High mass photon pairs in lepton+ lepton- gamma gamma events at LEP
Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.P.; Alcaraz, J.; Aloísio, A.; Alverson, G.; Alviggi, M.G.; Ambrosi, G.; Linde, F.L.

Published in:
Physics Letters B

DOI:
10.1016/0370-2693(92)91576-U

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
High mass photon pairs in $\ell^+\ell^-\gamma\gamma$ events at LEP

L3 Collaboration

O. Adriani a, M. Aguilar-Benitez b, S. Ahlen c, J. Alcaraz d, A. Aloisio e, G. Alveson f,
M.G. Alviggi f, G. Ambrosi g, Q. An h, H. Anderhub i, A.L. Anderson j, V.P. Andreev k,
L. Antonov f, D. Antreasyan m, P. Arce b, A. Arefiev n, A. Atamanachuk k, T. Azemoon o,
T. Aziz b,q, P.V.K.S. Baba b, P. Bagnaia t, J.A. Bakken i, L. Baksay i, R.C. Ball o, S. Banerjee q,
J. Bao u, R. Barillère d, L. Barone t, A. Baschirrotto y, R. Battiston q, A. Bay w, F. Becattini a,
U. Becker i,j, F. Behner i, J. Behrens i, Gy. L. Bencez x, J. Berdugo i, P. Berges i, B. Bertucci g,
B.L. Betev f,i, M. Biasini q, A. Biland i, G.M. Bilei k, R. Bizzarri t, J.J. Blaising y, G.J. Bobbink d,z,
R. Bock p, A. Böhm p, B. Borgia r, M. Boseti v, D. Bourilkov aa, M. Bourquin w, D. Boutigny y,
B. Bouwens z, E. Brambilla t, J.G. Branson ab, I.C. Brock ac, M. Brooks ad, A. Bujak ae,
J.D. Burger j, W.J. Burger w, J. Busenitz t, X.D. Cai b, M. Capell af, M. Carlin o,
A.M. Cartacci a, R. Castello v, M. Cerrada b, F. Cesaroni f, Y.H. Chang i, U.K. Chaturvedi h,
M. Chemarin ag, A. Chen ah, C. Chen ai, G.M. Chen aj, H.F. Chen aj, H.S. Chen aj, M. Chen j,
W.Y. Chen ah, S.H. Chien f, G. Chieppi a, C.Y. Chien u, M.T. Choi ak, S. Chung j, C. Cividini a, I. Clare j,
R. Clare j, T.E. Coan ad, H.O. Cohn af, G. Coignet y, N. Colino d, A. Contin m, X.T. Cui h,
X.Y. Cui h, T.S. Dai r, R. D'Alessandro a, R. de Asmundis o, A. Degré y, K. Deiters am, E. Dénes x,
P. Denes f, S. DeNotaristefani f, M. Dhina t, D. DiBitonto t, M. Diemoz f, H.R. Dimitrov f,
C. Dionisi r, L. Djambazov i, M.T. Dova h, E. Drago e, T. Driever aa, D. Duchesneau w,
P. Duinker z, I. Duran ah, S. Easo g, H. El Mamouni ag, A. Engler ac, F.J. Epling j, F.C. Ernő z,
P. Extermann w, R. Fabbretti am, M. Fabre am, S. Falciano f, S.J. Fan ao, O. Fackler af, J. Fay ag,
