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(Received 10 February 2017; published 5 July 2017)

The immersed-boundary lattice-Boltzmann method (IB-LBM) is increasingly being used in simulations of
dense suspensions. These systems are computationally very expensive and can strongly benefit from lower
resolutions that still maintain the desired accuracy for the quantities of interest. IB-LBM has a number of free
parameters that have to be defined, often without exact knowledge of the tradeoffs, since their behavior in low
resolutions is not well understood. Such parameters are the lattice constant �x, the number of vertices Nv , the
interpolation kernel φ, and the LBM relaxation time τ . We investigate the effect of these IB-LBM parameters
on a number of straightforward but challenging benchmarks. The systems considered are (a) the flow of a single
sphere in shear flow, (b) the collision of two spheres in shear flow, and (c) the lubrication interaction of two
spheres. All benchmarks are performed in three dimensions. The first two systems are used for determining two
effective radii: the hydrodynamic radius rhyd and the particle interaction radius rinter. The last system is used to
establish the numerical robustness of the lubrication forces, used to probe the hydrodynamic interactions in the
limit of small gaps. Our results show that lower spatial resolutions result in larger hydrodynamic and interaction
radii, while surface densities should be chosen above two vertices per LU2 result to prevent fluid penetration in
underresolved meshes. Underresolved meshes also failed to produce the migration of particles toward the center
of the domain due to lift forces in Couette flow, mostly noticeable for IBM-kernel φ2. Kernel φ4, despite being
more robust toward mesh resolution, produces a notable membrane thickness, leading to the breakdown of the
lubrication forces in larger gaps, and its use in dense suspensions where the mean particle distances are small
can result in undesired behavior. rhyd is measured to be different from rinter, suggesting that there is no consistent
measure to recalibrate the radius of the suspended particle.

DOI: 10.1103/PhysRevE.96.013302

I. INTRODUCTION

The immersed-boundary method (IBM) is a pure fluid-
structure interaction method that has been used in a wide range
of applications [1–8]. Many variations of the IBM have been
presented since its original introduction by Peskin in 1972
[9,10]. Uhlmann [11] suggested an improved version of the
IBM with a direct formulation of the fluid-solid interaction
force, using the regularized δ function to associate arbitrary
Lagrangian with discrete Eulerian positions. Kempe and
Fröhlich [12] proposed several enhancements to Uhlmann’s
approach [11] to improve the range of stability of the method
and to deal with approaching interfaces. Yang et al. [13]
developed a smoothing technique for the discrete δ functions
of the IBM to suppress the nonphysical oscillations in the
volume forces, while Wu and Shu [14] presented a model that
accurately satisfies the nonslip boundary condition at boundary
points.

However, the initial formulation of the IBM is also widely
used due to its simplicity [5,15,16]. The role of some
key IBM parameters and their effect on the interactions
between the fluid and the immersed structure, or between
the immersed structures, is not fully understood in either the
initial formulation or the improved versions. Krüger et al. [17]
investigated the impact of some of these relevant parameters by

*Also at Electric Ant Lab, Amsterdam, The Netherlands.
†Author to whom all correspondence should be addressed:

A.G.Hoekstra@uva.nl; also at ITMO University, Saint-Petersburg,
Russian Federation.

looking into the deformation of an initially spherical capsule,
freely suspended in a simple shear flow. They found that the
tessellation method and resolution of the membrane mesh play
only a minor role, while the width of the discrete δ function
significantly affected the results of their simulations.

The IBM is often combined with the lattice-Boltzmann
method (LBM) as the fluid solver, a combination known as
the immersed-boundary lattice-Boltzmann method (IB-LBM).
The IB-LBM is widely used for the simulation of deformable
particles, such as red blood cells (RBCs) [4–8,15,16] and
capsules [17,18]. Due to their deformability, RBCs can pack
very efficiently, resulting in blood suspensions with very high
volume fraction in which the mean particle-particle distance
is small.

To understand the role of IB-LBM parameters in particle-
particle interactions, we performed an extensive study of their
impact on a set of demanding benchmarks. The parameters
considered are the interpolation kernel φn, the grid resolution
�x, the number of vertices used to represent a suspended
particle, Nv , and the LBM relaxation parameter τ . The basic
IBM implementation is used with stiff spherical particles,
and any deviation from the spherical shape is being tracked.
Many analytical solutions and reference tests exist or can be
constructed for solid spheres [19–24], rendering them the most
tractable shape for our simulations. We use the same version
of the IB-LBM as the ones used in our deformable particle
simulations [5,6,15] to study the behavior and shortcomings of
the approach, yet in the stiff limit to approximate solid spheres.
We are not using a variant for solid objects, since our aim is
to study the behavior of the IBM, and spheres provide a clean
method to do so. The benchmark systems are (a) a single sphere
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in shear flow, determining its effective hydrodynamic volume
by measuring Einstein’s viscosity, (b) the collision of two
particles in shear flow, and (c) the lubrication interaction of two
spheres. All benchmarks are performed in three dimensions.

In the appendixes, we provide supporting material for the
results presented in the paper.

