X-Ray photoemission and electron-energy loss spectroscopic studies of Sr2CuO2Cl2

Published in:
Journal of Low Temperature Physics

DOI:
10.1007/BF00768408

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
X-Ray Photoemission and Electron-Energy Loss spectroscopic Studies of Sr$_2$CuO$_2$Cl$_2$

Institut für Festkörper und Werkstofforschung Dresden,
Postfach 270016, D-01171 Dresden, Germany

aDepartment of Applied Physics, University of Tokyo,
Bunkyo-ku, Tokyo 113, Japan

bFaculty of Education, Yamaguchi University,
1677-1, Yoshida, Yamaguchi 753, Japan

cInstitute for Solid State Physics, University of Tokyo,
Roppongi, Tokyo 106, Japan

Sr$_2$CuO$_2$Cl$_2$ represents a nearly ideal case of a 2-D antiferromagnetic CuO$_2$-plane and thus is of particular interest in the context of the origins of high T_c superconductivity. We present high energy spectroscopic results on single crystalline Sr$_2$CuO$_2$Cl$_2$. Using electron-energy loss spectroscopy in transmission we have measured the loss function along the high symmetry directions in the CuO$_2$-plane. X-ray photoemission spectroscopy is applied to study the valence band and the Cu 2p spectrum. Comparison of the experiment to a cluster calculation is given.

PACS numbers: 71.27. + a, 74.72.Jt, 79.60. – i, 79.20.Kz

X-ray photoemission spectroscopy (XPS) has provided a number of insights into the electronic structure of the occupied electronic states of late transition metal compounds such as the Cu-dihalides1 and Cu oxides.2,3 In particular, the detailed form of the Cu 2p spectra, together with cluster calculations delivers an experimental check of the parameters which go into models used to describe the electronic structure of these correlated materials. With high-energy electron energy-loss spectroscopy (EELS)4 it is possible to study the unoccupied electronic states, in particular it is possible to study
the momentum resolved dielectric function along certain high-symmetry directions in single crystals. This is of great interest in the cuprates for those being structurally highly anisotropic due to the CuO$_2$-network.

In many formally divalent copper compounds, the Cu 2p spectrum shows a strong satellite feature which is interpreted as to be due to emission from a poorly-screened 2p53d9 final state.1,3,5 Whilst the attribution of the main line to a well-screened final state in which no d-holes reside at the site of the 2p core hole is broadly accepted, the origin of the large width and high binding energy (BE) asymmetry of the main line2,3 has been the subject of discussion. In earlier treatments,1,3,5 the low energy component of the main line was discussed in terms of the 3d10L final state, while the asymmetry and resultant large width were attributed to the bandwidth of the O 2p states.6

However, recent calculations have shown that the ability of the system to screen the Cu 2p core hole depends sensitively on the geometry and doping level of the CuO$_2$ network involved.7,8 These calculations predict that the Cu 2p XPS main line is comprised of two peaks. The smaller high BE component is a 3d10L final state, in which the 3d hole has moved to O 2p orbitals of the same CuO$_4$ unit. The larger component at lower BE corresponds to a 2p53d10 final state in which a pushed-out hole mainly resides in the O 2p orbitals, weakly interacting with the neighbouring Cu spins, and in which it forms a Zhang-Rice singlet.9 It is the stability of this singlet that leads to appearance of the 2p53d10 final state at lowest BE. There has been a discrepancy, however, between these calculations7,8 and what has been experimentally observed up to now in the undoped cuprates, in that there has been no clear-cut double-peak structure seen for the main line.

In this contribution, we present Cu 2p XPS data from Sr$_2$CuO$_2$Cl$_2$ which show a pronounced double-peaked Cu 2p main line, and discuss some of the possible reasons for its strength in the oxychloride as opposed to the other cuprates. In addition, we present a study of the interband excitations in the same material using EELS in transmission.

The crystals were grown from the stoichiometric melt - for details see Miller et. al.10 It crystallises in a body centred tetragonal structure10 like La$_2$CuO$_4$, but in the oxychloride the apical oxygens are replaced by chlorine located in the rock-salt Sr$_2$Cl$_2$ block layers. Therefore, Sr$_2$CuO$_2$Cl$_2$ contains a truly 2-D CuO$_2$ network (T$'$ structure).

