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Canonical models for studying the unjamming scenario in systems of soft repulsive particles assume pairwise
potentials with a sharp cutoff in the interaction range. The sharp cutoff renders the potential nonanalytic but
makes it possible to describe many properties of the solid in terms of the coordination number z, which has an
unambiguous definition in these cases. Pairwise potentials without a sharp cutoff in the interaction range have
not been studied in this context, but should in fact be considered to understand the relevance of the unjamming
phenomenology in systems where such a cutoff is not present. In this work we explore two systems with such
interactions: an inverse power law and an exponentially decaying pairwise potential, with the control parameters
being the exponent (of the inverse power law) for the former and the number density for the latter. Both systems
are shown to exhibit the characteristic features of the unjamming transition, among which are the vanishing
of the shear–to–bulk modulus ratio and the emergence of an excess of low-frequency vibrational modes. We
establish a relation between the pressure–to–bulk modulus ratio and the distance to unjamming in each of our
model systems. This allows us to predict the dependence of other key observables on the distance to unjamming.
Our results provide the means for a quantitative estimation of the proximity of generic glass-forming models to
the unjamming transition in the absence of a clear-cut definition of the coordination number and highlight the
general irrelevance of nonaffine contributions to the bulk modulus.

DOI: 10.1103/PhysRevE.95.062141

I. INTRODUCTION

The unjamming scenario describes the abrupt loss of
solidity of gently compressed soft particles or of elastic
networks that occurs when the coordination number z is
reduced towards the isostatic point zc = 2d–, where d– is the
spatial dimension. This is typically achieved in soft spheres or
disks by decompressing the system such that their packing
fraction φ is reduced towards the random close packing
fraction φc or in elastic networks by removing interactions
from the network. It is now well established that approaching
the unjamming point is accompanied by the emergence of an
excess of low-frequency vibrational modes [1,2], diverging
correlation [3] and response [4–6] length scales, and the
vanishing of elastic moduli [7]. Several claims have been
made that the unjamming constitutes a nonequilibrium phase
transition between disordered-solid and fluid phases of matter
[8–10].

Many of the interesting phenomena associated with the
unjamming transition are adequately explained by variational
[11] and marginal stability [12,13] arguments and mean-
field theories [14–20]. A common theme to many of these
theoretical approaches is the underlying assumption that pairs
of the constituent particles or degrees of freedom either interact
or do not. In the vast majority of numerical investigations of the
unjamming point, this assumption is embodied by the specific
form of pairwise interaction potentials employed in canonical
models; these are typically of the form

ϕ(r) ∝
{

(r − �)α , r � �

0 , r > �
, (1)

where r is the distance between the centers of a pair of
spherical particles, � is the sum of their radii, and α is typically
chosen to be 2 (harmonic interactions) or 5/2 (Hertzian
interactions). Since potentials of this form have a cutoff

at r =�, the potentials are imperatively nonanalytic, but at
the same time this facilitates the formulation of theoretical
frameworks [2,14–17] in which contact number z plays a key
role as the central order parameter.

Despite the central role of the interaction cutoff in the-
ories of unjamming, substantial attention was drawn by the
unjamming scenario following proposals that it can explain
the origin of several fundamental but still elusive phenomena
in atomic or molecular glassy systems, where such cutoffs in
the interaction potential cannot be assumed. A few notable
examples include the occurrence of the infamous boson
peak—an excess of low-frequency vibrational modes over
the Debye prediction—in glassy solids [16,21–23], transport
properties and sound attenuation in glassy solids [16], and
the fiercely debated origin of “fragility”—the degree to which
relaxation is non-Arrhenius—of supercooled liquids [24,25].
This naturally leads to the questions we address in this work: (i)
Can unjamming phenomena also be observed in systems with
analytic pairwise potentials? (ii) Is there a general description
of unjamming in such systems? (iii) How far are conventional
models for glassy solids from the unjamming point?