II. METHODS

A combined immersed-boundary lattice-Boltzmann
method is employed to couple the suspended spheres with
the fluid. The constitutive model used in the following
simulations is the same as for red blood cells (RBCs) [15], yet
much stiffer. Spheres are chosen for the simulations due to the
existence of benchmark tests and known analytical results.
The departure from the spherical shape is being tracked and
ensured to be within acceptable limits (less than 1% of the
radius). More information can be found in Appendix B.

A. Lattice-Boltzmann method

The lattice-Boltzmann method (LBM) is a well-established
mesoscopic approach that solves asymptotically the incom-
pressible Navier-Stokes equation [25]. The LBM’s main
quantity is the set of populations fi(x,t), which corresponds
to the discretized probability distribution of finding particles
in site x, at time t , moving with velocity ci .

The time evolution of the distributions, when an external
force is involved, is given by the forced single-relaxation time
LBGK equation [25,26],

fi(x + ci�t,t + �t)

= fi(x,t) − fi(x,t) − f
eq
i (x,t)

τ
+ �tFi, (1)

where τ is the relaxation parameter, �t is the time step,
f

eq
i (x,t) is the equilibrium population, and Fi is the forcing

term.
The equilibrium populations are given by

f
eq
i (x,t) = wiρ

[
1 + u · ci

c2
s

+ 1

2

(
u · ci

c2
s

)2

− u2

2c2
s

]
, (2)

where wi is the weighting factor, ρ and u are the fluid density
and velocity, respectively, and cs = 1√

3
�x/�t is the lattice

speed of sound.
The zeroth and first moments of the populations recover

the fluid density ρ = ∑
i fi and velocity ρu = ∑

i fici + �t
2 f,

while the kinematic viscosity ν of the fluid is given by ν =
(τ − 1

2 )c2
s �t . The forcing term Fi of Eq. (1) is in the form of

Fi =
(

1 − 1

2τ

)
wi

(
ci − u

c2
s

+ (ci · u)

c4
s

ci

)
· f, (3)

where f is the external body force density.
We used the so-called D3Q19 model (three-dimensional

with 19 velocity components) as implemented in the open-
source LBM-solver Palabos [15,27] and built the IBM and the
constitutive model on top of it.

B. Constitutive model of a cell membrane

We employ the spectrin-link model [28,29], widely used
in red blood cell simulations and carefully parametrized in
this study to correspond to a near-rigid sphere. Each sphere
consists of a network of vertices, forming a triangular mesh.

The Helmholtz free energy of the system is given by

F ({xn}) = Fin-plane + Fbending + Fvolume + Farea, (4)

where xn, n ∈ 1, . . . ,Nv are the vertices of a two-dimensional
triangulated network describing the surface of a sphere.

The in-plane free-energy term is written as

Fin-plane = kWLC

⎛
⎝ ∑

l∈edges

VWLC(Ll) +
∑

l∈edges

krep

Ll

⎞
⎠, (5)

with VWLC(Ll) = kBT Lmax

4p

3x2
l − 2x3

l

1 − xl

. (6)

VWLC is the wormlike chain potential, Ll is the length of
the edge l, Lmax is the maximum allowed extension length, xl

is defined as xl = Ll

Lmax
, p is the persistence length, and krep is

a constant chosen so that the corresponding in-plane force is
zero for the equilibrium length L0. kB is Boltzmann’s constant,
and T = 300 K is the temperature.

The bending energy is defined as

Fbending =
∑

adjacent α,β pair

kbend[1 − cos{θαβ − θ0}], (7)

where kbend is the bending constant, and θαβ and θ0 are the
instantaneous and equilibrium angles between two adjacent
triangles, respectively.

The volume and surface conservation constraints are written
as

Fvolume = kvolume
kBT

2L3
0

(� − �0)2

�0
, (8)

Farea = ksurface
kBT

2L2
0

(S − S0)2

S0

+
∑

k∈1,...,Nt

kshear
kBT

2L2
0

(Ak − A0)2

A0
, (9)

in which kvolume, ksurface, and kshear are volume, surface, and
local triangle area constants. �, S, and Ak are the volume,
surface, and triangle area of the cell, while �0, S0, and A0 are
the corresponding equilibrium values.

The force acting on vertex i is derived from fi = − ∂F ({xi })
∂xi

and was calculated analytically.
The equilibrium quantities in Eqs. (5)–(9) are obtained from

the initial shape and may differ per vertex and triangle. This
ensures the absence of residual stresses in a similar fashion
to the stress-free membrane model followed by Fedosov et al.
[30]. The remaining simulation parameters, including those of
the fluid, are shown in Table I. The density and viscosity ratio
between the inner and the outer fluid is set to 1.

The mesh is obtained by subdividing a regular icosahedron
or octahedron and mapping the points of the surface to a sphere,
similar to [17] (see Table II). Applying a stretch force of 250 pN
in the two poles of the sphere, similar to the stretching of an
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TABLE I. Model parameters and constants.

Parameter Value

fluid density, ρ 1025 kg/m3

kinematic viscosity, ν 1.7 × 10−6 m2/s
bending constant, kbend 2 × 105kBT

volume constant, kvolume 6 × 105

surface constant, ksurface 6 × 105

local area constant, kshear 5 × 104

maximum edge length, Lmax 1.1 × L0

WLC coefficient, kWLC 15

RBC [28], yields a deviation of less than 0.08% from the initial
radius.