M. Felcini d, T. Ferguson ac, D. Fernandez b, G. Fernandez b, F. Ferroni f, H. Fesefeldt p,
E. Fiandrini f, J. Field w, F. Filthaut aa, G. Finocchiaro r, P.H. Fisher a, G. Forconi w, T. Foreman z,
K. Freudenberg i, W. Friebel ap, M. Fukushima m, M. Gailloud aq, Yu. Galaktionov nj,
E. Gallo a, S.N. Ganguli d, P. Garcia-Abia b, D. Gele aq, S. Gentile r, S. Goldfarb f,
Z.F. Gong aj, E. Gonzalez b, A. Gogas u, D. Goujon w, G. Gratta ar, M. Grunewald ar, C. Gu h,
M. Guanzirò h, J.K. Guo ao, V.K. Gupta s, A. Gurtu q, H.R. Gustafson f, L.J. Gutay ae,
K. Hangarter p, A. Hasan h, D. Hauschild z, C.F. He ao, J.T. He ai, T. Hebbeker p, M. Hebert ab,
G. Herten j, A. Hervé d, K. Hilgers p, H. Hofer t, H. Hoorani w, G. Hu b, G.Q. Hu ao, B. Ille ag,
M.M. Ilyas b, V. Innocente d, H. Janssen d, S. Jezequel y, B.N. Jin ai, A. Kasser aq, R.A. Khan h,
Yu. Kamyshkov ag, P. Kapinos k, J.S. Kapustinsky ad, Y. Karyotakis d, M. Kaur b,
S. Khokhar b, M.N. Kienzle-Focacci w, J.K. Kim ak, S.C. Kim ak, Y.G. Kim ak, W.W. Kinnison ad,
D. Kirkby ar, S. Kirsch ap, W. Kittel aa, A. Klimentov j,n, A.C. König aa, E. Koffeman z,
O. Kornadt p, V. Koutsoukos j, K. Aoulidb k, R.W. Kraemer ac, T. Kramer j, V.R. Krastev f,z,
W. Krenz p, A. Krivshich k, H. Kuijten aa, K.S. Kumar as, A. Kunin as, G. Landi a, D. Lanske p,
S. Lanzano e, P. Lebrun ag, P. Leconte i, P. Lecomte d, P. Le Coz j, D.M. Lee ad, I. Leedoom l,
C. Leggett o, J.M. Le Goff d, R. Leiste ap, M. Lenti a, E. Leonardi f, X. Leytens z, C. Li aj,h,
H.T. Li ai, P.J. Li ao, J.Y. Liao ao, W.T. Lin ah, Z.Y. Lin aj, F.L. Linde d, B. Lindemann p,
D. Lista e, Y. Liu h, W. Lohmann ap, E. Longo f, Y.S. Lu ai, J.M. Lubbers d, K. Lübelsmeyer p,
C. Luci t, D. Luckey m j, L. Ludovici f, L. Luminari f, W. Lustermann ap, J.M. Ma ai, W.G. Ma aj,
M. MacDermott t, P.K. Malhotra aq, R. Malik h, A. Malinin n, C. Maña b, M. Maolinbay i,
From the analysis of the reactions $e^+e^- \rightarrow \ell^+\ell^- (\gamma\gamma)$ ($\ell = e, \mu, \tau$) we observe four events, one $e^+e^-\gamma\gamma$ and three $\mu^+\mu^-\gamma\gamma$, with the invariant mass of the photon pairs close to 60 GeV. These events were selected from a data sample collected in the L3 detector corresponding to 950 000 produced Z^0's. More data are necessary to ascertain the origin of these events.