In this work we address these questions by studying
two different model systems of repulsive particles in two
dimensions (2D) that interact via analytic pairwise potentials.
We demonstrate that these models can be driven to the
unjamming point, generally defined in systems of repulsive
particles as the point at which the ratio of pressure-to-bulk
modulus vanishes [16,26,27] by tuning the appropriate control
parameter. In the first system, particles interact via a potential
that decays exponentially with r (EXP). Similar models have
been studied before, e.g., in the context of quasiuniversality
of simple liquids [28]. We find the surprising result that this
system only unjams in the limit of vanishing density, and not
at a finite density as the canonical models do. We also study a
constant-volume system of pointlike particles interacting via
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an inverse power law ϕ∝r−β (IPL), which is shown to unjam
in the limit β →∞. Similar models were employed, e.g., in
studies of supercooled liquids and the glass transition [29]
and studies of the role of attractive forces in liquids [30]. We
monitor a set of key observables as unjamming is approached:
the ratio of shear-to-bulk moduli, the density of states, and
characteristic vibrational frequencies. We further explain their
measured scaling laws using the unjamming framework and
the properties of the pairwise potentials employed.

This work is organized as follows; In Sec. II we provide
details of the models investigated and of the numerical methods
employed throughout our work. Section III describes the
unjamming phenomenology observed in our model systems.
In Section IV we provide arguments that explain the scaling
laws observed approaching the unjamming point. Our work is
summarized in Section V.

II. MODELS AND METHODS

As mentioned, we employ two different models of repulsive
particles in 2D. In this section we spell out the details of these
models and further discuss how key observables of interest are
calculated. We end this section with an important discussion
regarding the cutoff we introduced in the interaction range of
the pairwise potentials and its role in the observed phenomena.

A. The exponential model

The first model, referred to as the exponential model,
is a 50:50 binary mixture of “large” and “small” particles
interacting via the pairwise potential

ϕij =
{
εij (e−rij / lij + aij rij + bij ), r � rc

0, r > rc

, (2)

where the constants aij ,bij are determined such that the
potential and its first derivative vanish at a cutoff distance
rc, which was set separately for each density to be larger
than the second coordination shell (see discussion at the end
of this section). We discuss the importance of this cutoff
and its role in the observed phenomena at the end of this
section. The interaction strengths εij are set to be ε0,1.64ε0

and 3.05ε0 for a small-small, small-large, or large-large
interactions, respectively, where ε0 is our microscopic unit
of energy. The interaction lengths lij are set to be l0,1.2l0, and
1.4l0 for small-small, small-large, and large-large interactions,
respectively, where l0 is our microscopic unit of length. The
glass-forming ability of the EXP system is very sensitive to
the particular choice of these parameters, as demonstrated in
Fig. 1 and in the Supplemental Material [31].

The key control parameter in the EXP model is the
dimensionless density ρ ≡ Nl2

0/V , which was varied between
5.6 × 10−1 and 5.6 × 10−5. Here N denotes the number of
particles and V denotes the system’s volume. In what follows,
we will refer to the dimensionless density as simply the density.

B. The inverse power-law model

The second model employed is also a 50:50 binary mixture
of “large” and “small” particles, this time interacting via the

FIG. 1. Solid realizations of the EXP model. Obtaining a robust
disordered solid depends on delicately tuning the model parameters.
We show that changing the small-large interaction strength εij by a
bit more than a percentage, from 1.7 (a) to 1.72 (b), destabilizes the
glass and leads to phase separation of the small and large particles,
see also Ref. [31].

pairwise potential

ϕij =
{

ε0
(( rij

lij

)−β + ∑3
k=0 c2k

( rij

lij

)2k)
,

rij

lij
� xc

0,
rij

lij
> xc

, (3)

where ε0 is a microscopic energy scale, and the dimensionless
cutoff length was set to xc = 1.9, which guarantees that the
first coordination shell is always within the interaction range.
The interaction lengths lij were set to l0, 1.18l0, and 1.4l0,
respectively, where l0 is a microscopic unit of length. The
coefficients c2k are given by

c2k = (−1)k+1

(6 − 2k)!!(2k)!!

(β + 6)!!

(β − 2)!!(β + 2k)
r−(β+2k)
c (4)

and ensure that the potential and three derivatives are con-
tinuous at rij / lij =xc. We generated IPL solids under a fixed
density of ρ =0.86, which results in energies per particle of
order unity, for commonly employed exponents β ≈10 of the
inverse power law. The key control parameter in the IPL model
is the exponent β, which we varied between 8 and 512.