Considering the low particle-Reynolds numbers used in
this study (see Sec. III), the spheres are rendered near-rigid;
however, the departure from the spherical shape is tracked for
every experiment. The particle-Reynolds number is defined as
Rep = 4γ̇ r2

ν
, where ν is the kinematic viscosity of the fluid, γ̇

is the applied shear rate, and r is the radius of the sphere.

C. Immersed-boundary method

The immersed-boundary method (IBM) [9,10] is a pure
coupling method used in fluid-structure interaction problems.
The major advantage of the IBM is that the discretized
representations of the fluid and the immersed structure do
not need to conform. This alleviates the need for remeshing,
rendering complex configurations like dense suspensions
easier to handle.

The key principle behind the IBM is the no-slip condition
at the interface of the membrane and the fluid. In the original
method proposed by Peskin [9,10], also used here, this is
achieved by pinning the membrane points to the fluid. This is
attained as the fluid velocity is interpolated at the Lagrangian
surface points and the computed forces are exerted to the
fluid. The force Fi(t) computed at the surface point xi(t) is
distributed among the closest Eulerian points X of the fluid
according to

f(X,t) =
∑

i

Fi(t)δ(X − xi(t)), (10)

TABLE II. Properties of spherical meshes, created by subdividing
either a regular icosahedron or an octahedron. Nv corresponds to the
number of vertices, Nt to the number of triangles, and the symbol σ to
the standard deviation of the quantity denoted in the subscript (as used
in Sec. II B). The regular icosahedron produces more homogeneous
meshes; however, due to the constitutive model, there are no residual
stresses resulting from an inhomogeneous mesh.

Initial shape Nv Nt σA0/A0 σLl
/〈Ll〉 σθ0/θ0

icosahedron 162 320 8.5% 6.4% 14.3%
octahedron 258 512 23.9% 14.9% 39.0%
icosahedron 642 1280 8.6% 6.5% 15.9%
octahedron 1026 2048 24.2% 15% 40.9%
icosahedron 2562 5120 8.6% 6.5% 16.6%

where δ(X − xi(t)) is the discrete Dirac delta function. f(X,t)
is coupled to the LBM via the forcing term as described in
Eq. (3).

Subsequently, the velocity of the membrane point i is
updated based on the local flow field and advected according
to the Euler scheme

xi(t + �t) = xi(t) + ui(t + �t)�t (11)

or to the Adams-Bashforth scheme

xi(t + �t) = xi(t) + (
3
2 ui(t + �t) − 1

2 ui(t)
)
�t, (12)

where

ui(t + �t) =
∑

i

u(X,t + �t)δ(X − xi(t)). (13)

The function δ(r) of Eqs. (10) and (13), used for the
velocity interpolation and force spreading, is replaced by
a product of 1D interpolation kernel functions φn, where
n denotes the support of the kernel in all directions, as
δ(r) = φn(x)φn(y)φn(z), where r = (x,y,z). In the present
work, we make use of the following kernels:

φ2(r) =
{

1 − |r|, |r| � 1,

0, 1 � |r|, (14)

φ3(r) =

⎧⎪⎨
⎪⎩

1
3 (1 + √

1 − 3r2), |r| � 1,

1
6 (5 − 3|r| −

√
−2 + 6|r| − 3r2), 1

2 � |r| � 3
2 ,

0, 3
2 � |r|,

(15)

φ4(r) =

⎧⎪⎨
⎪⎩

1
8 (3 − 2|r| +

√
1 + 4|r| − 4r2), |r| � 1,

1
8 (5 − 2|r| −

√
−7 + 12|r| − 4r2), 1 � |r| � 2,

0, 2 � |r|.
(16)

The support of each kernel is shown in Fig. 1.

FIG. 1. Support functions for IBM kernels φ2, φ3, and φ4

[Eqs. (14), (15), and (16), respectively].
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Free parameters of the IB-LBM

The IBM comes with a number of free parameters. The most
important are the interpolation kernel φ, the number of surface
vertices Nv , the lattice discretization �x, the update scheme
[Eqs. (11) and (12)], and the LBM relaxation time τ . While it is
implied that a finer spatial and mesh resolution, i.e., smaller �x

and more Nv , respectively, would yield more accurate results,
the computationally demanding case of dense suspensions can
significantly benefit from identifying the limits and the artifacts
of each parameter.

The interpolation kernel φ is the core of the IBM. It
introduces an artificial length scale, effectively changing the
thickness of the membrane. It is known that kernel φ2 [Eq. (14)]
violates the translational invariance, and it has been found to
introduce nonphysical oscillations [10,13], yet φ2 is considered
to capture the relevant physics and is still preferred due to its
compact support (one �x in each direction), small numerical
thickness, and reduced amount of computations [6,17].

The number of surface vertices Nv has been found to
play only a minor role [11,17], and a suggested mean vertex
distance varies between 0.5 and 1.5�x [17] (3D simulations)
or 0.33�x [6] (2D simulations) without compromising the
impermeability of the particle membrane. The Euler update
scheme is used more often in the literature, while Krüger
[17] argues that higher-order schemes, such as the Adams-
Bashforth scheme, will not change the outcome of short
simulations, yet it might provide additional accuracy for
longer-time simulations. The effect of the LBM relaxation
time τ , on the other hand, has been found to be considerable
on the IB-LBM simulations, in both simulations of capsules
[17] and when acting as velocity boundaries [31]. It is also
worth noting that τ has a similarly considerable effect on
bounce-back boundaries.