1. Introduction

We report the results from the analysis of the following reactions:

$$e^+e^- \rightarrow \ell^+\ell^- (\gamma\gamma) \quad (\ell = e, \mu, \tau).$$

Four $\ell^+\ell^-\gamma\gamma$ ($\ell = e, \mu$) events were seen with an invariant mass of the two isolated photons close to 60 GeV in the data collected from the 1990 and 1991 runs as well as 1992 run through July 15, corresponding to a total integrated luminosity of 27 pb$^{-1}$ and a sample of 950 000 Z^0's produced at center-of-mass energies ranging from 88.2 to 93.8 GeV.

The L3 detector [1] is especially designed to detect...
and precisely measure electrons, muons and photons. During the construction and operation of the L3 detector, much effort has been spent to ensure that the design resolution is maintained. Analysis of the data from Z^0 decays in the last three years of running has shown that, indeed, we have obtained the design resolution \cite{2}

\[\frac{\Delta E}{E} \leq 2.0\% \text{ for } E > 1.5 \text{ GeV}, \]

for electrons and photons, and

\[\frac{\Delta p}{p} = 2.5\% \text{ at } p = 45 \text{ GeV}, \]

for muons. The angular resolution for electrons,

\begin{itemize}
 \item (a) Event one: $\mu^+\mu^-\gamma\gamma$, $R-\phi$ view.
 \item (b) Event two: $\mu^+\mu^-\gamma\gamma$, $R-\phi$ view.
 \item (c) Event three: $\mu^+\mu^-\gamma\gamma$, $R-z$ view.
 \item (d) Event four: $e^+e^-\gamma\gamma$, $R-z$ view.
\end{itemize}

Fig. 1. Pictures for the four high mass photon pair events: (a) Event one: $\mu^+\mu^-\gamma\gamma$, $R-\phi$ view. Starting from the interaction region, the detectors shown in the figure are central tracking chamber, electromagnetic calorimeter, hadron calorimeter, and muon spectrometer. (b) Event two: $\mu^+\mu^-\gamma\gamma$, $R-\phi$ view; (c) Event three: $\mu^+\mu^-\gamma\gamma$, $R-z$ view; (d) Event four: $e^+e^-\gamma\gamma$, $R-z$ view.
muons, and photons is better than 0.2°. The good resolution for photons enabled us to study one-photon [3] and two-photon [4] final state events.

The data recorded in the following polar angle ranges are used in the analysis: time expansion chamber (TEC): 25° ≤ θ ≤ 155°; electromagnetic calorimeter (BGO): 11° ≤ θ ≤ 169°; hadron calorimeter: 5° ≤ θ ≤ 175°; muon spectrometer: 36° ≤ θ ≤ 144°; where θ is defined with respect to the beam axis. For the analysis of $\ell^+\ell^-$ (nγ) events, the full data sample is used while only the data collected in 1991 and 1992 corresponding to an integrated luminosity of 21 pb$^{-1}$ are used in e^+e^- (nγ) and $\tau^+\tau^-$ (nγ) analysis.

The first two events (one in 1990 and the other in 1991) have $M_{\gamma\gamma} = 58.8$ GeV ($M_{\mu\mu} = 27.1$ GeV) and $M_{\gamma\gamma} = 59.0$ GeV ($M_{\mu\mu} = 25.3$ GeV). In 1992 two more events were observed, one with $M_{\gamma\gamma} = 62.0$ GeV ($M_{\mu\mu} = 20.0$ GeV) and the other with $M_{\gamma\gamma} = 60.0$ GeV ($M_{ee} = 17.9$ GeV). Figs. 1a–1d show these four events. The measured properties of the events are summarized in Table 1.

Radiation from initial and final state leptons is the expected source for hard and isolated photon production. The process is well described by quantum electrodynamics (QED) and, in principle, can be accurately simulated by Monte Carlo programs.

2. Event selection

We first describe the identification of photons and leptons, followed by the selection of $\ell^+\ell^-$ (nγ) events. A cluster with energy deposited in BGO calorimeter greater than 0.5 GeV is accepted as an electromagnetic cluster if

\[
\frac{E_9}{E_{25}} > 0.9 \quad \text{or} \quad \frac{E_{25}}{E_9} > 0.7.
\]

E_9 and E_{25} are the energies deposited in the 3×3 and 5×5 crystal arrays centered around the most energetic crystal. E_2 is the energy deposited in the two most energetic crystals. Electromagnetic clusters with energy greater than 1.0 GeV and within the fiducial volume defined by $|\cos \theta| < 0.9$ are considered for photon selection. θ is the polar angle of the cluster with respect to the beam axis. Clusters with energy greater than 3.0 GeV and within the fiducial volume defined by $|\cos \theta| < 0.74$ are considered for electron selection.

We now consider $\Delta \phi$, the angle in the $R-\phi$ plane between the centroid of electromagnetic cluster and the nearest TEC track which has at least 10 $R-\phi$ hits, a distance of closest approach to the interaction point in the $R-\phi$ plane of less than 10 mm, and a transverse momentum greater than 100 MeV. Clusters which satisfy $|\Delta \phi| < 20$ mrad are selected as electron candidates while those which fail this criterion are selected as photon candidates.

