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Chapter 3

Information and Efficiency in Thin

Markets over Random Networks

3.1 Introduction

In this chapter we consider a market in which transactions only occur between linked traders.

These links occur as in a bipartite random network where every link is realised with the same

probability, independently of each other. Regular random graphs have been introduced by

Erdős and Rényi (1960, 1961). The spot foreign exchange market is studied by

Gould et al. (2013a) and is an example of a market in which trade occurs through Bilateral

Trading Agreements. Traders provide a block list containing trading partners with whom they

prefer not to trade, to protect themselves against adverse selection and to control counterparty

risk. In such a market a transaction between two traders only takes place if both are not part of

the other’s block list. We use the model of Gould et al. and additionally assume that links are

realised with the same probability and independently of each other.

Markets over networks have been studied in various settings. Corominas-Bosch (2004) and

Chatterjee and Dutta (1998) consider a market in which side by side traders submit an offer

which the other traders accept or reject. In Corominas-Bosch (2004) all buyers have the same

valuation and sellers the same cost; this allows the network to be split into different subgraphs.
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CHAPTER 3. INFORMATION IN MARKETS OVER RANDOM NETWORKS

In every subgraph the short side extracts all the possible surplus. We show that under par-

tial information about the network structure, or under incomplete information about valuations

and costs, not all the surplus is necessarily extracted. Spulber (2006) and

Kranton and Minehart (2001) study simultaneously ascending-bid auctions in which

sellers jointly raise their ask until supply equals demand, and then trade occurs.

Easley and Kleinberg (2010) and Blume et al. (2009) introduce intermediaries who act

strategically and profit from trade. The power of a trader in a network is formalised in

Calvó-Armengol (2001) by considering the number of linked traders and their links. A higher

market power is achieved when a trader is linked to more traders and when linked traders have

fewer links themselves.

For bilateral trading Myerson and Satterthwaite (1983) and Chatterjee and Samuelson (1983)

study Nash equilibrium strategies that monotonely transform valuations and costs into offers

and exhibit an equilibrium in which they are piecewise linear. We restrict attention to linear

markup and markdown strategies where the intensity of the markup or markdown depends on

the information set that is available to the trader. These strategies have been introduced by

Zhan and Friedman (2007); Cervone et al. (2009) discuss a version that is symmetric between

buyers and sellers.

We consider thin markets with few traders, who trade only over existing links in a bipartite

graph. These links are formed independently with the same probability p in (0, 1), forming a

bipartite random graph à la Erdős-Rényi. Traders behave strategically, and we derive equilib-

rium configurations depending on the information about the network structure that is available

to traders.

Three nested information sets about the realisation of the network are compared. Under no

information, traders place orders without knowing which links materialise, but simply the prob-

ability p that each link may exist. With partial information, traders know their own links and the

probability p that links may exist between other market participants. Under full information, the
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3.2. THE MODEL

entire structure of the network is common knowledge.

We study the effect of the quantity of information available to traders on allocative efficiency.

We show that this effect is non-monotonic. Furthermore, switching from complete to incom-

plete information about traders’ valuations flips the shape of this non-monotonicity. Under

complete information about traders’ valuations, we show that for any value of p both no in-

formation and full information lead to full allocative efficiency, while the partial information

regime is weakly dominated. However, under a more realistic assumption of incomplete infor-

mation about traders’ valuations, this ranking is reversed. If traders use linear markup strategies,

partial information strongly dominates full and no information for any value of p.

The organisation of this chapter is as follows. The model and the trading mechanism are de-

scribed in Section 3.2, together with the markup and markdown strategies and the information

sets. Efficiency under complete information about traders’ valuations is studied in Section 3.3,

followed by incomplete information in Section 3.4. Finally, Section 3.5 concludes.

3.2 The model

Let us consider a market over a bipartite Erdős-Rényi network. In such a network every buyer

bi and every seller sj are connected with probability p in (0, 1) independently of other links.

Trade is possible only if a link exists. An example of such a market is the spot exchange market

studied in Gould et al. (2013a). In comparison with this market we add the assumption that

every pair of traders is linked with the same probability and independently of other links. Fur-

thermore, in the spot exchange market trade is only possible when both traders do not include

the other in their blocklist. E.g. this may occur when the trading partner does not exceed some

risk requirement and therefore the network structure is considered exogenous. Nevertheless, a

bijective transformation exists from the probability of a link in the spot exchange market to the

probability of a link in this chapter. The probability of a link in the spot exchange market is the

square of the latter probability.
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CHAPTER 3. INFORMATION IN MARKETS OVER RANDOM NETWORKS

A buyer desires to obtain one unit of a good and a seller seeks to sell one unit. Under complete

information valuations equal one and costs equal zero, whereas under incomplete information

the valuations vi of buyers and costs cj of sellers are uniformly distributed on the interval [0, 1].

This distribution is public information but the realisations are private information. The profit of

a buyer is equal to his valuation minus the transaction price if he trades and zero otherwise. The

profit of a seller equals the transaction price minus his cost after a trade and zero otherwise.

The probability of a link influences the expected allocative efficiency as absence of links makes

some trades impossible. Furthermore, expected efficiency is reduced by strategic behaviour of

traders, that could prevent feasible trades. Expected allocative efficiency is defined as the ex-

pected total realised surplus from trade divided by the expected maximal total surplus, i.e. the

expected total profit of all traders divided by the expected total maximal profit.

We show our results for a market with two buyers and two sellers. In this market the maximal

expected surplus equals 2 under complete information and 2
5

under incomplete information of

valuations and costs. The maximal expected surplus under incomplete information is derived

for a full network. From the point of view of buyer b1, he has the highest valuation with prob-

ability v1 since the valuation of the other buyer is uniformly distributed. This results in a trade

with the seller with the lowest cost if this trade is feasible. The density function of the lowest

cost is given by 2− 2cmin and this trade results in a surplus of v1 − cmin. Similarly buyer b1 has

the lowest valuation with probability 1 − v1 and he trades with the seller with the highest cost,

with density function 2cmax, if this trade is feasible. Hence the maximal expected surplus of 2
5

for a full network is obtained from

2
[∫ 1

0

∫ 1

cmin
(v1 − cmin)(2− 2cmin)v1dv1dcmin +

∫ 1

0

∫ 1

cmax
(v1 − cmax)2cmax(1− v1)dv1dcmax

]
.