C. Interaction cutoff

In both models we introduce a cutoff in the pairwise
potential for the sake of computational efficiency. This might
appear to contradict the point of our work, which is to study
the unjamming phenomena when such a cutoff is absent.
We note here that the occurrence of unjamming phenomena
in the canonical models begins to emerge when the first
coordination shell starts to approach the cutoff distance of
the interactions. This is never the case in our systems, as we
always set the interaction cutoff such that the first coordination
shell is well within the interaction range. In other words, the
first coordination shell never probes the cut-off distance in
any meaningful way in our numerical experiments, therefore
any unjamming phenomena we observe is independent of
the existence of this cutoff. We have indeed verified that
eliminating the cutoff altogether has a quantitatively negligible
effect on our results.
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D. Sample generation

We created 1024 independent glassy samples of size N =
1600 for both the IPL and EXP systems. We verified that
finite-size effects are negligible by simulating a systems of
N = 3249 as well, but most data are reported for N = 1600.
For EXP we started by creating samples of density ρ = 0.56
by a quick quench to zero temperature from the melt and
generated lower density configurations by decreasing the
density by factors of 101/6, minimizing the potential energy
after each such decrease. For densities lower than 2.6 × 10−2,
quad-precision numerics (i.e., 128 bit precision) were used.

For IPL we chose β = 12 for the initial solid configurations,
also generated by a quick quench from the melt. We then varied
β followed by an energy minimization to obtain glassy samples
of other powers β. We employed quad-precision numerics for
all IPL calculations.

E. Observables

As commonly practiced in the field of unjamming [6,21,32],
we calculated some of the observables in a shadow system
for which the forces − ∂ϕ

∂r
were set to zero. The shadow

systems can be considered as relaxed elastic spring networks
(i.e., in which all springs reside at their respective rest
lengths) whose stiffnesses are given by the original pairwise
potential stiffnesses ∂2ϕ

∂r2 . This procedure removes noise and the
destabilizing effect of internal stresses, which has been shown
to not affect scaling properties. The shadow system is referred
to below as the “unstressed” system.

1. Elastic moduli

Athermal elastic moduli were calculated as follows [33].
We used the definitions

μ ≡ 1

V

d2U

dγ 2
and B ≡ 1

V

d2U

∂η2
(5)

for the shear and bulk modulus, respectively, where U is the
potential energy, V is the volume, γ is the simple shear strain,
and η is the expansive strain. The latter two parametrize the
imposed affine transformation of coordinates �R → H · �R in
2D as

H =
(

1 + η γ

0 1 + η

)
. (6)

Using this transformation, the strain tensor ε is given by

ε = 1

2
(HT · H − I ) = 1

2

(
2η + η2 γ + γ η

γ + γ η 2η + η2 + γ 2

)
, (7)

where I represents the identity tensor. In the athermal limit,
the potential energy density variation assumes an expansion in
terms of the strain tensor ε

δU

V
�

∑
κχ

Cκχεκχ + 1

2

∑
κχθτ

Cκχθτ εκχεθτ . (8)

In terms of the general first- and second-order moduli Cκχ ≡
1
V

∂U
∂εκχ

and Cκχθτ ≡ 1
V

∂2U
∂εκχ ∂εθτ

[34], our definitions of shear and
bulk moduli given by Eq. (5) read

μ = Cyy + Cxyxy (9)

and

B = Cxx + Cyy + Cxxxx + Cyyyy + 2Cxxyy. (10)

We employed quad-precision numerics to calculate elastic
moduli in all systems that were created using quad-precision.

2. Density of states

We calculated the eigenvalues of the dynamical matrix
Mij = ∂2U

∂ �Ri∂ �Rj

, where �Ri denotes the d– dimensional position

vector of the ith particle, using standard open-source linear
algebra libraries. The density of states D(ω) was obtained
by histogramming over the square root of the eigenvalues,
recalling that the masses are all unity.

3. Characteristic frequency scale

We follow Ref. [11] to probe a characteristic vibrational
frequency scale in our glassy samples. This is done by
considering the shadow relaxed spring system as described
above and imposing a unit dipolar force on the i,j pair of the
form

�d ij

k = (δjk − δik)
�Rij

rij

. (11)

We calculate the responses

�z ij

k = M̃−1
km · �d ij

m , (12)

where M̃ is the dynamical matrix of the shadow system. The
characteristic frequency squared of the normalized responses
ẑij = �z ij /|�z ij | are then calculated as

ω2
∗ ≡ ẑ

ij

k · M̃km · ẑ
ij
m , (13)

where ◦ denotes an average over interacting pairs and over
our ensemble of glassy solid for each value of the control
parameter.

