Molecular simulations of the vapour-liquid coexistence curve of methanol.
van Leeuwen, M.E.; Smit, B.

Published in:
Journal of Physical Chemistry

DOI:
10.1021/j100007a006

Citation for published version (APA):
Molecular Simulation of the Vapor–Liquid Coexistence Curve of Methanol

Monica E. van Leeuwen* and Berend Smit
Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B.V.), P.O. Box 38000, 1030 BN Amsterdam, The Netherlands

Received: June 30, 1994; In Final Form: November 9, 1994

Several parameter sets have been presented in the literature for a three-site united-atom model for methanol. We compare the Gibbs ensemble Monte Carlo simulation results for the prediction of vapor–liquid equilibrium for the various sets. Furthermore, we present a new parameter set, which predicts phase coexistence properties of methanol with higher accuracy over a wide range of temperatures and densities.

Introduction

Polar fluids differ from nonpolar fluids in having orientation-dependent interactions, which lead to nonideal thermodynamic behavior. Molecular simulations provide us with a tool to investigate the effect of microscopic (molecular) interactions on macroscopic properties. Methanol is a relatively simple molecule of which the macroscopic behavior is relatively complex as it is a polar fluid (with a dipole moment of 1.71 D) that can form hydrogen bonds. Because of the importance of methanol in practical applications, several methanol models have been developed, with which various aspects of its thermodynamic behavior have been studied. However, these studies were mainly at ambient temperature and density. To investigate whether these models also describe properties of methanol beyond the conditions for which the models were optimized, we compare the performance of various methanol models regarding the phase coexistence prediction. In addition, we present the results of a new model.

Using the Gibbs ensemble Monte Carlo (GEMC) computer simulation technique, one can simulate data on the coexisting vapor and liquid phases for a given temperature with one single simulation. The GEMC technique has been applied to a variety of systems (for a review see ref 8). More recently, the method has been extended to allow for simulation of chain molecules. Jørgensen proposed an intermolecular potential for methanol, a three-site united-atom approach combining Lennard-Jones and Coulombic interactions:

$$U_{\alpha\beta}(r) = 4\epsilon_{\alpha\beta} \left[\left(\frac{\sigma_{\alpha\beta}}{r} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r} \right)^{6} \right] + \frac{q_{\alpha}q_{\beta}e^2}{r} \tag{1}$$

where U is the internal energy, r is the site–site separation, $\epsilon_{\alpha\beta}$ and $\sigma_{\alpha\beta}$ are the Lennard-Jones energy parameter and size parameter, respectively, and $q_{\alpha}e$ is a point charge located at site α (e denotes the electronic charge). Multisite united-atom intermolecular potentials are considered an important class of potentials, as they contain sufficient detail to distinguish one substance from another whereas molecular simulation calculations remain accessible. The set of parameters for this model has been refined by both Jørgensen and Haughney et al.; we will refer to the parameter sets as J1, J2, H1, and H2. The J1 parameter set was adjusted to reproduce gas-phase dimer interactions and densities. The set of parameters for this model was adjusted to reproduce the liquid density at ambient temperature and density. H1 and H2 focus on different characteristics of

Table 1: Parameter Values for a Three-Site Intermolecular Potential for Methanol (Eq 1), As Used by Jørgensen (J1, J2), Haughney et al. (H1 and H2), and This Work⁹

<table>
<thead>
<tr>
<th>Set</th>
<th>$\epsilon_{\alpha\beta} / k_B$ [K]</th>
<th>$\sigma_{\alpha\beta}$ [Å]</th>
<th>$q_{\alpha} e$ [e]</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>87.94</td>
<td>3.083</td>
<td>0.728</td>
</tr>
<tr>
<td>J2</td>
<td>85.55</td>
<td>3.071</td>
<td>0.700</td>
</tr>
<tr>
<td>H1</td>
<td>104.17</td>
<td>3.775</td>
<td>0.297</td>
</tr>
<tr>
<td>H2</td>
<td>113.0</td>
<td>3.069</td>
<td>0.660</td>
</tr>
<tr>
<td>This work</td>
<td>86.5</td>
<td>3.030</td>
<td>0.700</td>
</tr>
</tbody>
</table>

⁹ For all sets, $\epsilon_{\alpha\beta} / k_B$ and $\sigma_{\alpha\beta}$ are taken to be zero. For all sets except H2, the geometry of the methanol molecule is based on gas-phase values of the intramolecular bond lengths and angles, which are kept fixed at $r_{\text{CO}} = 1.4246$ Å, $r_{\text{OH}} = 0.9451$ Å, and $\theta_{\text{COH}} = 108.53^\circ$. The H2 model uses results obtained from neutron diffraction data on the liquid: $r_{\text{CO}} = 1.4175$ Å, $r_{\text{OH}} = 1.0285$ Å, and $\theta_{\text{COH}} = 108.63^\circ$.

0022-3654/95/2099-1831$0.00 © 1995 American Chemical Society
Figure 1. Coexistence curves for methanol, as calculated via GEMC simulation for various parameter sets (circles, J1; triangles, J2; squares, H1). For most results, the error bars are smaller than the symbol. The solid lines are fitted to describe the coexistence data and used to estimate the critical point (indicated by filled symbols). The experimental data (dotted line with diamond for the critical point) are taken from Smith and Srivastava.