However, due to absence of links the maximal expected surplus is reduced, depending on the

value of p. For complete and incomplete information about valuations and costs, the ratios

between maximal expected surplus given the random network structure and maximal expected

surplus of the full network are given by
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3.2. THE MODEL

E(AEC
p ) =

1·4p(1−p)3+1·4p2(1−p)2+2·2p2(1−p)2+2·4p3(1−p)+2·p4
2 ,

E(AEI
p) =

1
6 ·4p(1−p)3+ 1

4 ·4p2(1−p)2+ 1
3 ·2p2(1−p)2+ 43

120 ·4p3(1−p)+ 2
5 ·p4

2
5

.

In Fig. 3.1 it is shown that a difference in reduction of efficiency, due to restrictions of the

network structure, exists between complete and incomplete information. This is due to the dif-

ference in distribution of valuations and costs. Hence, under complete information every trade

results in the same surplus while under incomplete information extra links not only increase the

expected number of links, but also decrease the expected surplus per trade. Hence the difference

between both ratios of efficiency increases.
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Figure 3.1: Ratios of efficiency given the probability of a link for complete and incomplete

information about valuations and costs.

3.2.1 Trading mechanism

The symmetric trading mechanism consists of simultaneous submission of bids and asks by

all traders after which the offers are made public. A buyer ranks his connected sellers by their

asks, and a seller his linked buyers by their bids. Trades respect such preferences: preferred

buyer-seller pairs are matched with each other. As long as further trades are possible, such a
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CHAPTER 3. INFORMATION IN MARKETS OVER RANDOM NETWORKS

preferred pair naturally exists. Every seller desires to trade with the buyer with the highest bid

which ensures that this buyer can trade with his preferred connection. The trade is executed at

a price that is equal to the average of bid and ask and this is repeated until no further trades

are possible. In contrast to some related literature, this trading mechanism gives equal power to

both sides of the market.

If this trading mechanism does not lead to a unique outcome, as a result of traders that do not

have a unique preferred trading partner, the trading mechanism selects the outcome that max-

imises total surplus. Under complete information about valuations and costs this is conservative

towards our result, under incomplete information this occurs only in a nullset.

A possible realisation of the bipartite Erdős-Rényi network with bids βi and asks αj is given

in Fig. 3.2. In the first example buyer b1 and seller s1 trade after which b2 and s2 trade; this

coincides with the social optimum. In the second example however b1 and s2 trade. Hence the

most profitable trade occurs first and therefore a social optimum is not necessarily reached.

(a) The social optimum is reached. (b) The social optimum is not reached.

Figure 3.2: Example of the trading mechanism.
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3.2. THE MODEL

3.2.2 Markup and markdown strategies

There is an incentive for traders to act strategically and bid below their valuation and ask above

their cost to obtain a higher profit. Under complete information about valuations and costs

traders choose a unique strategy given the available information about the network. Under in-

complete information traders choose a strategy that is depending on the realisation of their

valuation or cost. We assume that traders use linear markup and markdown strategies symmet-

ric on [0, 1] from Cervone et al. (2009). These strategies transform the valuations and costs as

follows:

A buyer with valuation vi bids βi = vi(1−md
i ).

A seller with cost cj asks αj = cj +mu
j (1− cj).

The values md
i and mu

j denote the intensity of the markdown of buyer i and the markup of

seller j. The higher these values, the further away bids and asks are from the valuations and

costs. The Nash equilibrium markdown and markup strategies are determined on the basis of

the distribution of valuation and cost of others, not on the realisation of it. Moreover, we need to

take into account the information set of a trader. Hence the markdown and markup strategies will

not be a simple transformation of the valuation or cost, but will also depend on the information

that is available to traders about the network structure.

3.2.3 The information sets

We study the Nash equilibrium markdown and markup strategies depending on the information

set available to traders. Under complete information the valuations and costs are known; under

incomplete information only their distribution. Moreover, the number of traders on both sides

of the market is known. We consider the following nested sets of information about the network

structure, which are all common knowledge:
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CHAPTER 3. INFORMATION IN MARKETS OVER RANDOM NETWORKS

• No information: The probability of a link is known.

• Partial information: The probability of a link is known as well as

the realisation of the own links.

• Full information: The realisation of the entire network is known.

Under no information only the minimal amount of information is available to traders. The prob-

abilities of all networks can be calculated and hence the equilibrium strategy depends only on

the probability of a link. Partial information allows a trader to base the strategy on the num-

ber of own links and hence the equilibrium strategy depends on the number of a player’s own

links and the probability that other links are realised. With full information the entire network

is known and the equilibrium strategy is based on the realisation of all links.

We show the partitions of the possible networks of the different information sets, for two buyers

and two sellers, in Figs. 3.3-3.5. Networks that are not distinguishable are shown in the same

partition.

Figure 3.3: Partition under no information.
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3.3. COMPLETE INFORMATION ABOUT VALUATIONS AND COSTS

Figure 3.4: Partitions with partial information from the perspective of the top left node.

Figure 3.5: Partitions under full information from the perspective of the top left node.

3.3 Complete information about valuations and costs

To compare the expected efficiency given different information sets we consider a market

with two buyers and two sellers. Under complete information we assume that valuations and

costs are equal to one respectively zero, which is common knowledge. For each information

set we calculate the symmetric Nash equilibrium strategies from the profit functions given in

Appendix 1. These profit functions are a multiplication of the profit of trade and an indicator

function that attains the value one if the trade is feasible.