Muons are identified and measured in the muon chamber system. We require that a muon track consists of track segments in at least two of the three layers of the muon chambers, as well as a transverse distance of closest approach and a longitudinal distance of closest approach to the interaction point of less than 100 mm each. In addition, the identified muon is required to have a momentum greater than 3.0 GeV.

Taus are identified by their distinct one- and three-

Table 1
The measured properties of the four events with high mass photon pairs. The center-of-mass energies of these events are 91.23, 91.26, 91.25 and 91.36 GeV respectively.

<table>
<thead>
<tr>
<th>Event</th>
<th>Lepton</th>
<th>E (GeV)</th>
<th>θ (deg.)</th>
<th>ϕ (deg.)</th>
<th>Pair mass $M_{\ell\ell}$ (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>μ^+</td>
<td>10.5</td>
<td>96.7</td>
<td>131.3</td>
<td>27.1 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>μ^-</td>
<td>20.7</td>
<td>69.2</td>
<td>357.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>35.9</td>
<td>113.1</td>
<td>175.9</td>
<td>58.8 ± 0.6</td>
</tr>
<tr>
<td>2</td>
<td>μ^+</td>
<td>12.7</td>
<td>81.7</td>
<td>301.7</td>
<td>25.3 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>μ^-</td>
<td>16.9</td>
<td>130.0</td>
<td>179.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>33.1</td>
<td>46.3</td>
<td>136.1</td>
<td>59.0 ± 0.6</td>
</tr>
<tr>
<td>3</td>
<td>μ^+</td>
<td>11.9</td>
<td>98.1</td>
<td>66.7</td>
<td>20.0 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>μ^-</td>
<td>15.2</td>
<td>115.4</td>
<td>326.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>39.1</td>
<td>66.9</td>
<td>164.8</td>
<td>62.0 ± 0.6</td>
</tr>
<tr>
<td>4</td>
<td>e^+</td>
<td>3.4</td>
<td>103.6</td>
<td>102.7</td>
<td>17.9 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>e^-</td>
<td>24.4</td>
<td>62.1</td>
<td>268.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>42.0</td>
<td>109.6</td>
<td>92.6</td>
<td>60.0 ± 0.6</td>
</tr>
</tbody>
</table>

341
Table 2
Numbers of e^+e^- events in the data together with the expected numbers from the Monte Carlo. The numbers of Monte Carlo events are normalized to the corresponding numbers of data events with $n \geq 0$.

<table>
<thead>
<tr>
<th>Number of photons</th>
<th>Data</th>
<th>MC expectations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e^+e^-</td>
<td>$\mu^+\mu^-$</td>
</tr>
<tr>
<td>$n \geq 0$</td>
<td>19068</td>
<td>17548</td>
</tr>
<tr>
<td>$n \geq 1$</td>
<td>1370</td>
<td>1377</td>
</tr>
<tr>
<td>$n \geq 2$</td>
<td>55</td>
<td>68</td>
</tr>
</tbody>
</table>

prong decays. Neighboring TEC tracks within 20° in the $R-\phi$ plane are grouped together and then matched with calorimetric clusters to form tau candidates. The candidates must be in the fiducial volume defined by $|\cos \theta| < 0.74$. To remove background from multihadronic events, each tau candidate is required to have between one and three good TEC tracks. A good track has at least 30 $R-\phi$ hits, a distance of closest approach less than 5.0 mm, and a transverse momentum greater than 100 MeV. In addition, the total visible energy in a cone of 15° half-opening angle with respect to the jet direction is required to be greater than 3.0 GeV. To suppress electrons and muons arising from $e^+e^- \rightarrow e^+e^- (n\gamma), \mu^+\mu^- (n\gamma)$ processes, the sum of the electromagnetic and muon energy in each tau candidate is required to be less than 0.4$\sqrt{\delta}$.