III. SIMULATION RESULTS

We consider three representative cases, accounting for the
interactions of IBM membranes with the fluid and with other
IBM membranes. First, we look into the behavior of the
effective hydrodynamic radius rhyd of a sphere with radius r

in a sheared environment. Next, we investigate the interaction
between two particles in a sheared environment. As our final
case, two spheres are forced to collide as we examine the gap
h where lubrication forces break down.

All simulations correspond to the same system: a domain of
20r × 20r × 20r containing one or two spheres with a dimen-
sional radius of 4 μm. The length and time scales are chosen
for their relevance to red blood cell suspensions, which are of
particular interest to our line of research, yet the results can be
carried over to other systems following a similar dimensionless
scaling. Dimensionless parameters used to characterize the
system, such as Reynolds number and confinement, are fixed
for all simulations in each benchmark. By using the same
dimensional system, we highlight the differences imposed by
choosing different IB-LBM parameters.

We use stiff spherical particles omitting additional inter-
particle forces, such as explicit lubrication or penetration
correction, to capture the interactions arising purely from the
IB-LBM. Finite-size effects were not considerable, i.e., they
were less than 6% in all of the examined cases; see Appendix A.

TABLE III. Default parameter set used for the simulations, unless
stated otherwise.

Parameter Value

Lattice constant, �x 1.0 μm
Radius of sphere, r 4.0 LU
Total number of vertices per sphere, Nv 258
Relaxation time, τ 1.0
IBM kernel, φn φ4

IBM update scheme Euler

The default parameter set is shown in Table III, with each
figure that follows explicitly denoting the parameters that were
varied. Note that when the radius of the particle is varied,
what actually changes is the lattice constant �x, resulting in
a different particle radius in lattice units. In other words, all
simulations have the same dimensional radius, yet they differ
in lattice resolution. In the cases in which the LBM relaxation
parameter τ is changed, the time step changes according to the
diffusive scaling relation �t = νLB

ν
�x2, where νLB is the lattice

viscosity. The parameters of the membrane model presented
in Table I have been scaled accordingly to correspond to the
same dimensional system. Results are presented in two forms,
dimensional and dimensionless, always denoting the unit: μm
for dimensional and LU for lattice units.

A. Hydrodynamic radius of a sphere

Einstein’s well-known relation νrel = 1 + 2.5ϕV connect-
ing the relative apparent viscosity νrel of a dilute suspension
with the volume fraction ϕV is a convenient way to measure
the effective hydrodynamic radius of a sphere by measuring
its volume. The effective hydrodynamic radius of a sphere is
then measured as

rhyd = 3

√
3

4π
ϕVV , (17)

where V is the volume of the domain, equal to (20r)3. The
volume fraction is ϕV = 0.0525% and is well within the limits
of Einstein’s relation between volume fraction and apparent
viscosity.

The hydrodynamic radius is a measure of the hydrodynamic
size of the particle as felt by the fluid and the contribution of
the particle to the viscosity of the suspension. It is not intended
to be used as a recalibration parameter.

The imposed radius, the hydrodynamic radius, and their
difference �rhyd are shown in Fig. 2(a). The maximum extent
of rhyd is defined by the support of the IBM kernel. For φ4

this is ±2 LU. Parameters such as the radius r of the sphere,
the relaxation time τ , and the surface density of the vertices,
Nv/SLU, where SLU is the surface of the sphere, control the
actual extent of the radius.

The sphere is placed between two plates in a shear-flow
environment, as depicted in Fig. 2(b). The fluid is initialized at
rest. From the two parallel plates, only the top one is moving
and the bottom measures the shear stress of the suspension
via the momentum-exchange method [32]. The location of the
bottom boundary wall is considered to be halfway between the
bounce-back node and the first fluid node, since τ = 1.0 [33].

013302-4



REVISITING THE USE OF THE IMMERSED-BOUNDARY . . . PHYSICAL REVIEW E 96, 013302 (2017)

r

rΔr

(a)

vw

Dimensions (20r, 20r, 20r)

r

(b)

FIG. 2. Setup for measuring the hydrodynamic radius of a sphere.
(a) Imposed radius r (solid lines) and effective hydrodynamic radius
rhyd (dashed lines). Their difference �rhyd = rhyd − r defines the
deviation of the imposed radius from the measured one. (b) A sphere
positioned in a shear flow environment at rest. The bottom plate
is fixed and the suspension stress is measured via the momentum
exchange algorithm.

To verify this approach, we perform fluid-only simulations
and obtain a relative viscosity of νrel = 1.0. The applied shear
rate is γ̇ = 1000/s and the particle-Reynolds number is Rep =
0.038.

Results

The effective hydrodynamic radius rhyd is measured as
the time average of rhyd(t) from γ̇ t = 10 to 25, as shown
in Fig. 3(a), while the error bars in the plots are defined as the
standard deviation during this time period.