III. RESULTS

A. Shear–to–bulk moduli ratio

In Fig. 2 we show our results for the shear and bulk
moduli of the EXP system. The bare moduli are plotted
vs. density in the inset of Fig. 2(b); we find that both
moduli become exponentially small with decreasing density, as
expected from the form of the pairwise interaction potential. In
Fig. 2(a), we plot the ratio of the shear-to-bulk moduli, which
shows intriguing nonmonotonic behavior: As the density is
decreased, we initially observe an increase in μ/B, up to a
crossover density of approximately ρ ≈ 10−2, which is further
discussed in Sec. IV. Below this crossover, μ/B appears
to vanish as ρ → 0, which indicates the occurrence of an
unjamming transition in the limit ρ → 0. Omitting force
terms in the calculation of the moduli causes the crossover
to disappear altogether. The nonmonotonicity we find is
reminiscent of the elastic behavior of highly compressed soft
spheres, as observed in Ref. [35].

In Sec. IV we argue that in the EXP model μ/B should
scale as ρ1/4 as ρ → 0; we therefore plot in Fig. 2(b) the
rescaled ratio μ/B

ρ1/4 . The dash-dotted lines are guides to the
eye, showing that the measured data are consistent with our
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FIG. 2. (a) Shear–to–bulk moduli ratio, measured as a function
of density in the EXP system. In addition to the bare data represented
by the orange diamonds, we also plot in gray stars the ratio calculated
while omitting the terms that contain the interparticle forces, see text
for further discussion. (b) We find that the moduli data are consistent
with our scaling argument (see Sec. IV) which predicts μ/B ∼ ρ1/4

(horizontal dash-dotted lines); while this scaling does not yet hold in
the density regime accessible by our simulations, it is apparent that
the curves are slowly converging to the predicted scaling at lower
densities. The inset shows the bare moduli as a function of density.

prediction, although we do not yet cleanly observe this scaling
in the accessible density range.

In Fig. 3 we display results for the shear and bulk moduli
in the IPL system. Figure 3(a) shows the bare moduli, which
appear to grow exponentially with increasing the exponent β at
fixed volume. This increase depends on our particular choice
of density; upon decreasing the density, one expects eventually
the opposite trend, i.e., that the moduli would decrease
exponentially with β. However, since the IPL model possesses
an intrinsic invariance to density changes, as previously shown
in extensive work by Dyre et al. [28,36,37], the behavior
of observables that are properly made dimensionless (and in
particular of the ratio of shear-to-bulk moduli) does not depend
on our choice of density. This point is further discussed in
Sec. IV below.

Figure 3(b) shows the dependence of the ratio μ/B on the
exponent β. Above a crossover at β ≈200, we find the scaling
μ/B ∼ρ−1/2, as predicted for the IPL system in Sec. IV. We

10
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FIG. 3. (a) Shear modulus μ and bulk modulus B plotted as a
function of the exponent β, measured for the IPL samples, see text for
further discussion. (b) Shear–to–bulk moduli ratio for the stressed and
unstressed IPL samples. The continuous lines represent the scaling
μ/B ∼ β−1/2, derived in Sec. IV.

observe the same behavior for the shadow system, albeit with
an earlier crossover at around β ≈ 30. Our data indicate that in
the IPL system unjamming occurs in the limit β → ∞, where
μ/B presumably vanishes. We note that varying β by a factor
of 4, between β =8 and β =32, the shear–to–bulk modulus
ratio changes by merely 20%, which is strong support of the
quasiuniversality of the IPL model put forward by Dyre and
coworkers [28,36,37], at least in the low-β regime.

Interestingly, we find in both the EXP and IPL systems that
the ratio of shear-to-bulk modulus is larger in the unstressed
systems by a factor of ≈ 2 on approaching the unjamming
point, precisely as predicted by effective medium theory [16].

B. Density of states

Another hallmark of unjamming is the appearance of an
excess of low-frequency vibrational modes in the density of
states (DOS) as the unjamming point is approached. Here
we test whether and how this observation manifests itself in
our EXP and IPL model systems. In Fig. 4 we plot the DOS
averaged over our ensemble of glassy samples of our two
models, as a function of the rescaled frequency ω/

√
B, for

values of the control parameter as indicated by the legends.
We note that

√
B (which has the required units of frequency

in two dimensions, recalling that our units of mass m=1) is
the natural high-frequency scale in the unjamming problem.
This is because the conventional Debye frequency is defined
in terms of the shear modulus, which exhibits anomalies close
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FIG. 4. (a) Density of states of the EXP system, at densities as
indicated by the legend. (b) Density of states of the IPL system,
calculated in states with exponents β as indicated by the legend. We
left out of this plot D(ω) obtained for the exponents β =8 and β =512
for visual clarity; we find that the same trend persists.

to unjamming, and does not therefore well-represent the scale
of high-frequency vibrational modes.