No Information

Under no information traders have no knowledge about the realisation of links; but they know
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CHAPTER 3. INFORMATION IN MARKETS OVER RANDOM NETWORKS

the probability that they occur. All the traders have the same information and thus they use the

same deterministic strategy. Naturally, bids can be decreased and asks increased until they are

equal. Hence in the unique symmetric Nash equilibrium buyers bid 1
2

and sellers ask 1
2
. Given

the limitations of p full efficiency is reached; i.e. strategic behaviour does not reduce efficiency.

Partial Information

For computational reasons we restrict offers of traders to the grid [0, 1
2k
, ..., 1]. Traders with one

link may prefer to be less aggressive to outcompete other traders. This requires them to increase

their bid or decrease their ask by 1
2k

. With a rougher grid this becomes less attractive. For a

rough grid with k < 5 buyers bid and sellers ask 1
2

in equilibrium and hence full efficiency is

reached.

Below we show the equilibrium strategies as a function of p for k = 5, the roughest grid that

does not always lead to full efficiency. First given is the markup of a trader with one link, second

the markup of a trader with two links. For mixed strategies the probabilities are given by ρi. In

the range 1√
11

< p < 1
3

the latter equilibrium is unstable with respect to the strategy of traders

with two links. If one trader deviates to the stable equilibrium it is optimal for other traders to

deviate also, because this allows for trades between agents with two links.

0 < p < 5−√
5

10 : [12 ], [
1
2 ].

5−√
5

10 < p <
√
17−3
4 : [ρ1

2
5 , (1− ρ1)

3
5 ], [

3
5 ], where ρ1 =

−4
2p2+3p−5 .

√
17−3
4 < p < 1√

11
: [25 ], [

3
5 ].

1√
11

< p < 1
3: [25 ], [

1
2 ] stable and [25 ], [

3
5 ] unstable.

1
3 < p < 5+

√
5

10 : [ρ1
3
10 , ρ2

2
5 , (1− ρ1 − ρ2)

1
2 ], [

1
2 ],

where ρ1 = −−8+45p−45p2

41(p−1)p and ρ2 = −29−25p+25p2

41(p−1)p .

5−√
5

10 < p < 1: [12 ], [
1
2 ].

For k = 5 we find that full efficiency is not attained for 5−√
5

10
< p < 1√

11
. When the grid is
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3.4. INCOMPLETE INFORMATION ABOUT VALUATIONS AND COSTS

sufficiently dense full efficiency is not reached for every value of p. For denser grids this area

increases and hence the result may also hold without the assumption of a grid of strategies.

The subset of p for which traders with one link become less aggressive increases. As k goes to

infinity these traders use mixed strategies over an infinite number of strategies. When the prob-

ability p is sufficiently small, traders with two links will become more aggressive when traders

with one link are less aggressive. This does not hold when the probability p is relatively large,

because this will cause a profit of zero in a fully connected network. For a subset of p, strategic

behaviour reduces efficiency.

Full Information

Under full information traders have full knowledge about the realisation of the network. When

both sides of the market have the same size, bids and asks equal one half in the symmetric equi-

librium. For traders with one link it is not profitable to be less aggressive. When one side of the

market is thinner, it extracts all the possible surplus. Agents with one link are less aggressive

to outcompete the other trader on the same side of the market. Given the limitations of p full

efficiency is reached, i.e. efficiency is not reduced by strategic behaviour.

No and full information lead to full efficiency, given the limitations of the network structure.

For a grid of possible strategies we show that under partial information the strategic behaviour

of traders decreases efficiency for a subset of p. Moreover, we argue that with a denser grid effi-

ciency is decreased for a larger range of values for p. Under no and full information, restricting

strategies of traders to a grid has no effect. Hence a non-monotonicity occurs and partial infor-

mation is weakly dominated. Under complete information about traders’ valuations and costs it

is optimal when traders either receive all or no information about the network structure.

3.4 Incomplete information about valuations and costs

Under incomplete information, valuations and costs are uniformly distributed on [0, 1], where

the distribution is common knowledge but the realisations are private information. To com-
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CHAPTER 3. INFORMATION IN MARKETS OVER RANDOM NETWORKS

pare the expected efficiency given different information sets we again consider a market with

two buyers and two sellers. The necessary calculations for every information set are shown in

Appendix 2. As an example, the best response functions under full information are given below

for a network where buyer b1 is connected with both sellers. We solve these to find the Nash

equilibrium strategies and calculate expected allocative efficiency, volume and profit.

Example

Network b1 ↔ s1 & b1 ↔ s2

In equilibrium it holds that mu
1 = mu

2 = mu and thus buyer b1 trades with the seller with the

lowest cost cmin = min(c1, c2), which has pdf 2 − 2cmin. We denote the profit of a buyer with

bid βi trading with a seller with ask αj as π(βi, αj) and similar for sellers. For simplicity we

disregard in this notation that the offers are a function of both the strategy and the valuation or

cost. The integration limits are set to indicate the region of valuations and costs in which trade

occurs:

∂
∂md

1

∫ 1−md
1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

π(β1, αmin)(2− 2cmin)dv1dcmin = 0.

Seller s1 only trades when its ask is lower than the ask from seller s2:

c1 + mu
1(1 − c1) < c2 + mu

2(1 − c2). For a given cost c1 this happens with probability

P(trade) = 1− (1−mu
1 )c1+mu

1−mu
2

1−mu
2

:

[ ∂
∂mu

1

∫ 1−md
1−mu

1
1−mu

1
0

∫ 1
c1+mu

1 (1−c1)

1−md
1

π(α1, β1)P(trade)dv1dc1
]
{mu

2=mu
1}

= 0.

Solving these best response functions gives the Nash equilibrium strategies

mu = mu
1 = mu

2 ≈ 0.110 and md
1 ≈ 0.341.

The expected efficiency given the reductions invoked by absence of links is given by

E(AE) =

∫ 1−md
1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

(v1−cmin)(2−2cmin)dv1dcmin

∫ 1

0

∫ 1

cmin
(v1−cmin)(2−2cmin)dv1dcmin

≈ 0.858.