The hydrodynamic radii for dimensional and dimensionless
units are shown in Figs. 3(a) and 3(b), respectively. Coarser
spatial resolutions, where the radius of the sphere is expressed
with fewer lattice units, result in an increased rhyd. For
example, a sphere radius of 8 LU appears increased by
only ∼10%, while when r = 2.7 LU its increase is ∼35%,
indicating the latter as a coarse representation.

Figures 3(b) and 3(c) contain the same data, yet they
are plotted against different quantities. The spatial resolution
dominates the increase, which, in absolute numbers, seems
unaffected by the vertex density [inset of Fig. 3(c)]. For the
cases r = 4.0, 5.0, and 8.0 LU, Fig. 3(c) shows that �rhyd is
small for Nv/SLU < ∼2 (and seemingly constant for r = 8.0
LU), and for Nv/SLU > ∼2 it jumps to a higher value. This
threshold is more visible for kernels with smaller support,
such as φ2 and φ3 [Fig. 3(d)], while the increase in rhyd for
adequate mesh resolutions is independent of the IBM kernel
used. The increase for underresolved meshes is almost half of
that for the finer mesh resolutions, which may be due to the
fluid penetrating the membrane. For the lower resolutions, this
highlights that being closer to the input radius is not the desired
outcome, but a consequence of the underresolved mesh. IBM
kernel φ4 is more robust in low mesh resolutions, counteracting
what in φ2 and φ3 appears as membrane permeability. φ4 has
twice the support of φ2, thus extending the reach of each vertex,
allowing for meshes with fewer surface vertices to appear
coherent.

It is also worth noting that the use of a higher-order scheme,
such as the Adams-Bashforth scheme [Eq. (12)], had no impact
on the results we obtained (data not shown).

B. Interaction between nearby membranes

1. Two spheres in shear flow

One important benchmark for transport studies is the
interaction of two spheres in a simple shear-flow environment.
Analytical solutions for this system have been derived by
Batchelor and Green [19] for systems without boundaries
and inertia. Depending on the initial distance of the two
spheres, their trajectories can either extend to infinity or be
finite, characterized as open or closed trajectories, respectively.
In these open trajectories, two smooth spheres return to
their original streamlines after a collision, where potential
asymmetries between pre- and postcollision positions lead to
shear-induced dispersion [20,21]. In bounded cases of Couette
flow, a neutrally buoyant sphere migrates toward the center of
the domain [34], and the origin of this migration lies in the
interaction of the force dipole generated by the particle and its
image in the wall [35].

We place two identical spheres in a linear shear-flow
domain of size (20r × 20r × 20r) and apply a shear rate
of γ̇ = 132.8/s, resulting in a particle-Reynolds number of
Rep = 0.005, using the input radius. The initial distance
between the two spheres is (�X0,�Y0,�Z0) = (10r,1.5r,0),
where the y direction is the shear-gradient direction. The setup
is shown in Fig. 4.

We are interested in the collision distance in the y direction,
�Ymax ≡ �Y�X=0, which occurs when �X = 0, and from that
we define the interaction radius rinter = �Ymax/2. Under the
assumption of smooth spheres and low Rep, two spheres of
equal size pass very close to each other, so that �Ymax → 2r ,
while having symmetric pre- and postcollisional trajectories
[19]. The increase in the interaction radius is measured
as �rinter = rinter − r . The increase �rinter is not a particle
property and is used as a reference to study deviations that
may vary between simulations.

2. Results

Figure 5 shows the parametric plots of �Y/r versus �X/r

for varying mesh resolutions and τ = 1.5. The migration of the
spheres toward the center of the domain can be distinguished
before and after the collision.

As shown in Figs. 6(a), 6(b) and 6(c), the interaction radius
rinter is systematically larger than the hydrodynamic radius rhyd

of the previous section. This result excludes the use of rhyd as
a parameter that can be used to recalibrate r in order to obtain
more accurate results. With respect to mesh resolution, �rinter

levels off above ∼1 vertex per LU for adequately resolved
meshes [inset of Fig. 6(a)], contrary to �rhyd.

In this benchmark, choosing an interpolation kernel φn

with a larger support increases the interaction radius while
preserving the discrepancies between the underresolved and
adequately resolved meshes [see Fig. 6(c)]. Increasing the
relaxation time τ leads to decreasing rinter [Fig. 6(d)]. A
similar behavior was also observed by Nguyen and Ladd
[22] for the momentum-exchange algorithm [32,36]. In this
view, the IBM behaves similarly to the LBM’s bounce-back
boundaries, where the position of the boundary depends on
the relaxation time τ [33].

One cannot help but notice the decrease in �Y/r before and
after the collision in Fig. 5, which increases as Nv increase.
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FIG. 3. (a) Evolution of the hydrodynamic radius rhyd, as calculated from Eq. (17), with respect to the lattice unit �x. The horizontal dashed
line corresponds to the imposed radius. Finer lattice resolution results in lower effective hydrodynamic radii. (b) Dimensional hydrodynamic vs
imposed radius measured in lattice units, varying the number of surface vertices Nv . Inset: same data where the increase �rhyd is now measured
in lattice units. (c) Increase in hydrodynamic radius �rhyd in lattice units (LU) with respect to the vertex surface density Nv/SLU (SLU = 4πr2).
Inset with label �r/r : increase in units of radius (�rhyd/r) vs surface density Nv/SLU. Note that the x axis of the inset is the same as that in
the main figure, ranging from 0.1 to 100. (d) Increase in hydrodynamic radius �rhyd with respect to the interpolation kernel φn, for r = 4.0 LU.
Vertex numbers of Nv = 162 and 258 have a low surface density resulting in smaller rhyd, an effect less prevalent in larger interpolation kernels.
Adequately resolved spheres produce similar rhyd for all kernels.