One generically expects the DOS to be supported by a
larger and larger frequency range as the unjamming point is
approached [1,2]. Our data for the DOS does not allow us
to reliably extract a frequency scale that characterizes low-
frequency modes. This point is further discussed in the next
subsection. We do, however, clearly see how the support of the
DOS changes as the control parameter is varied.

The nonmonotonicity observed in μ/B for the EXP model
is reflected by the unusual dependence of the DOS on density.
For the highest density analyzed (ρ =0.56), the DOS exhibits
an overall shift to low relative frequencies. At higher densities,
we only see a clear increase in the support below ρ =5.6×
10−3, which becomes most pronounced at the lowest density
analyzed, in which a clear excess of low-frequency modes
appears.

The IPL system shows a much clearer, monotonic increase
in the support of the DOS as the exponent β is increased.
At the largest β values analyzed (β =128 and β =256), a
pronounced enhancement of the low-frequency tails of the
DOS is observed.

C. Characteristic frequency scale

As mentioned in the previous subsection, we are unable
to reliably extract a characteristic low-frequency scale from

FIG. 5. Characteristic “unjamming” frequency scale ω∗ ex-
pressed in terms of

√
B for the EXP system (a) and the IPL system

(b). Each data point represents the median calculated over 1600
responses. The insets display the bare medians of ω∗ vs. the control
parameter. The continuous lines correspond to ω∗/

√
B ∼ρ0.19 and

ω∗/
√

B ∼β−0.40 for the EXP and IPL systems, respectively.

our data of the DOS of both the EXP and IPL models.
We resort therefore to extracting such a scale by different
means; we follow Ref. [11] and calculate “trial modes” as the
(normalized) response to a local dipolar force applied on a pair
of interacting particles, as explained in Sec. II. We chose to
perform this calculation on the shadow unstressed system.

Figure 5 displays our results; Fig. 5(a) shows the median
of ω∗ normalized by

√
B for the EXP model, while the inset

displays the bare medians of ω∗. We focus here on medians
since ω∗ is a microscopic observable which, as the critical
point is approached, suffers from increasingly noisy statistics,
most effectively dealt with by considering its median. We find
that at low densities ω∗/

√
B ∼ ρ0.19, which is represented

by the continuous line. We similarly plot the rescaled median
characteristic frequency ω∗/

√
B for the IPL in Fig. 5(b), while

the bare median characteristic frequency is shown in the inset.
Here we find that at large exponents β, ω∗/

√
B ∼β−0.4.

Interestingly, our scaling arguments spelled out in Sec. IV
predict ω∗/

√
B ∼ρ1/4 for the EXP system and ω∗/

√
B ∼β−1/2

for the IPL system. The exponents we measure are both smaller
by approximately 20% from the predicted ones. We attribute
this disagreement to the imperfect correspondence between
the bulk modulus and characteristic high vibrational frequency
scales in our samples, as is evident by the lack of collapse of
the high-frequency tails of the DOS as shown in Fig. 4.
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IV. DISCUSSION

We begin with discussing the relation between the pressure–
to–bulk modulus ratio (p/B) and the distance to the unjam-
ming point. To this aim we spell out the expressions for
p and B in the athermal limit [33], assuming the potential
energy is expressed as a sum over radially symmetric pairwise
interactions:

p ≡ − 1

V d–

∑
i<j

ϕ′
ij rij , (14)

B ≡ 1

V

⎛
⎝∑

i<j

ϕ′′
ij r

2
ij − ��k · M−1

k� · ���

⎞
⎠, (15)

where ��k ≡ ∑
i<j ϕ′′

ij rij
�d ij

k and the dipole vector �d ij

k is

defined in Eq. (11). Notice that �� = 0 identically for the IPL
model, which means that the second term on the right-hand
side of Eq. (15), known as the “nonaffine” contribution to the
bulk modulus, is identically zero in that system.