The ratio between the expected number of trades and the maximal number of trades gives the
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3.4. INCOMPLETE INFORMATION ABOUT VALUATIONS AND COSTS

expected volume:

E(Volume) = 1
2

∫ 1−md
1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

1 · (2− 2cmin)dv1dcmin ≈ 0.204.

Similarly to the best response functions above we calculate the expected profit for a trader hav-

ing one link, respectively two links:

E(Π1) =
∫ 1−md

1−mu
1

1−mu
1

0

∫ 1
c1+mu

1 (1−c1)

1−md
1

π(α1, β1)(1− c1)dv1dc1 ≈ 0.038,

E(Π2) =
∫ 1−md

1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

π(β1, α1)(2− 2cmin)dv1dcmin ≈ 0.138.

Comparisons

No information outperforms full information in terms of expected efficiency for values of p

smaller than the benchmark c ≈ 0.106, but for large values of p the opposite holds, as shown in

Fig. 3.6. As the available information has no effect on the efficiency reduction due to absence of

links, we emphasise solely the effect of strategic behaviour. Hence the ratio is shown between

the realised efficiency and the maximal efficiency given the network structure. The maximum

differences are reached at p ≈ 0.070 and p ≈ 0.729.

0 0.2 0.4 0.6 0.8 1
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Probability of a link

E
xp

ec
te

d 
ef

fic
ie

nc
y

No and full information

no
full

0 0.05 0.1 0.15
0.79

0.795

0.8

0.805

0.81

Probability of a link

E
xp

ec
te

d 
ef

fic
ie

nc
y

No and full information

no
full

Figure 3.6: Efficiency no and full information.

We find that the amount of information available to traders has a non-monotonic effect on effi-

ciency; irrespective of the probability of a link, partial information leads to the highest expected
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CHAPTER 3. INFORMATION IN MARKETS OVER RANDOM NETWORKS

efficiency. Moreover, we observe that switching from complete to incomplete information re-

verses the shape of the non-monotonicity. We conclude that in terms of efficiency the following

order of information sets holds:

0 < p < c : E(AEpartial) > E(AEno) > E(AEfull),

c < p < 1 : E(AEpartial) > E(AEfull) > E(AEno).

The maximum difference between information sets is reached near p = 2
3

where the probability

of having one respectively two links is equal. At this point uncertainty about the network struc-

ture is the most reduced by additional information. Fig. 3.7 shows the efficiency under strategic

behaviour given the restrictions of the network structure, between the different information sets:
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Figure 3.7: Comparison between ratios between efficiency under strategic behaviour and the

maximal efficiency given the limitations of the network structure.

These results can be explained by the equilibrium strategies for which the average value for

having one link, respectively two links, with their bands and the volatility for every value of p

are displayed in Fig. 3.8. The no information strategies are the highest, but are not subject to

volatility. The average partial and full information strategies are similar albeit the volatility is

significantly larger in the latter case. A higher volatility in observable market power results in a
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Figure 3.8: Distribution of strategies.

higher volatility of strategies, since the higher the observable market power the more aggressive

offers the trader submits.

The expected value of the bargaining power measure, as in Calvó-Armengol (2001), can be

calculated on the basis of the available information about the market. This measure takes on

values in the interval [0, 1] and is increasing in market power. For example with no information

the expected bargaining power is always equal to one half. Under partial information, having

two links results in an expected bargaining power larger than one half, in which case the trader

will aim for a higher profit. For this trader it results in possible large profits but reduces the

probability of trading. Having one link results in an expected bargaining power less than one

half. Under full information certain networks lead to an even higher dispersion between traders’
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expected market powers.

Volatility of strategies has a negative effect; lower markups cause a slightly higher efficiency

whereas higher markups may result in absence of trade. Partial information leads to the high-

est expected efficiency and the negative effects of higher markups for no information and high

volatility for full information are similar.

For example for p = 1
2
, under no information a trader will always use the markup strategy 0.224.

Under partial information a trader with one link uses 0.190 and a trader with two links 0.237.

Under full information the markup does not only depend on the own number of links but also

on the links of others. If a trader has one link his strategy ranges from 0.110 to 0.227, with two

links from 0.187 to 0.341.

Volume

In Fig. 3.9 the expected number of trades, i.e. the volume, shows a similar comparison as the

expected efficiency. For p > 0.030 we find that full information leads to a higher volume than

no information, for small p the opposite holds. For every value of the probability of a link, par-

tial information leads to the highest expected volume.
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Figure 3.9: Expected volume for all information sets.
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Expected profit

The expected profit for a trader that has one link, respectively two links, is shown in Fig. 3.10.

A trader with one link has the highest expected profit under partial information; for p < 0.408

the lowest under full information, and otherwise the lowest under no information. A trader with

two links has the highest expected profit under full information, the lowest under no informa-

tion. Comparing partial and full information, a trader with one link has a higher expected profit

under partial information and a trader with two links under full information. For any value of p

the latter is dominated and hence partial information leads to the highest expected efficiency.
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Figure 3.10: Expected profit for having one (left) and two links (right).

3.5 Concluding remarks

In a bipartite Erdős-Rényi market agents only trade in case they are linked to each other. The

trading mechanism allows preferred trades to occur, not necessarily the socially optimal alloca-

tion of trades. In such a market three ordered sets of information about the network structure are

considered; no, partial and full information. These information sets are compared under com-

plete and incomplete information about valuations and costs.

With no information only the probabilities of all networks can be calculated and hence the equi-
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librium strategy depends on the probability of a link. Partial information allows a trader to base

the strategy on the number of his own links and hence the equilibrium strategy depends on the

number of a player’s own links and the probability that other links are realised. With full infor-

mation the entire network is known and the equilibrium strategies are based on the realisation

of all links.

Under complete information about traders’ valuations, in a market with two buyers and two sell-

ers, no and full information lead to attain full efficiency for every probability of a link. Due to

strategic behaviour of traders, under partial information allocative efficiency might be reduced.

Hence we found that partial information is weakly dominated by no and full information and it

is optimal if either everything or nothing of the realisation of the network structure is revealed

to traders.