Figure 2. Simulated coexistence curve for methanol as calculated with the new set (circles with error bars). The experimental data (dotted line) are taken from Smith and Srivastava.

Figure 3. Simulated vapor pressures (circles with error bars) for methanol as calculated with the new set. The experimental data (dotted line) are taken from Smith and Srivastava.

accordance with results from other simulations, the J2 model performed best, but clearly not yet satisfactorily. Our J2 results compare favorably with the lower-temperature results of Mezei. At higher temperatures, our results for the averaged densities (used to estimate the critical point) show a better consistency than those of Mezei. Therefore, we believe that our critical point estimate is more accurate. Strauch and Cummings observed excellent results for methanol–water mixtures based on SPC–water and H1–methanol. They suggest that, as SPC–
water yields too low a critical temperature,19,20 compensating errors must be involved in the mixture results.21 Our H1 results fully support this suggestion.

All parameter sets were optimized to predict liquid properties at ambient temperature and pressure. In Figure 1, results for these conditions are given as well. Indeed, J2 and H1 approximate the coexistence behavior at room temperature but fail to describe the coexistence curve over a large temperature range. This discrepancy motivated us to investigate whether it is possible to develop a new parametrization for the three-site model that describes the vapor–liquid coexistence curve more accurately over a wide range of temperatures. We chose to optimize the parameters so as to describe the experimental liquid coexistence density at $T = 400$ and 450 K.

In Figure 2 the GEMC results for this model are given and compared with experimental values; in Figure 3 we show the corresponding vapor pressure results. The critical properties were determined as $T_c = 512 \pm 6$ K, $p_c = 277 \pm 8$ kbar, and $\rho_c = 99 \pm 134$ bar, which compare favorably with the experimental values of $T_c = 512.64$ K, $p_c = 272$ kbar, and $\rho_c = 80.92$ bar.22 For all thermodynamic properties calculated in the GEMC simulations (coexistence densities, vapor pressures, enthalpies of vaporization, critical properties) the model developed in this work performs better than the other models. At ambient temperature, the predictions of the new model for liquid density, vapor pressure, and heat of vaporization are comparable with those of the other models. An intermolecular potential consisting of Lennard-Jones and Coulombic interactions, developed to represent complex interactions such as hydrogen bonding, has its limitations.23 Nevertheless, we have shown that with this potential it is possible to represent the phase coexistence properties of methanol with good accuracy.

An interesting observation was that it was impossible to simulate a vapor–liquid phase split for H2. At $T = 350$ K, the fluid appeared to be supercritical. At $T = 300$ K the beginning of a phase split was observed, which never reached equilibrium. The simulation was ended when two metastable glass phases were formed, consisting of long winding chains of hydrogen-bonded methanol that stabilize the configuration. One of these configurations is shown in Figure 4a. The chains, formed by the hydroxyl group of methanol, are clearly visible as alternating oxygen (red) and hydrogen (white) atoms. This can be compared with a snapshot of a saturated-liquid density at the same temperature, generated on the basis of the J2 model, in Figure 4b.

The main reason why the H2 model yields such qualitatively different results is undoubtedly to be found in the exceptionally low energy parameter of the methyl group (see Table 1). In developing the H2 model, Haughney et al.3 focused on the strength of the hydrogen-bond interaction by optimizing on the peak height of the pair distribution function measured by X-ray scattering experiments. They found that, within the confines of a three-site model, the only means of getting a better fit was to increase the O–O Lennard-Jones interaction term at the expense of the C–C and C–O terms. However, the strength of the hydrogen bond is overestimated to such an extent that the resulting chain formation is too dominant to allow for a regular vapor–liquid phase split. This behavior strongly resembles the behavior of the dipolar hard sphere, which has recently received renewed attention.24–27 For this model fluid, the dispersive attractive interactions are too weak to stabilize a liquid phase such that a vapor and a liquid phase can coexist. From the results of a dipolar transition potential,28 we know that, in order to induce a vapor–liquid phase split, the intermolecular potential must contain sufficient dispersive (attractive) interactions. The H2 model clearly overestimates the strength of a hydrogen bond or, reversely, underestimates the dispersive interactions in methanol. The GEMC calculations are therefore a quite stringent test for the quality of the model parameter sets.

Conclusions

GEMC calculations proved quite sensitive to intermolecular potential parameter sets. We showed a qualitative difference between the J1, J2, and H1 sets and the H2 set: for the latter the dipolar interactions are so strong that they prohibit the occurrence of a liquid–vapor phase split. We proposed a new parameter set for the methanol model, which showed a quantitative difference to the J1, J2, and H1 sets. This set was optimized to describe liquid coexistence densities at two temperatures and predicts the vapor–liquid curve and related thermodynamic properties with much higher accuracy.

Qualitative results from studies based on the J1, J2, and H1 sets (such as refs 28–30) will probably not change when the refinements of our set are applied. However, for quantitative studies (such as refs 18, 31, and 32) it is important to have a set of parameters that predicts the phase behavior of the pure fluid accurately.

References and Notes

(21) Chialvo, A. A.; Cummings, P. T. To be published.
(22) Smith, B. D.; Srivastava, R. Thermodynamic Data for Pure Compounds; Elsevier: Amsterdam, 1986; Vol. 25.

JP941659S