Let us focus first on the EXP system and express pairwise
distances in terms of the density, namely r̃ ≡ r

√
ρ. We now

make the ansatz

N−1
∑
i<j

ϕ′
ij r̃ij ≈ N−1

∑
i<j

ϕ′′
ij r̃

2
ij ≡ g(ρ) , (16)

where g(ρ) is an unknown function of the density. Using
the ansatz in Eqs. (14) and (15), recalling that V ∼ρ−1, and
neglecting for the moment the nonaffine term in Eq. (15), we
write for the EXP system p=

√
ρ

2 g(ρ) and B ≈ g(ρ) (only
valid in 2D but with obvious generalization to 3D). From here
we immediately see that

p/B = √
ρ/2 , (17)

as verified in Fig. 6(a), where it is shown that the scaling
p/B ∼√

ρ is predicted perfectly; however, the prefactor is off
by roughly 15% due to the approximation made in relating p

and B to the ansatz function g(ρ).
We learn from the good agreement of Eq. (17) with our

numerics that neglecting the nonaffine contribution to the bulk
modulus is a reasonable approximation close to unjamming.
This can be justified as follows: Compare the vectors ��k =∑

i<j ϕ′′
ij rij

�d ij

k and the net forces �Fk =−∑
i<j ϕ′

ij
�d ij

k ; the
latter are identically zero due to mechanical equilibrium.
Considering that in systems of purely repulsive interactions
stiffnesses and forces are typically correlated, one would
indeed expect that the vector �� would also be small in
magnitude, resulting in a negligible nonaffine contribution to
the bulk modulus.

The situation is more straightforward for the IPL system,
where the nonaffine contribution to the bulk modulus vanishes
identically. Here we make the ansatz

V −1
∑
i<j

r
−β

ij ≡ f (β), (18)

where f (β) is an unknown function of the exponent β. Using
this ansatz, we write for the IPL system p = β

2 f (β) and
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FIG. 6. Pressure–to–bulk modulus ratio for (a) the EXP and (b)
the IPL systems, as a function of the relevant control parameter. The
continuous line corresponds to the theoretical predictions of Eqs. (17)
and (19) for the EXP and IPL systems, respectively. The prefactor of
the scaling p/B ∼√

ρ for the EXP system is found to be about 0.58
instead of the predicted 1/2.

B = β(β + 1)f (β), and then we expect

p/B = 1

2(β + 1)
, (19)

as verified in Fig. 6(b).
In Fig. 7 we plot the ansatz functions g(ρ) and f (β),

calculated using both the pressure and bulk modulus data for
the EXP and IPL systems. As unjamming is approached, we
find very good agreement between the two calculations for
both functions, which are empirically found to fit very well
the following functional forms:

g(ρ) = e−√
0.72/ρ, (20)

f (β) = eβ/13.6, (21)

which are represented by the continuous lines in Figs. 7(a)
and 7(b), respectively.

The exponential dependence of g(ρ) on 1/
√

ρ arises
naturally from the form of the interaction potential of the
EXP system. The density scale ρ0 ≈0.72 is also consistent
with the interaction length parameters lij , which were chosen
to be equal or slightly larger than unity. We emphasize that the
argumentation spelled out above is dimension dependent, and
here we only focus on 2D.
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FIG. 7. Ansatz functions g(ρ) (a) and f (β) (b), calculated as
explained in the text using both the pressure and bulk modulus data.
The continuous lines represent Eqs. (20) and (21).

The exponential form of f (β) can be understood by
differentiating the pressure or bulk modulus with respect to
β; one finds then that the f (β) should crucially depend on
the density considered: For instance, at large densities one
expects the bulk modulus and pressure to grow with increasing
β, whereas for small densities the opposite behavior should
occur. The scale that describes the exponential increase in
f (β), found to be approximately 14 in our system, is related
to the (logarithm of) the characteristic ratio between typical
pairwise distances and the interaction length parameters lij .

One well-known result from the unjamming literature [1,2]
relates the coordination difference to the isostatic point δz≡
z − 2d– to the pressure–to–bulk modulus ratio as δz∼√

p/B.
We can use this relation to define an effective coordination in
our systems (which lack a clear-cut definition of connectivity).
For example, the canonical KABLJ system [38], in which
pairwise interactions can be effectively described by a r−18 law
to a good approximation [37], would be assigned an effective
δz of order unity.