Under incomplete information about valuations and costs, expected efficiency given no and full

information are comparable, when we assume that traders use markup and markdown strate-

gies. For a small probability of a link no information outperforms and the opposite holds for

a large probability. Partial information leads to the highest expected efficiency, since markups

in no information and volatility of strategies in full information are higher, and thus strongly

dominates no and full information. Higher markups and a larger volatility increase the proba-

bility of absence of trades and hence decrease the expected efficiency. Knowledge of the own

links rather than only of the probability distribution improves efficiency, but adding knowledge

of the links of others decreases efficiency. It is optimal, when only the realisation of own links

is known. Therefore, more information does not necessarily lead to a higher expected allocative

efficiency. Furthermore, the expected volume and the expected profit for traders when they have

one link, respectively two links, are compared.

We demonstrated that the effect of the quantity of information available to traders on the alloca-

tive efficiency is non-monotonic. Moreover, the shape of this non-monotonicity flips over when

we switch from complete to incomplete information about traders’ valuations.
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Appendix A: Profit functions complete information about val-

uations and costs

The profit functions of buyer b1 under complete information about valuations and costs are

shown below. These are used to calculate the Nash equilibrium markup and markdown strate-

gies. Some best response functions are symmetric and hence we find symmetric markups, and

simplifying assumptions about the strategies of others can be made.

Network 1: b1 ↔ s1

Buyer b1 trades if 1−md
1 ≥ mu

1 , which results in a profit of π(md
1,m

u
1) = 1− 1−md

1+mu
1

2
:

E(Πb1) = π(md
1,m

u
1)�{1−md

1≥mu
1}.

Network 2: b1 ↔ s1 & b1 ↔ s2

Buyer b1 trades with the seller with the lowest ask mu = mu
1 = mu

2 , if 1−md
1 ≥ mu:

E(Πb1) = π(md
1,m

u)�{1−md
1≥mu}.

Network 3: b1 ↔ s1 & b2 ↔ s1

b1 only trades when its bid is higher than the bid from b2, 1−md
1 > 1−md

2, or with probability

one half if they are equal, if 1−md
1 ≥ mu

1 :

E(Πb1) = π(md
1,m

u
1)�{1−md

1≥mu
1}(�{1−md

1>1−md
2} +

1
2
�{md

1=md
2}).

Network 4: b1 ↔ s1 & b2 ↔ s2

Buyer b1 trades if 1−md
1 ≥ mu

1 :

E(Πb1) = π(md
1,m

u
1)�{1−md

1≥mu
1}.

Network 5: b1 ↔ s2, b2 ↔ s1 & b2 ↔ s2

Buyer b1 is only connected to s2. Unless b2 and s2 prefer to trade with each other he trades with

s2, if 1−md
1 ≥ mu

2 . This happens unless md
2 < 1−md

1 and mu
2 < mu

1 :

E(Πb1) = π(md
1,m

u
2)�{1−md

1≥mu
2}(1− �{md

2<md
1}�{mu

2<mu
1}).
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Network 6: b1 ↔ s1, b1 ↔ s2 & b2 ↔ s2

If 1−md
1 ≥ mu

1 and 1−md
1 ≥ mu

2 , buyer b1 trades with s1 except when he and s2 both prefer

to trade with each other. The latter happens when 1−md
1 > 1−md

2 and mu
2 < mu

1 :

E(Πb1) = π(md
1,m

u
2)�{1−md

1≥mu
2}�{1−md

1>1−md
2}�{mu

2<mu
1}

+ π(md
1,m

u
1)�{1−md

1≥mu
1}(1− �{1−md

1>1−md
2}�{mu

2<mu
1}).

Network 7: b1 ↔ s1, b1 ↔ s2, b2 ↔ s1 & b2 ↔ s2

In the symmetric equilibrium both sellers use the strategy mu = mu
1 = mu

2 . Buyer b1 can trade

as long as his bid exceeds the askprice of the sellers:

E(Πb1) = π(md
1,m

u)�{1−md
1≥mu}.
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Appendix B: Efficiency under incomplete information about

valuations and costs

The possible realisations of the network, without permutations, are given below. For each net-

work we show the best response function of buyer b1 under incomplete information about val-

uations and costs. Some best response functions are symmetric and hence we find symmetric

markups, and simplifying assumptions about the strategies of others can be made. We denote

the profit of a buyer with bid βi trading with a seller with ask αj as π(βi, αj) and similar for

sellers. For simplicity we disregard in the notation that the offers are a function of both the strat-

egy and the valuation or cost. The integration limits are set to indicate the region of valuations

and costs in which trade occurs.

Network 1: b1 ↔ s1[
∂

∂md
1

∫ 1−md
1−mu

1
1−mu

1
0

∫ 1
c1+mu

1 (1−c1)

1−md
1

π(β1, α1)dv1dc1

]
{mu

1=md
1}

= 0

Network 2: b1 ↔ s1 & b1 ↔ s2

In equilibrium, mu
1 = mu

2 = mu and thus b1 trades with the seller with the lowest cost

cmin = min(c1, c2) which has pdf 2− 2cmin:

∂
∂md

1

∫ 1−md
1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

π(β1, αmin)(2− 2cmin)dv1dcmin = 0.

Network 3: b1 ↔ s1 & b2 ↔ s1

b1 only trades when its bid is higher than the bid from b2, v1(1 − md
1) > v2(1 − md

2):[
∂

∂md
1

∫ 1−md
1−mu

1
1−mu

1
0

∫ 1
c1+mu

1 (1−c1)

1−md
1

π(β1, α1)
v1(1−md

1)

(1−md
2)

dv1dc1

]
{md

2=md
1}

= 0.

Network 4: b1 ↔ s1 & b2 ↔ s2

The network is split into two separate markets; the best response function of b1 is the same as

in network 1.
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Network 5: b1 ↔ s2, b2 ↔ s1 & b2 ↔ s2

b1 is only connected to s2 and unless b2 and s2 prefer to trade with each other he can trade with

s2. This happens with probability P(trade) = 1− (1−min{1, v1(1−md
1)

1−md
2

})(1− (1−mu
2 )c2+mu

2−mu
1

1−mu
1

).