This shift corresponds to the migration of neutrally buoyant
spherical particles in a Couette flow toward the center of the
domain, and it depends on the ratio of the diameter of the
particle to the distance between the walls and on the particle-
Reynolds number [34]. Kromkamp et al. [23] have also noticed
an increase in migration with increasing Rep in their simu-
lations. Our results, however, point to inconsistent behavior
regarding this migration. The particle Re used is relatively
small (∼0.005) and the domain sufficiently large for this to be
a finite-size effect [37]. To quantify this behavior, we define
the precollision shift as �Yshift ≡ min(�Y�X/r<0) − �Y0.

Figure 7(a) suggests that the cases that appeared to be
underresolved in the previous cases do not migrate toward the
center of the vessel, while migration increases as the vertex

density increases. Below the threshold of two vertices per
LU2 there is no migration, suggesting that fluid penetration
significantly affects the transport of vesicles in bounded
geometries. This is more obvious when using φ2, which does
not produce any migration, even in the finer mesh resolutions.

The migration is independent of the relaxation time τ [Fig.
7(c)], while using the Adams-Bashforth scheme produced
the same results, thus having no effect in the course of the
simulation (data not shown).

3. Lubrication forces between two spheres

Finally, we study the lubrication interaction of two spheres.
Since the IBM is based on interpolation, the hydrodynamic
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Rep=0.005

vw

Dimensions (20r, 20r, 20r)

r

r

ΔΥ0=1.5r

-vw

ΔX0=10r

FIG. 4. Schematic for the case described in Sec. III B 1. Two
spheres are positioned in a shear-flow environment at rest, and the
relative distance between their centers is measured.

interaction of two particles whose surface vertices are close
can be accurately resolved up to a certain limit, defined mainly
by the support of the kernel and the vertex surface density.
Vertices that are close to each other exert force to nearby
nodes and interpolate similar velocities, inducing a form
of correlation between them. In addition to the overlapping
IBM kernels, the fluid flow in their gap cannot be accurately
resolved, causing a breakdown of the lubrication force. In
this benchmark, we study approaching spheres and lubrication
in the normal direction, yet we do not consider rotating
spheres and lubrication torque. For particles coupled with the
momentum-exchange algorithm (MEA), Nguyen and Ladd
[22], based on analytical results of Jeffrey and Onishi [38],

FIG. 5. Flow trajectories for two interacting spheres in shear flow.
The number of vertices range from 162 to 1026 for a sphere of
4 LU. • denotes the collision distance �Ymax and � denotes the
“precollision shift” �Yshift. Spheres with high resolution (Nv = 1026)
migrate toward the center of the domain.

proposed a correction for the lubrication force between two
spheres with radii r1 and r2 when they are closer than a cutoff
distance of hN (assuming forces to be independent of gap, for
gaps smaller than hN ):

Flub = −6πρν
r2

1 r2
2

(r1 + r2)2

(
1

h
− 1

hN

)
U12 · R̂12, h < hN,

= 0, h � hN. (18)

U12 = U1 − U2 refers to the velocity difference between the
two spheres, h = |R12| − r1 − r2 to the gap between the two
surfaces, and R̂12 = R12/|R12| is the unit vector connecting the
centers of the two spheres. Equation (18) essentially shows that
Fnormal

lub ∝ Unormal
12 /h in the limit of h → 0.

The purpose of these simulations is not to propose a
lubrication correction scheme for the IBM, but rather to
indicate the range in which lubrication is accurately resolved
for the IBM surfaces. We use the domain of Sec. III B 1 with
γ̇ = 0/s and dimensions (20r × 20r × 20r) to measure the
distance at which the lubrication breaks down. The two spheres
are separated by an initial distance of (�X0,�Y0,�Z0) =
(10r,0,0).

In the scheme we are using, we cannot impose velocity
and measure force, as is commonly practiced in these studies
[22,24]. Instead, we apply a constant and opposite force of
F0 = 125 pN in the x direction on each sphere, and we measure
their relative distance. There are several variants of the IBM
to simulate rigid bodies, however this would imply using a
different scheme, and comparisons with the earlier results
would be invalid.

This force may introduce an artificial density difference
between the inner and the outer fluid, yet due to the simplicity
of the system, potential side effects similar to [24] are
considered to be minor, and it is believed that they would not
change the outcome considerably. Due to anisotropies in the
discretization of the membrane, spheres that are forced may
roll over each other and diverge from the head-on collision.
To ensure that this will not happen, an additional spring
force is considered, keeping the centers of the two spheres
aligned with the direction of the force. The force is defined as
Fcorr = (0, − F0

(Y−Y0)
1 μm , − F0

(Z−Z0)
1 μm ).

4. Results

The quantity we are interested in is the gap h between the
two spheres, and in particular hfail, the point where lubrication
forces break down (for a description of the definition of hfail,
please see Appendix C). Figure 8(b) shows the evolution of h

with respect to time. A point is evident, in which the course of
the trajectories changes, indicating that the lubrication force is
not accurately resolved.