We can further use the previously established results
from the unjamming literature [1,2], μ/B ∼δz∼√

p/B and
ω∗/

√
B ∼δz∼√

p/B, to predict the dependence of the shear–
to–bulk modulus ratio and the characteristic frequency scale on
the distance to unjamming in our model systems. In particular,
we expect

μ/B ∼ ω∗/
√

B ∼ ρ1/4 in the EXP system, (22)

μ/B ∼ ω∗/
√

B ∼ β−1/2 in the IPL system, (23)

in good agreement with our numerical results for μ/B

displayed in Figs. 2 and 3 and in reasonable consistency with
our numerical results for ω∗/

√
B displayed in Fig. 5.

Finally, we comment on the correspondence between the
physics of the models studied here and colloidal (Brownian)
and inertial hard-sphere glasses; in the latter, the pressure
and elastic moduli diverge as power laws in the distance to
the jamming point [27]. In our IPL system, the pressure and
elastic moduli grow exponentially with β, see, e.g., Fig. 3(a).
However, there is no particular significance—in the context of
unjamming—to their bare values, since the latter would depend
on our particular choice of density (as discussed above), while
none of the dimensionless observables we reported depend on
density. We reiterate that choosing a lower density would result
in exponentially decaying pressure and elastic moduli with
increasing β, as observed for the EXP system on decreasing
the density. For this reason, there is no direct correspondence
between our IPL model and colloidal hard-sphere glasses
at packing fractions approaching random close packing, in
terms of the behavior of their bare pressure and elastic
moduli.

It is nevertheless interesting to compare the properties of our
models at their respective critical points (ρ →0 and β →∞)
and jammed packings of hard spheres. This comparison should
be made with care: Since the interaction potential we employ
for the IPL model is nonadditive [39] (see model definitions
in Sec. II B), and since the EXP model employs different
energy parameters for different types of interactions (see
model definitions in Sec. II A), we do not expect a perfect
correspondence in terms of the geometry of configurations in
the ρ →0 or β →∞ limits to jammed hard-sphere packings.
These features of the interaction potentials we employed make
it impossible to assign a single size to each particle and
therefore would lead to configurations that do not have the
precise geometry of a hard sphere packing.

V. SUMMARY

In this work we have studied the unjamming behavior of
two computer model glass-forming systems of purely repulsive
particles that interact via pairwise potentials with no sharp
cutoffs in their respective interaction range. These models
differ significantly from the canonical unjamming models,
in which the sharp cutoff of the interaction range gives rise
to unjamming once this cutoff probes the characteristic size
of the first coordination shell of a particle (conventionally
achieved by reducing the packing fraction or density). Despite
the absence of a sharp cutoff in our models, we are still
able to observe the hallmark phenomenology associated to
the unjamming transition, in particular the vanishing of
the shear–to–bulk moduli ratio, the emergence of excess
low-frequency vibrational modes, and the vanishing of a
characteristic frequency scale.

In the EXP model unjamming occurs in the limit ρ →
0, and not at a finite density as in the canonical models.
We find that the shear–to–bulk modulus ratio vanishes in
good agreement with our scaling argument, which predicts
μ/B ∼ ρ1/4. We also find that the characteristic frequency
scale ω∗/

√
B vanishes on unjamming as ρ0.19, which is

062141-7



STEFAN KOOIJ AND EDAN LERNER PHYSICAL REVIEW E 95, 062141 (2017)

close to, but not in perfect agreement with, our prediction
ω∗/

√
B ∼ ρ1/4.

In the IPL model unjamming occurs in the limit β →
∞: We find that the shear–to–bulk modulus ratio vanishes
as μ/B ∼ β−1/2, in good agreement with our theoreti-
cal prediction. The characteristic frequency scale is found
to follow ω∗/

√
B ∼ β−0.40, not far from our prediction

ω∗/
√

B ∼ β−1/2.
Our predictions are based on a simple ansatz used to find the

relation between the pressure–to–bulk modulus ratio and the
distance to unjamming. Using a previously established result,
this allows us to assign an effective excess coordination δz to
each of our model systems, in which the connectivity cannot be
cleanly defined. Once the dependence of the pressure–to–bulk

modulus ratio is established, we use well-known results
from the unjamming literature to predict the dependence of
the shear–to–bulk modulus ratio and of the characteristic
frequency scale (expressed in terms of the bulk modulus) on
the distance to unjamming.

Our work highlights the importance of the pressure–to–bulk
modulus ratio as a key dimensionless number that quantifies
the distance to the unjamming point of any system with purely
repulsive interactions and the generality of the insignificance
of nonaffine contributions to the bulk modulus in such systems.
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