We disregard the possibility that the latter term is negative, since in equilibrium the markup of

a trader with two links is higher than the markup of a trader with one link:[
∂

∂md
1

∫ 1−md
1−mu

2
1−mu

2
0

∫ 1
c2+mu

2 (1−c2)

1−md
1

π(β1, α2)P(trade)dv1dc2

]
{mu

1=md
1,m

u
2=md

2}
= 0.

Network 6: b1 ↔ s1, b1 ↔ s2 & b2 ↔ s2

b1 trades with s1 except when he and s2 both prefer to trade with each other. This happens with

probability
v1(1−md

1)

1−md
2

(1 − (1−mu
2 )c2+mu

2−mu
1

1−mu
1

) =
v1(1−md

1)

1−md
2

· max{0, (1−mu
1 )c1+mu

1−mu
2

1−mu
2

}, where we

disregard the possibility that the first term is negative:[
∂

∂md
1

∫ 1−md
1−mu

1
1−mu

1
0

∫ 1
c1+mu

1 (1−c1)

1−md
1

π(β1, α1)(1− v1(1−md
1)

1−md
2

· max{0, (1−mu
1 )c1+mu

1−mu
2

1−mu
2

})dv1dc1

+
∫ 1−md

1−mu
2

1−mu
2

0

∫ 1
c2+mu

2 (1−c2)

1−md
1

π(β1, α2)
v1(1−md

1)

1−md
2

(1− (1−mu
2 )c2+mu

2−mu
1

1−mu
1

)dv1dc2

]
{mu

1=md
2,m

u
2=md

1}
= 0.

Network 7: b1 ↔ s1, b1 ↔ s2, b2 ↔ s1 & b2 ↔ s2

In equilibrium, mu
1 = mu

2 = mu and thus b1 trades with the seller with the lowest cost

cmin = min(c1, c2) which has pdf 2 − 2cmin, if his bid is higher than the bid of b2. For a given

value of β1 = v1(1−md
1) this happens with probability

v1(1−md
1)

1−md
2

. b1 trades with the seller with

the highest cost cmax = max(c1, c2) which has pdf 2cmax, if his bid is lower than the bid of b2.

For a given value of β1 = v1(1−md
1) this happens with probability 1− v1(1−md

1)

1−md
2

:[
∂

∂md
1

∫ 1−md
1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

π(β1, αmin)(2− 2cmin)
v1(1−md

1)

1−md
2

dv1dcmin

+
∫ 1−md

1−mu

1−mu

0

∫ 1
cmax+mu(1−cmax)

1−md
1

π(β1, αmax)2cmax(1− v1(1−md
1)

1−md
2

)dv1dcmax

]
{mu=md

2=md
1}

= 0.

Full Information

In the full information setting, traders have knowledge of the entire realisation of the network.

Hence Nash equilibrium strategies are calculated per possible network.
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Network: b1 ↔ s1

Solving the best response function of network 1 gives the Nash equilibrium strategies

md
1 = mu

1 ≈ 0.227. This allows us to calculate expected allocative efficiency given the lim-

itations of the network structure, which is the ratio between the expected surplus from trade,

divided by the total expected surplus:

E(AE) =

∫
1−md

1−mu
1

1−mu
1

0

∫ 1
c1+mu

1 (1−c1)

1−md
1

(v1−c1)dv1dc1

∫ 1
0

∫ 1
c1

(v1−c1)dv1dc1
≈ 0.792.

Moreover, the expected volume, the ratio between the expected number of trades and the maxi-

mal number of trades, equals:

E(Volume) = 1
2

∫ 1−md
1−mu

1
1−mu

1
0

∫ 1
c1+mu

1 (1−c1)

1−md
1

1dv1dc1 ≈ 0.125.

Similarly to the best response function above we calculate the expected profit for a trader that

has one link:

E(Π1) =
∫ 1−md

1−mu
1

1−mu
1

0

∫ 1
c1+mu

1 (1−c1)

1−md
1

π(β1, α1)dv1dc1 ≈ 0.066.

Network: b1 ↔ s1 & b1 ↔ s2

Solving the best response functions of network 2 and a symmetric version of 3 gives the Nash

equilibrium strategies mu = mu
1 = mu

2 ≈ 0.110 & md
1 ≈ 0.341:

E(AE) =

∫
1−md

1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

(v1−cmin)(2−2cmin)dv1dcmin

∫ 1
0

∫ 1
cmin

(v1−cmin)(2−2cmin)dv1dcmin
≈ 0.858,

E(Volume) = 1
2

∫ 1−md
1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

1 · (2− 2cmin)dv1dcmin ≈ 0.204,

E(Π1) =
∫ 1−md

1−mu
1

1−mu
1

0

∫ 1
c1+mu

1 (1−c1)

1−md
1

π(α1, β1)(1− c1)dv1dc1 ≈ 0.038,

E(Π2) =
∫ 1−md

1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

π(β1, α1)(2− 2cmin)dv1dcmin ≈ 0.138.
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Network: b1 ↔ s1 & b2 ↔ s2

This network is similar to the first network, except that expected volume is doubled.