The electron energy-loss spectra were obtained in transmission using a primary beam of 170keV.4 Samples of \sim 1000Å thickness were cleaved using an ultramicrotome. The sample quality and orientation were checked in situ using electron diffraction.

The x-ray photoemission experiments were performed with a commercial XPS machine equipped with a monochromated Al Kα source of 1486.6eV
The single crystalline samples were cleaved in situ under ultrahigh vacuum conditions. The base pressure of the system was in the low 10^{-8}Pa region and the measurements were performed at room temperature. From the angle dependence of the spectra we infer that the cleavage surface (which is parallel to the a, b-plane) is Sr rich. The BE of the O 1s core level of about 529.3eV is consistent with typical values for O 1s in other cuprate compounds. We note that the O 1s spectrum comprises purely of a single component.

The valence band spectrum of Sr$_2$CuO$_2$Cl$_2$ is shown in Fig. 1a) and is similar to a previous valence band study of Sr$_2$CuO$_2$Cl$_2$. Comparing our results to previous studies of CuO, we note the good agreement concerning the Cu 3d-O 2p part of the spectrum. The peak centred at about 3eV can be assigned to the hybridised Cu 3d-O 2p states as in CuO, whilst the small foot at about 1.5eV represents the highest lying electron removal states in which the intrinsic 3d hole forms a singlet. Angle resolved photoemission studies (ARPES) of these singlet states in Sr$_2$CuO$_2$Cl$_2$ have been published recently, and the observed dispersion of these highest lying states can be understood within the framework of an extended $t-J$ model. In the XPS spectrum, the satellite features due to the Cu 3d8 final state are present between 10 and 13 eV, as in CuO. Finally, the peak at about 6eV can be assigned to Cl 3p states. The large observed energy separation between the Cl 3p and the Cu 3d-O 2p states could be expected to lead to a small degree of hybridisation of the Cl with the states at the top of the valence band.

The Cu 2p$^3/2$ photoemission spectrum is shown in the upper part of Fig. 1b). The main line is located at 933.6eV; its satellite feature is centred at about 942eV. For most cuprate compounds the intensity ratio of the satellite to the main line I_{sat}/I_{main} is 0.3–0.4. For Sr$_2$CuO$_2$Cl$_2$ this intensity ratio is significantly higher: we estimate $I_{sat}/I_{main} \simeq 0.5–0.6$. The most striking feature, however, is the distinct shoulder in the main line, B, which is seen at ~ 3eV higher energy than the more intense component, labelled A. We obtain the intensity ratio $I_B/I_A \simeq 0.4–0.5$.

To calculate the Cu 2p XPS, we take a two-dimensional Cu$_5$O$_{16}$ cluster which consists of Cu 3d$_{x^2-y^2},$ O 2p$_z$ and 2p$_y$ orbitals. The relevant parameters involved in the model are the charge-transfer energy between Cu 3d and O 2p levels (Δ), the Coulomb interaction energy between 3d holes (U_{dd}) and the Slater-Koster parameters for neighbouring Cu 3d-O 2p pairs ($pd\pi$) and for neighbouring O 2p pairs ($pp\sigma$ and $pp\pi$). To include the core-hole effects in the photoemission final state, we also take into account the Coulomb interaction energy between the 3d states and the core hole (U_{dc}). We create a core hole at the central Cu site of the cluster. For the sake of simplicity...
we have disregarded the multiplet coupling effects, which are not expected to greatly affect the results discussed here. The obtained line spectrum is convoluted with a Gaussian of 0.8\,eV and a Lorentzian of 0.6\,eV (FWHM) in order to compare with the experimental spectrum.

In Fig. 1b) we show calculated Cu 2p XPS as a function of Δ, keeping $\Delta-U_{dc}=-4.2\,eV$ so as not to change the energy separation of the satellite and main line. The other parameters are kept fixed at $U_{dd}=8.8\,eV$, $p_{pd}\sigma=1.5\,eV$, $pp\sigma=-1.0\,eV$ and $pp\pi=0.3\,eV$, which are the same as those used by van Veenendaal et al.7

As discussed above, the calculated spectrum consists of a main line at lower BE (at the maximum of which the calculated spectra are normalised) and a satellite located at higher BE. The satellite is seen to increase in relative intensity upon increasing Δ, mainly as a result of increasing 3d9 weight in the ground state wave-function. In the main line, feature B, corresponding to the 3d4 final state with "O 2p band screening", appears to grow with increasing Δ. In fact this follows rather from the decrease in the strength of feature A, corresponding to the 2p53d1 final state with "Zhang-Rice singlet screening". This can be understood in terms of the suppression of Zhang-Rice singlet formation as Δ is increased.