We now consider the selection of $\ell^+\ell^-$ ($n\gamma$) events. These events are characterized by low cluster and track multiplicity. Clusters are constructed from calorimetric hits. Only clusters with an energy greater than 100 MeV are considered. To suppress hadronic background, $e^+e^- (n\gamma)$ and $\mu^+\mu^- (n\gamma)$ candidates are required to have less than 12 clusters. For $\tau^+\tau^-$ ($n\gamma$) candidates, the number of clusters is required to be less than 20.

Events which have two electrons and total electromagnetic energy greater than 0.6$\sqrt{\delta}$ are selected as $e^+e^- (n\gamma)$ events.

Events with two muons are considered as $\mu^+\mu^- (n\gamma)$ candidates. To reject background from two-photon processes and $\tau^+\tau^- (n\gamma)$, the sum of the electromagnetic energy and the momenta of muon tracks is required to be greater than 0.6$\sqrt{\delta}$. To remove cosmic ray events, we require at least one good TEC track. Events with exactly one good TEC track are further required to have at least one scintillator hit within 3.0 ns of the beam crossing.

Events with two identified taus with an opening angle in the $R-\phi$ plane of at least 30° are considered as $\tau^+\tau^- (n\gamma)$ candidates. To reject events from two-photon processes, the visible energy of at least one tau is required to exceed 0.1$\sqrt{\delta}$ and the polar angle of the direction of missing momentum is required to be at least 25.8° with respect to the beam axis. The background events from $e^+e^- (n\gamma)$ and $\mu^+\mu^- (n\gamma)$ are suppressed by requiring the sum of the electromagnetic and muon energy in the event to be less than 0.8$\sqrt{\delta}$.

We now study events which contain isolated photons in addition. These photons are required to be at least 8° away from electrons, 5° from muons, and 15° from taus. Tighter photon isolation requirement for the $e^+e^- (n\gamma)$ events is to reject overlapping electromagnetic showers and for the $\tau^+\tau^- (n\gamma)$ events to reduce backgrounds from the $n\gamma$'s. The total number of selected events in each channel are shown in table 2.

3. Comparison with QED predictions

To compare the measured distributions with the expectations from QED, we use the Monte Carlo program YFS3 as described in ref. [5]. The program generates events of the type $e^+e^- \rightarrow \mu^+\mu^- (n\gamma)$ according to the Yennie–Frautschi–Suura scheme [6] with multiple collinear and soft photon radiation in both the initial and final states. It includes the additional leading-log terms for one or two hard photons. The cross section for the production of events with hard and isolated photons as calculated by the program has been found to be in good agreement with the exact $O(\alpha^2)$ matrix element calculations [7].

The program is adequate to describe the $e^+e^- \rightarrow \tau^+\tau^- (n\gamma)$ process since only photons with energies
greater than 1.0 GeV and opening angles with respect to the nearest tau direction greater than 15° are considered, so that tau mass effects are negligible. The t-channel contribution to $e^+e^- \rightarrow e^+e^- (\gamma\gamma)$ process is not modeled by YFS3 Monte Carlo program. Instead we use the pure s-channel distributions for comparisons with $e^+e^- (\gamma\gamma)$ data.

To determine the acceptance for $e^+e^- \rightarrow \mu^+\mu^- (\gamma\gamma)$ events, generated at a center-of-mass energy of 91.2 GeV, are subjected to the full L3 detector simulation [8]. The simulated events are then reconstructed and analyzed with the same program as that used for the data. A total of 84 633 Monte Carlo events are selected after the $\mu^+\mu^- (\gamma\gamma)$ selection criteria described above are applied. The number of expected $\mu^+\mu^-$ events with one or more photons from QED is then given by

$$N_{\gamma}^{{\text{exp}}} = R_{\gamma}N_{\mu\mu}^D,$$

where $N_{\mu\mu}^D$ is the total number of selected $\mu^+\mu^- (\gamma\gamma)$ events in the data and R_{γ} is the fraction of events with one or more photons from QED.