Network: b1 ↔ s2, b2 ↔ s1 & b2 ↔ s2

Solving the best response functions of network 5 and a symmetric version of 6 gives the Nash

equilibrium strategies mu
1 = md

1 ≈ 0.169 & mu
2 = md

2 ≈ 0.246:

E(AE)=
[
2
∫ 1−md

2−mu
1

1−mu
1

0

∫ 1
c1+mu

1 (1−c1)

1−md
2

(v2 − c1)

×(1− (1− v2(1−md
2)

1−md
1

)(1− max{0, (1−mu
1 )c1+mu

1−mu
2

1−mu
2

}))dv2dc1

+
∫ 1−md

2−mu
2

1−mu
2

0

∫ 1
c2+mu

2 (1−c2)

1−md
2

(v2 − c2)
v2(1−md

2)

1−md
1

(1− (1−mu
2 )c2+mu

2−mu
1

1−mu
1

)dv2dc2]

/[2
∫ 1

0

∫ 1

c1
(v2 − c1)(1− (1− v2)(1− c1))dv2dc1 +

∫ 1

0

∫ 1

c2
(v2 − c2)v2(1− c2)dv2dc2

]
≈ 0.867,

E(Volume)= 1
2

[
2
∫ 1−md

2−mu
1

1−mu
1

0

∫ 1
c1+mu

1 (1−c1)

1−md
2

1

×(1− (1− v2(1−md
2)

1−md
1

)(1− max{0, (1−mu
1 )c1+mu

1−mu
2

1−mu
2

}))dv2dc1

+
∫ 1−md

2−mu
2

1−mu
2

0

∫ 1
c2+mu

2 (1−c2)

1−md
2

1 · v2(1−md
2)

1−md
1

(1− (1−mu
2 )c2+mu

2−mu
1

1−mu
1

)dv2dc2

]
≈ 0.293,

E(Π1)=
∫ 1−md

1−mu
2

1−mu
2

0

∫ 1
c2+mu

2 (1−c2)

1−md
1

π(β1, α2)

×(1− (1− min{1, v1(1−md
1)

1−md
2

})(1− (1−mu
2 )c2+mu

2−mu
1

1−mu
1

))dv1dc2

≈ 0.056,

E(Π2)=
∫ 1−md

2−mu
1

1−mu
1

0

∫ 1
c1+mu

1 (1−c1)

1−md
2

π(β2, α1)(1− v2(1−md
2)

1−md
1

· max{0, (1−mu
1 )c1+mu

1−mu
2

1−mu
2

})dv2dc1

+
∫ 1−md

2−mu
2

1−mu
2

0

∫ 1
c2+mu

2 (1−c2)

1−md
2

π(β2, α1)
v2(1−md

2)

1−md
1

(1− (1−mu
2 )c2+mu

2−mu
1

1−mu
1

)dv2dc2 ≈ 0.099.

62



APPENDIX B: EFFICIENCY UNDER INCOMPLETE INFORMATION

Network: b1 ↔ s1, b1 ↔ s2, b2 ↔ s1 & b2 ↔ s2

Solving the best response function of network 7 gives the Nash equilibrium strategies

mu = mu
1 = mu

2 = md
1 = md

2 ≈ 0.187:

E(AE) =
[ ∫ 1−md

1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

(v1 − cmin)(2− 2cmin)
v1(1−md

1)

1−md
2

dv1dcmin

+
∫ 1−md

1−mu

1−mu

0

∫ 1
cmax+mu(1−cmax)

1−md
1

(v1 − cmax)2cmax(1− v1(1−md
1)

1−md
2

)dv1dcmax

]
/
[ ∫ 1

0

∫ 1

cmin
(v1 − cmin)(2− 2cmin)v1dv1dcmin

+
∫ 1

0

∫ 1

cmax
(v1 − cmax)2cmax(1− v1)dv1dcmax

]
≈ 0.913,

E(Volume) = 1
2

[
2
∫ 1−md

1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

1 · (2− 2cmin)
v1(1−md

1)

1−md
2

dv1dcmin

+2
∫ 1−md

1−mu

1−mu

0

∫ 1
cmax+mu(1−cmax)

1−md
1

1 · 2cmax(1− v1(1−md
1)

1−md
2

)dv1dcmax

]
≈ 0.347,

E(Π2)=
∫ 1−md

1−mu

1−mu

0

∫ 1
cmin+mu(1−cmin)

1−md
1

π(β1, αmin)(2− 2cmin)v1dv1dcmin

+
∫ 1−md

1−mu

1−mu

0

∫ 1
cmax+mu(1−cmax)

1−md
1

π(β1, αmax)2cmax(1− v1)dv1dcmax ≈ 0.091.

Combining the 4 possibilities of having only one link in the network, the 4 possibilities of

having one trader that has two links, the 2 possibilities of having two linked pairs, the 4 possi-

bilities of having 3 links in total, with the possibility of having a fully connected network, gives

a function of the expected efficiency in terms of the probability of a link. We show the expected

efficiency reduction due to strategic behaviour and the total expected efficiency. The latter is the

ratio of efficiency reductions due to strategic behaviour and the limitations of the network:

E(AEs) =
0.132·4p(1−p)3+0.215·4p2(1−p)2+2·0.132·2p2(1−p)2+0.311·4p3(1−p)+0.366·p4

1
6
·4p(1−p)3+ 1

4
·4p2(1−p)2+ 1

3
·2p2(1−p)2+ 43

120
·4p3(1−p)+ 2

5
·p4 ,

E(AEp,s) =
0.132·4p(1−p)3+0.215·4p2(1−p)2+2·0.132·2p2(1−p)2+0.311·4p3(1−p)+0.366·p4

2
5

.
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The expected volume as a function of p is given by

E(Volume) = 0.125 · 4(1− p)3p+ 0.204 · 4(1− p)2p2 + 2 · 0.125 · 2(1− p)2p2

+ 0.293 · 4(1− p)p3 + 0.347 · p4

≈ 0.499 · p− 0.181 · p2 + 0.039 · p3 − 0.009 · p4.

Furthermore we calculate the expected strategy as a function of the probability of a link:

E(m) = 0.227 · 4(1− p)3p+
2 · 0.110 + 0.341

3
· 4(1− p)2p2 + 0.227 · 2(1− p)2p2

+
0.169 + 0.246

2
· 4(1− p)p3 + 0.187 · p4

≈ 0.908 · p− 1.522 · p2 + 1.150 · p3 − 0.349 · p4
1− (1− p)4

.

Conditioning on having one link, respectively two links, we calculate the expected profit:

E(m1) = 0.227 · (p(1− p) + (1− p)2) + 0.110 · p(1− p) + 0.169 · p2

≈ 0.227− 0.117 · p+ 0.059 · p2,
E(m2) = 0.341 · (1− p)2 + 0.246 · 2p(1− p) + 0.187 · p2 ≈ 0.341− 0.191 · p+ 0.036 · p2.

