159
6.1 Introduction 159
6.2 Methods 162
6.2.1 Biological Background 162
6.2.2 Model Geometry 163
6.2.3 Elasticity 164
6.2.4 Gliding 164
6.2.5 Contact Interaction 165
6.2.6 Boundary and Initial Conditions 169
6.2.7 Nondimensionalization 169
6.2.8 Parameters 170
6.2.9 Algorithms and Statistics 172
6.3 Results ... 174
 6.3.1 Varying Cohesion Strength 174
 6.3.2 Domain Size, Density and Reversal Frequency 180
 6.3.3 Revisiting Low Cohesion 181
6.4 Discussion .. 184
6.5 Conclusions .. 187

7 Conclusions .. 189

Acknowledgements .. 196

References ... 198