From the comparison of the calculated results shown in Fig. 1 with the experimental data it can be seen that the case of $\Delta=4.5\,eV$ best reproduces the experimental spectrum of Sr$_2$CuO$_2$Cl$_2$. We obtain $I_{sat}/I_{main}=0.55$ and $I_B/I_A=0.52$ in good agreement with the experiment. Δ is 1\,eV larger than for other cuprate materials. The question then arises as to what extent a larger Δ value alone could be responsible for the observed relative strength of the final state B in the oxychloride in comparison to other CuO$_2$ layer systems in which no such clear shoulder has been observed up to the present. A larger value of Δ is also consistent with the higher I_{sat}/I_{main} intensity ratio in the oxychloride.

Fig. 2 shows the energy loss spectra of Sr$_2$CuO$_2$Cl$_2$ for momentum transfers q parallel to the (100) and (110) crystal directions. In the CuO$_2$-plane of Sr$_2$CuO$_2$Cl$_2$ the Cu-O bonds lie along the (100) direction. From the low q spectra we obtain a charge transfer gap of about 1.6\,eV in accordance with optical studies.14 For small q, the spectral shape is identical for excitations along the two directions, attesting to the in-plane optical isotropy of the CuO$_2$-plane. The first feature at about 2.6\,eV is clearly made of two components. The component at lowest energy appears to be relatively sharp, which may point to excitonic character for this excitation, in which the hole and the excited electron remain bound together.

For higher q the loss-function differs significantly between the two directions. In both cases the lowest lying feature disperses to higher energies
XPS and EELS on $\text{Sr}_2\text{CuO}_2\text{Cl}_2$

Fig. 1. a) Valence band XPS. b) Top: Cu 2p$_{3/2}$ core level photoemission spectrum. Bottom: Calculated spectra with different Δ (dashed line: 3.5eV, solid line: 4.5eV and dotted line: 5.5eV).

Fig. 2. EELS of $\text{Sr}_2\text{CuO}_2\text{Cl}_2$ measured in the CuO$_2$-plane.
and broadens with increasing \(q \). Interestingly, the magnitude of the observed dispersion is considerably larger along the (110) direction (~1.3 eV) than along (100) (~0.3 eV). The difference between the (110) and (100) directions reflects the anisotropy of the bandstructure of the low-lying occupied and unoccupied states.

As mentioned earlier, ARPES measurements have determined a bandwidth of ~250 meV for the dispersion of a single hole in the antiferromagnetic CuO\(_2\)-plane of Sr\(_2\)CuO\(_2\)Cl\(_2\) along the (110) direction.\(^{13}\) In contrast, almost no dispersion is observed along (100). The magnitude of the observed dispersion in ARPES is consistent with the extended \(t-J \) model, in which the single particle bandwidth is determined by twice the superexchange integral, \(J \) (2\(J \) of order 0.3 eV).

Comparing the data from EELS and ARPES, it is apparent that the anisotropy in the dispersion is consistent, but that the magnitude of the dispersion along the (110) direction observed in EELS is much greater. This suggests that the dispersion relations of a single hole (seen in ARPES) or of an electron-hole excitation (seen in EELS) in an antiferromagnetic background have a different origin.

To conclude, we have presented XPS of Sr\(_2\)CuO\(_2\)Cl\(_2\) and demonstrated that local and nonlocal screening processes are present in 2-D CuO\(_2\)-planes. Possibly due to a larger \(\Delta \) the local screening contributions are stronger than in La\(_2\)CuO\(_4\) leading to a pronounced double-featured main line in Cu 2p XPS. With EELS we observed the dispersion of the low energy excitonic states and found a large bandwidth. This large bandwidth can be the reason of the electron-hole pair coupled to a singlet state which moves without much disturbing the antiferromagnetic order in the CuO\(_2\)-planes.

REFERENCES