Moreover, the expected strategy of a trader with one link, respectively two links, is given by

E(Π1) = 0.066 · (p(1− p) + (1− p)2) + 0.038 · p(1− p) + 0.056 · p2

≈ 0.066− 0.028 · p+ 0.018 · p2,
E(Π2) = 0.138 · (1− p)2 + 0.099 · 2p(1− p) + 0.091 · p2 ≈ 0.138− 0.177 · p+ 0.130 · p2.

Partial Information

In this setting, traders know only the realisation of own links and the probability of the other

links. Hence Nash equilibrium strategies for having one link m1 and for having two links m2

are found based on the best response functions given below.

If a trader has one link the possible networks are 1, 3, 4 or 5 and hence the best response function

is given by
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[
∂

∂md
1
(1− p)p

∫ 1−md
1−m1

1−m1

0

∫ 1
c1+m1(1−c1)

1−md
1

π(β1, α1)dv1dc1

+(1− p)p
∫ 1−md

1−m2

1−m2

0

∫ 1
c1+m2(1−c1)

1−md
1

π(β1, α1)
v1(1−md

1)

(1−m1)
dv1dc1

+(1− p)2
∫ 1−md

1−m1

1−m1

0

∫ 1
c1+m1(1−c1)

1−md
1

π(β1, α1)dv1dc1

+p2
∫ 1−md

1−m2

1−m2

0

∫ 1
c2+m2(1−c2)

1−md
1

π(β1, α2)

×min{1, 1− (1− v1(1−md
1)

1−m2 )(1− (1−m2)c2+m2−m1

1−m1 )}dv1dc2

]
{m1=md

1}
= 0.

If a trader has two links networks 2, 6 or 7 are possible and which results in the following best

response function:[
∂

∂md
1
(1− p)2

∫ 1−md
1−m1

1−m1

0

∫ 1
cmin+m1(1−cmin)

1−md
1

π(β1, αmin)(2− 2cmin)dv1dcmin

+2(1− p)p[
∫ 1−md

1−m1

1−m1

0

∫ 1
c1+m1(1−c1)

1−md
1

π(β1, α1)min{1, 1− v1(1−md
1)

1−m1

(1−m1)c1+m1−m2

1−m2 }dv1dc1

+
∫ 1−md

1−m2

1−m2

0

∫ 1
c2+m2(1−c2)

1−md
1

π(β1, α2)
v1(1−md

1)

1−m1 (1− (1−m2)c2+m2−m1

1−m1 )dv1dc2]

+p2
[ ∫ 1−md

1−m2

1−m2

0

∫ 1
cmin+m2(1−cmin)

1−md
1

π(β1, αmin)(2− 2cmin)
v1(1−md

1)

1−m2 dv1dcmin

+
∫ 1−md

1−m2

1−m2

0

∫ 1
cmax+m2(1−cmax)

1−md
1

π(β1, αmax)2cmax(1− v1(1−md
1)

1−m2 )dv1dcmax

]]
{m2=md

1}
= 0.

The Nash equilibrium strategies are calculated with double precision from these two best re-

sponse functions. The second derivatives in these points are smaller than zero; ensuring a max-

imum.

No Information

With no information the only knowledge about the network is the probability that a link oc-

curs. Hence the best response function of b1 is a weighted average over all seven best response

functions given above. Because of symmetry we may assume that all other traders use the same

strategy, i.e. m = md
2 = mu

1 = mu
2 :
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[
∂

∂md
1
2(1− p)3p

∫ 1−md
1−m

1−m

0

∫ 1
c1+m(1−c1)

1−md
1

π(β1, α1)dv1dc1

+(1− p)2p2
∫ 1−md

1−m

1−m

0

∫ 1
cmin+m(1−cmin)

1−md
1

π(β1, α1)(2− 2cmin)dv1dcmin

+2(1− p)2p2
∫ 1−md

1−m

1−m

0

∫ 1
c1+m(1−c1)

1−md
1

π(β1, α1)
v1(1−md

1)

(1−m)
dv1dc1

+2(1− p)2p2
∫ 1−md

1−m

1−m

0

∫ 1
c1+m(1−c1)

1−md
1

π(β1, α1)dv1dc1

+2(1− p)p3
∫ 1−md

1−m

1−m

0

∫ 1
c2+m(1−c2)

1−md
1

π(β1, α2)(1− (1− min{1, v1(1−md
1)

1−m
})(1− c2))dv1dc2

+2(1− p)p3[
∫ 1−md

1−m

1−m

0

∫ 1
c1+m(1−c1)

1−md
1

π(β1, α1)(1− min{1, v1(1−md
1)

1−m
}c1)dv1dc1

+
∫ 1−md

1−m

1−m

0

∫ 1
c2+m(1−c2)

1−md
1

π(β1, α2)
v1(1−md

1)

1−m
(1− c2)dv1dc2]

+p4
[ ∫ 1−md

1−m

1−m

0

∫ 1
cmin+m(1−cmin)

1−md
1

π(β1, αmin)(2− 2cmin)
v1(1−md

1)

1−m
dv1dcmin

+
∫ 1−md

1−m

1−m

0

∫ 1
cmax+m(1−cmax)

1−md
1

π(β1, αmax)2cmax(1− v1(1−md
1)

1−m
)dv1dcmax

]]
{m=md

1}
= 0.

The Nash equilibrium strategy md
1 is solved to be the solution in [0, 1] of

Root
[− 40 + 45p− 41p2 + 22p3

+ (300− 340p+ 203p2 − 61p3)md
1

+ (−700 + 875p− 254p2 − 77p3)md
1

2

+ (780− 1070p+ 32p2 + 306p3)md
1

3

+ (−460 + 670p+ 124p2 − 258p3)md
1

4

+ (120− 180p− 40p2 + 60p3)md
1

5]
= 0.
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