Cell-based models

Tamulonis, C.V.T.

Citation for published version (APA):

UvA-DARE (Digital Academic Repository)
Contents

Contents .. i
Summary v
Samenvatting ix
1 Introduction 1

2 Lattice-based Models 11
 2.1 A Lattice Model of Cancer Growth 13
 2.2 General Characteristics of Lattice Models 14
 2.3 Cellular Automata 17
 2.4 The Importance of Locality 20
 2.5 A Model of Embryogenesis 21
 2.6 Lattice Gas Cellular Automata 25
 2.6.1 A Model of Adhering Cells 26
 2.6.2 A Model of Gliding Myxobacteria 27
 2.7 The Mechanics of Cell Aggregates 30
 2.8 The Cellular Potts Model 36
 2.8.1 The Modified Metropolis Algorithm 36
 2.8.2 The CPM Hamiltonian 38
 2.8.3 Modeling Cell-sorting Using the CPM 38
 2.8.4 Extensions of the CPM Hamiltonian 39
 2.8.5 Other Applications of the CPM 46
 2.9 Discussion .. 48

3 Lattice-free Models 51

3.1 Newtonian Mechanics and Microbiological Systems 52
 3.1.1 The Movement of a Single Particle 52
 3.1.2 The Movement of a System of Particles 53
 3.1.3 Bodies Immersed in Fluids 55
 3.1.4 The Motility of Microorganisms 56
 3.1.5 Specifying Forces 59
 3.1.6 Numerical Integration of the Equations of Motion 60
3.2 Cells as Spheres and Ellipsoids 63
 3.2.1 A Model of Swimming Bacteria 63
 3.2.2 The Hertz Model for Elastic Spheres 65
 3.2.3 Adhesion Between Spheres 67
 3.2.4 Brownian Motion 69
 3.2.5 Cells as Viscoelastic Ellipsoids 70
3.3 Cells as Simple Polygons 74
 3.3.1 Voronoi Tessellation 74
 3.3.2 Modeling Cells as Voronoi Domains 75
 3.3.3 Honda’s Vertex Dynamics 78
 3.3.4 The Finite Element Method 82
3.4 Cells as Complex Polygons 85
 3.4.1 Intracellular Forces 86
 3.4.2 Intercellular Forces 88
 3.4.3 The Immersed Boundary Method 91
3.5 Cells as Particle Clouds 93
3.6 Discussion 96

4 Modeling Nematostella Gastrulation 103
 4.1 Introduction 103
 4.2 Methods 107
 4.2.1 Embryo Preparation 107
 4.2.2 Morphometrics 107
 4.2.3 The Model 108
 4.3 Results 114
 4.3.1 Morphometrics 114
 4.3.2 Mechanical Equilibrium of the Blastula 116
 4.3.3 Bottle Cells are a Consequence of Cell Contractility, Low Cell-cell Adhesion and Mechanical Constraint 119
 4.3.4 Simulating Gastrulation 121
Contents

4.4 Discussion
- 4.4.1 Bottle Cell Formation
- 4.4.2 Model Validity
- 4.4.3 Apico-basal Contraction of the Endoderm
- 4.4.4 Volume Regulation
- 4.4.5 Two- vs Three-Dimensional Models
- 4.4.6 Outlook

5 Modeling Filamentous Cyanobacteria
- 5.1 Introduction
- 5.2 Methods
 - 5.2.1 A Model of Filamentous Cyanobacteria
 - 5.2.2 Simulation Setup
 - 5.2.3 Programming and Data Analysis
- 5.3 Results
 - 5.3.1 Modeling Cyanographs
 - 5.3.2 A Heterogeneous Population in a Static Light Field
 - 5.3.3 A Heterogeneous Population in a Dynamic Light Field
- 5.4 Discussion
 - 5.4.1 Photophobia as an Exposure Optimization Mechanism
 - 5.4.2 Long Trichomes Enhance Exposure Optimization
 - 5.4.3 Fast Gliding Enhances Exposure Optimization
 - 5.4.4 Is the Trichome Optimal for Photomovement?
 - 5.4.5 Future Work

6 Modeling Reticulate Biofilms
- 6.1 Introduction
- 6.2 Methods
 - 6.2.1 Biological Background
 - 6.2.2 Model Geometry
 - 6.2.3 Elasticity
 - 6.2.4 Gliding
 - 6.2.5 Contact Interaction
 - 6.2.6 Boundary and Initial Conditions
 - 6.2.7 Nondimensionalization
 - 6.2.8 Parameters
 - 6.2.9 Algorithms and Statistics
6.3 Results ... 174
 6.3.1 Varying Cohesion Strength 174
 6.3.2 Domain Size, Density and Reversal Frequency 180
 6.3.3 Revisiting Low Cohesion 181
6.4 Discussion ... 184
6.5 Conclusions 187

7 Conclusions .. 189

Acknowledgements 196

References ... 198