Cell-based models

Tamulonis, C.V.T.

Citation for published version (APA):
Contents

3.1 Newtonian Mechanics and Microbiological Systems 52
 3.1.1 The Movement of a Single Particle .. 52
 3.1.2 The Movement of a System of Particles 53
 3.1.3 Bodies Immersed in Fluids ... 55
 3.1.4 The Motility of Microorganisms .. 56
 3.1.5 Specifying Forces ... 59
 3.1.6 Numerical Integration of the Equations of Motion 60
3.2 Cells as Spheres and Ellipsoids ... 63
 3.2.1 A Model of Swimming Bacteria .. 63
 3.2.2 The Hertz Model for Elastic Spheres ... 65
 3.2.3 Adhesion Between Spheres ... 67
 3.2.4 Brownian Motion ... 69
 3.2.5 Cells as Viscoelastic Ellipsoids ... 70
3.3 Cells as Simple Polygons ... 74
 3.3.1 Voronoi Tessellation ... 74
 3.3.2 Modeling Cells as Voronoi Domains ... 75
 3.3.3 Honda’s Vertex Dynamics ... 78
 3.3.4 The Finite Element Method .. 82
3.4 Cells as Complex Polygons ... 85
 3.4.1 Intracellular Forces .. 86
 3.4.2 Intercellular Forces .. 88
 3.4.3 The Immersed Boundary Method .. 91
3.5 Cells as Particle Clouds ... 93
3.6 Discussion ... 96

4 Modeling *Nematostella* Gastrulation .. 103
 4.1 Introduction ... 103
 4.2 Methods ... 107
 4.2.1 Embryo Preparation ... 107
 4.2.2 Morphometrics .. 107
 4.2.3 The Model .. 108
 4.3 Results .. 114
 4.3.1 Morphometrics .. 114
 4.3.2 Mechanical Equilibrium of the Blastula 116
 4.3.3 Bottle Cells are a Consequence of Cell Contractility, Low
 Cell-cell Adhesion and Mechanical Constraint 119
 4.3.4 Simulating Gastrulation ... 121
4.4 Discussion ... 124
4.4.1 Bottle Cell Formation 124
4.4.2 Model Validity 128
4.4.3 Apico-basal Contraction of the Endoderm 130
4.4.4 Volume Regulation 130
4.4.5 Two- vs Three-Dimensional Models 131
4.4.6 Outlook .. 132

5 Modeling Filamentous Cyanobacteria 135
5.1 Introduction ... 135
5.2 Methods .. 139
5.2.1 A Model of Filamentous Cyanobacteria 139
5.2.2 Simulation Setup 144
5.2.3 Programming and Data Analysis 144
5.3 Results .. 145
5.3.1 Modeling Cyanographs 145
5.3.2 A Heterogeneous Population in a Static Light Field 149
5.3.3 A Heterogeneous Population in a Dynamic Light Field 151
5.4 Discussion .. 154
5.4.1 Photophobia as an Exposure Optimization Mechanism 154
5.4.2 Long Trichomes Enhance Exposure Optimization ... 155
5.4.3 Fast Gliding Enhances Exposure Optimization 156
5.4.4 Is the Trichome Optimal for Photomovement? 157
5.4.5 Future Work .. 158

6 Modeling Reticulate Biofilms 159
6.1 Introduction ... 159
6.2 Methods .. 162
6.2.1 Biological Background 162
6.2.2 Model Geometry 163
6.2.3 Elasticity .. 164
6.2.4 Gliding ... 164
6.2.5 Contact Interaction 165
6.2.6 Boundary and Initial Conditions 169
6.2.7 Nondimensionalization 169
6.2.8 Parameters ... 170
6.2.9 Algorithms and Statistics 172
Contents

6.3 Results ... 174
 6.3.1 Varying Cohesion Strength 174
 6.3.2 Domain Size, Density and Reversal Frequency 180
 6.3.3 Revisiting Low Cohesion 181
6.4 Discussion .. 184
6.5 Conclusions ... 187

7 Conclusions ... 189

Acknowledgements ... 196

References .. 198