The energy distribution of the most energetic photon for events with one or more photons in the final state is compared with the prediction of YFS3 Monte Carlo program in fig. 2a. Fig. 2b shows the energy distribution of the second most energetic photon for the selected $e^+e^- \rightarrow \mu^+\mu^- (\gamma\gamma)$ events generated with YFS3 [5] program. The distributions are normalized to the expected number of $e^+e^- \rightarrow \mu^+\mu^- (\gamma\gamma)$ events as shown in table 2.

![Fig. 2a](image1)
![Fig. 2b](image2)

Fig. 2. (a) The energy distribution of the most energetic photon for the selected $e^+e^- \rightarrow \mu^+\mu^- (\gamma\gamma)$ events with at least two photons in the final state, (b) The energy distribution of the second most energetic photon for the selected $e^+e^- \rightarrow \mu^+\mu^- (\gamma\gamma)$ events with at least two photons. The Monte Carlo distributions are obtained from a high statistics sample corresponding to approximately 10^7 $e^+e^- \rightarrow \mu^+\mu^- (\gamma\gamma)$ events generated with YFS3 [5] program. The distributions are normalized to the expected number of $e^+e^- \rightarrow \mu^+\mu^- (\gamma\gamma)$ events as shown in table 2.
Fig. 3. The angle distribution of the most energetic photon with respect to the nearest lepton for the selected e^+e^- events with at least one photon. The Monte Carlo distribution is obtained from a high statistics sample corresponding to approximately 10^7 $e^+e^- \rightarrow \mu^+\mu^-(n\gamma)$ events generated with YFS3 [5] program. The distribution is normalized to the expected number of e^+e^- events with at least one photon as shown in table 2.

energy spectrum of the second most energetic photon for events with at least two photons. Fig. 3 shows the comparison with the Monte Carlo for the angle between the most energetic photon and the nearest charged lepton for events with one or more photons. The Monte Carlo distributions in the above figures are obtained from a high statistics sample corresponding to approximately 10^7 $e^+e^- \rightarrow \mu^+\mu^-(n\gamma)$ events generated with YFS3 [5] program. The distributions are normalized to the expected number of $\ell^+\ell^-$ events with at least one photon as shown in table 2.

Monte Carlo studies at the generator level show that the energy spectra are not sensitive to variations in the isolation requirements between leptons and photons. The possible distortion of the energy and angle spectra due to the energy and angular dependence of the acceptance has been investigated using the fully simulated $\mu^+\mu^-(n\gamma)$ events. No significant effect is observed. As shown in the figures, the predicted Monte Carlo distributions for events with one or more photons are in good agreement with the data in both the shape and the normalization.

4. High mass photon pair events

In this section, we discuss the characteristics of the events with at least two photons in the final state, as selected by the above procedure. For events with more than two photons, the highest invariant mass of any combination is taken as $M_{\gamma\gamma}$. Figs. 4a and 4b show the two-dimensional scatter plot of $M_{\gamma\gamma}$ versus $M_{\ell\ell}$ for the data and for the Monte Carlo after detector simulation respectively, where $M_{\ell\ell}$ is the invariant mass of the lepton pair for e^+e^- and $\mu^+\mu^-$ events, and the recoiling mass of the photon pair for $\tau^+\tau^-$ events. Among 139 data events with at least two photons (fig. 4a), four events have the invariant mass of the photon pair clustering around 60 GeV and are well separated from the other events. Three are $\mu^+\mu^-\gamma\gamma$ events and the fourth is an $e^+e^-\gamma\gamma$ event.

The two-dimensional distribution of $M_{\gamma\gamma}$ versus $\cos\theta_{\gamma\gamma}$ is shown in fig. 5a for the data and in fig. 5b for the fully simulated Monte Carlo events, where $\theta_{\gamma\gamma}$ is defined as the smallest angle in the event between any lepton and photon. Most of the events shown in the figures have small values of $\theta_{\gamma\gamma}$ and $M_{\gamma\gamma}$, characteristic of QED radiation. We note that $\theta_{\gamma\gamma}$ is small and that the sum of the energies of the lepton and the nearest photon is close to the beam energy for three of the four events with high mass photon pairs.