Parameter sets in which spheres have a small effective
radius take substantially longer to reach hfail. In our case,
these simulations terminate within the designated simulation
time before this point. Cases with larger surface density break
down at larger distances [see Fig. 9(a)], while hfail seems to
be independent of τ , as shown in Fig. 9(b). Deformations of
the spheres were negligible. In this benchmark, the use of the
Adams-Bashforth scheme had no impact on the results we
obtained (data not shown).
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FIG. 6. (a) Dimensional interaction radius vs imposed radius. Transparent symbols correspond to the values measured in Sec. III A. Finer
resolutions mitigate the increase in the effective interaction (and hydrodynamic) radius of a sphere. Inset: same data where the increase �rhyd

is now measured in lattice units. (b) Increase in dimensional interaction radius, �rinter, in lattice units with respect to the vertex surface density
Nv/SLU. Transparent symbols correspond to the values measured in Sec. III A. (c) Increase in interaction radius, �rinter, with respect to the
interpolation kernel φn, for r = 4.0 LU. Transparent symbols correspond to the values measured in Sec. III A. Interpolation kernels with larger
support increase the interaction radius, while Nv = 162 and 258 still appear to result in lower rinter due to the low surface resolution. (d) Increase
in interaction radius, �rinter, with respect to the relaxation time τ , for r = 4.0 LU. Increasing τ decreased the interaction radius rinter.

FIG. 7. Normalized precollision shift, �Yshift/r: (a) with respect to the vertex surface density Nv/SLU; (b) with respect to the interpolation
kernel φn; and (c) with respect to the relaxation time τ .
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FIG. 8. (a) Schematic for the case described in Sec. III B 3. Two spheres are positioned in a resting fluid and forced toward each other.
Their relative positions and gap are measured. (b) Gap h in units of radius, vs dimensionless time, for varying lattice spacings �x. The symbol
× identifies hfail, the gap in which the lubrication forces fail. In setups with larger effective radii (namely larger �x), their failure occurs in
larger gaps h/r , while they need more time to reach to the same gap.

IV. DISCUSSION

In this work, we present a parametric study for the
combined IB-LBM method applied in simulations of one
and two suspended particles. We have studied the sensitivity
of the simulation results to the lattice constant �x, the
number of vertices Nv, the interpolation kernel φ, and the
LBM relaxation time τ . Computational complexity increases
as ∼f 5 with a spatial refinement factor f for the LBM
subsystem, and ∼f 2 for the membrane model from the time
step alone without remeshing, and thus the urge to reduce
the resolution is high. However, care has to be taken in the
choice of parameters since the accuracy of the computations
is drastically reduced if mechanical and hydrodynamical
interactions are insufficiently resolved. We hope that the
presented benchmarks will help other users of the methods to

choose the parameters according to the requirements of their
applications.

An important conclusion we obtained from the first two
benchmarks is that there exists a difference between the radius
“felt” by the fluid (i.e., via the stress exerted and measured
by rhyd) and the radius “felt” by hydrodynamically interacting
spheres. This implies that a consistent effective radius, which
could account for the increase, does not exist. Neither rhyd

nor rinter can be used to recalibrate the radius of the suspended
particle.

In the three benchmarks we have performed, we found that
each parameter has its distinct effect on the interaction of
the membrane with the fluid and other membranes. Spatial
resolution strongly determines the extent of the effective
hydrodynamic and lubrication radii of the particle, which, in
contrast, are influenced less by membrane-vortex density. In

FIG. 9. (a) Failing gap hfail with respect to vertex surface density. Transparent symbols correspond to 2 × rinter. (b) Failing gap hfail with
respect to τ .
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our simulations we found that mesh resolutions of fewer than
two vertices per LU2 will lead to potential fluid penetration.
The effects of underresolved meshes are even more profound
for IBM kernels with a smaller support, such as φ2. In the
lubrication limit, i.e., for small gaps between the particles,
high membrane-vertex density and larger kernels lead to an
overestimation of the hydrodynamic interactions. A consistent
correction such as that proposed by Nguyen and Ladd [22]
for particles coupled to the LBM fluid using the momentum-
exchange method would need to take all these effects into
account and is not known to date.

Underresolved meshes were also unsuccessful in reproduc-
ing the migration of a sphere toward the center of the vessel in
a bounded shear flow, thus failing to capture essential physics.
This was observed in all cases in which kernel φ2 was used,
raising some concerns about whether it captures the relevant
physics at all. Using φ4 leads to a more accurate reproduction
of the particle migration, highlighting again the importance
of mesh resolution. It produces, however, larger effective
hydrodynamic radii and fails to resolve the hydrodynamic
interaction of two particles in the lubrication limit.

Concluding on a universal set of parameters is not straight-
forward, and one must differentiate between dilute and dense
suspensions. In dilute suspensions, where the mean distance
between particles is relatively large, the finer resolutions
produce a more accurate response. Interpolation kernel φ2,
when the mesh is not properly resolved, appears to be “leaky,”
in contrast to φ4, which is more robust with respect to the
mesh resolution. A particle radius of r = 4 LU seems to be
sufficient, while the mesh resolution is suggested to be kept
above at least 2 points/LU2 to reproduce the relevant physics.
Relaxation time τ does not significantly affect the validity
of the method, and since it defines the reach of bounce-back
nodes and the time step of the LBM part, it depends on the
specific problem. A value of τ = 1 is a good tradeoff between
accuracy and efficiency for the LBM.