Fig. 6 shows the $M_{\gamma\gamma}$ distribution compared with the prediction of the Monte Carlo program. The Monte Carlo distribution is obtained from the same high statistics $e^+e^- \rightarrow \mu^+\mu^-(n\gamma)$ sample used for figs. 2 and 3 and normalized in the same manner. It can be seen that the Monte Carlo underestimates the number of data events with two or more photons in the final state.

QED does not predict clustering of $M_{\gamma\gamma}$ around 60 GeV and we determine the probability for observing four or more events around 60 GeV from QED fluctuation in our data. We simulate 10^6 experiments with the average number of events in each experiment equal to the total number of events (139) in the $M_{\gamma\gamma}$ distribution of the data. The shape of the $M_{\gamma\gamma}$ distribution is obtained from the shape of the predicted Monte Carlo distribution shown in fig. 6. The instances of events clustering within a single mass bin
Fig. 4. The scatter plot of $M_{\gamma\gamma}$ versus M_{ll} for e^+e^- events with two or more photons for the data (a) and for the Monte Carlo after detector simulation (b). The data plot is obtained from a sample of 48587 selected $e^+e^-(\gamma\gamma)$ events while the Monte Carlo distribution is obtained from a sample of 84633 selected $\mu^+\mu^-(\gamma\gamma)$ events. The Monte Carlo events are generated with YFS3 [5] program.

Fig. 5. The distribution of $M_{\gamma\gamma}$ versus $\cos\theta_{\gamma\gamma}$ for the selected e^+e^- events with two or more photons for the data (a) and the fully simulated Monte Carlo (b). The data plot is obtained from a sample of 48587 selected $e^+e^-(\gamma\gamma)$ events while the Monte Carlo distribution is obtained from a sample of 84633 selected $\mu^+\mu^-(\gamma\gamma)$ events. The Monte Carlo events are generated with YFS3 [5] program.
Fig. 6. $M_{\gamma\gamma}$ distribution of the data for $\ell^{+}\ell^{-}$ events with two or more photons compared to the expectation from the Monte Carlo. The Monte Carlo distribution is obtained from a high statistics sample corresponding to approximately 10^7 $e^+e^-\rightarrow \mu^+\mu^- (n\gamma)$ events generated with YFS3 [5] program. The distribution is normalized to the expected number of $\ell^+\ell^-$ events with at least two photons as shown in table 2.

Events of the type $e^+e^-\rightarrow \nu\bar{\nu}\gamma\gamma$ have also been searched for in the data collected from 1991 and 1992 runs, applying similar requirements on the photons and requiring the polar angle of the direction of missing momentum to be greater than 25.8° with respect to the beam axis. No event is found with $M_{\gamma\gamma} > 10$ GeV. It should also be noted that, with different isolation criteria and in a data sample of approximately 450 000 Z^0's corresponding to an integrated luminosity of 13 pb$^{-1}$, no hadronic event containing isolated photon pair with $M_{\gamma\gamma} > 40$ GeV has been observed in our data [9].

5. Conclusions

In a sample of events corresponding to 950 000 produced Z^0's, we observe one $e^+e^-\gamma\gamma$ and three $\mu^+\mu^-\gamma\gamma$ events with an invariant mass of the photon pair close to 60 GeV. These photons could arise from the decay of a massive particle. However, the probability for all four events originating from QED is estimated to be $O(10^{-3})$. Therefore, a QED fluctuation cannot be ruled out. More data are necessary to ascertain the origin of these events.

Acknowledgement

We would like to thank S. Jadach, B.F.L. Ward and Z. Was for providing us the YFS3 Monte Carlo program used in this analysis. We wish to express our gratitude to the CERN accelerator divisions for the excellent performance of the LEP machine. We acknowledge the contributions of all the engineers and technicians who have participated in the construction and maintenance of this experiment.

References

[8] The L3 detector simulation is based on GEANT version 3.14,
see R. Brun et al., GEANT 3, CERN-DD/EE/84-1 (revised) (September 1987);
the GHEISHA program is used to simulate hadronic interactions, see H. Fesefeldt, RWTH Aachen preprint PITHA 85/02 (1985).