The strength of φ4 in dilute suspensions is a weakness
for the dense case, where the mean interparticle distances
are small. Interpolation kernel φ4 has a notable numerical
membrane thickness, which leads to the breakdown of the
lubrication forces in larger gaps. This could be compensated
for by adding an extra lubrication-correction force similar to
[22,24], yet this exceeds the scope of this paper. In these cases,
φ2 with the small numerical thickness can be combined with
an adequately resolved mesh to avoid lubrication breakdown.
However, if walls are present it is open to question whether
the wall-particle interaction would be accurately captured.

Updating the position with the Adams-Bashforth scheme
did not yield any differences compared to the Euler scheme,
which is simpler and faster and thus preferred over more
complex schemes. This was to be expected since LBGK
is first-order accurate in time. Higher-order schemes might
produce different results.

The number of free parameters is large, and an exhaustive
study in three dimensions is challenging, given the low
particle-Reynolds numbers and the domain sizes. We explored
a parameter space sufficiently large to make the statements
above, however further analysis is necessary to identify and
understand the various side effects of a combined LBM-IBM
scheme. Again, we would like to point out that it is important

to perform a series of relevant benchmarks prior to a study in
order to validate the choice of parameters.
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FIG. 10. Finite-size analysis of the cases presented in Sec. III. (a)
The case of measuring the hydrodynamic radius from the suspension
viscosity. Evolution of the hydrodynamic radius rhyd, as calculated
from Eq. (17) with respect to the dimensionless time γ̇ t . The different
equilibration times are noticed for the two domain sizes. The values
obtained differ by ∼2.7%. (b) The case of two spheres colliding
in shear flow. Parametric plot of relative distances in the x and y

directions for the two different domain sizes. The values for the
calculated rinter between the two domains differ at ∼0.5% of the
particle radius. (c) Case of head-on collision of two forced spheres.
Evolution of the gap size normalized by the radius for the two different
domain sizes. The difference between results from the two domains
is within ∼6%.
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APPENDIX A: FINITE-SIZE EFFECTS

A finite-size analysis was performed for the results pre-
sented in this paper. We compared results for all three cases
between the domain used (20r × 20r × 20r), where r is the
radius of the sphere, and by doubling the size of the domain
in each direction, namely (40r × 40r × 40r). Results are pre-
sented in Fig. 10. In this analysis, we chose the coarse sphere
representation, r = 2.7 LU, with Nv = 258 vertices, τ = 1.0,
and the IBM interpolation kernel φ3. The results obtained,
as shown in Fig. 10, are qualitatively and quantitatively very
similar. Since the “larger” domain of 40r × 40r × 40r is eight
times more demanding computationally (in terms of time and
storage) than the “smaller” domain, the latter was chosen for
the simulations.

To conclude, the finite-size analysis produced adequately
similar results to justify the use of the smaller domain.

FIG. 11. Departure of the two particles from the spherical shape
for the interaction of two spheres in shear flow. Two cases are sampled:
(a) one with a minor postcollision displacement and (b) one with
a measurable postcollision displacement. The parameters of each
simulation are mentioned in the title of each plot, and the inset images
depict the relative positions of the two spheres. The deviations are
considered to be minor.

APPENDIX B: DEPARTURE FROM THE
SPHERICAL SHAPE

In this appendix, we track the deformation of spheres as
they collide in shear flow, as presented in Sec. III B 1. The
metric used for the deformation is defined as D = (max {ri} −
min {ri})/r , with ri = |Ri − 1

Nv

∑Nv

i=1 Ri | being the distance
of vertex i from the center of a sphere with Nv vertices. It is a
very sensitive measure and can sense local divergences.

Figures 11(a) and 11(b) track this deformation with respect
to the relative distance in the x direction, �X/r . These two
cases represent one case in which the postcollision migration
is negligible [Fig. 11(a)] and one in which it is significant
[Fig. 11(b)]. In both of the samples, the deformation D is less
than 0.8%, yielding a maximum difference in the radii of the
vertices of 0.032 LU. This is considered to be only a minor
departure from the spherical shape.

To conclude, no significant deviation from the spherical
shape was observed for the cases considered, rendering the
objects we used spherical.

APPENDIX C: METRIC FOR LUBRICATION FAILURE

Defining the gap hfail, in which the lubrications fail, is not
a straightforward task. The radii of the spheres are not exact,
and methods other than using Eq. (18) have to be employed.
We have noticed in the log-log plot of the gap versus time
[like Fig. 8(b)] that after failure, it becomes linear in log-log
space with an exponent n, which is −1 < n < 0. The exponent
before can be seen as less than −1, hence if multiplied by time
t , quantity ht can be used to distinguish the two regimes, as
shown in Fig. 12(a).

By visual inspection, we verified that the gaps hfail have
been identified correctly in the cases presented.

FIG. 12. Quantity ht/r , used to identify hfail. The symbol ×
identifies hfail as the local minimum of this quantity, while + identifies
the first local maximum.
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