Magnetic-Properties of CeCuX Compounds

Published in:
Journal of Applied Physics

DOI:
10.1063/1.348279

Citation for published version (APA):
Magnetic properties of CeCuX compounds

Fuming Yang, J. P. Kuang, and Jingyuan Li
Institute of Physics, Academia Sinica, P.O. Box 603, Beijing, China

E. Brück, H. Nakotte, and F. R. de Boer
Natuurkundig Laboratorium, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

Xiucheng Wu, Zhenxiao Li, and Yupeng Wang
Cryogenic Laboratory, Academia Sinica, P.O. Box 2711, Beijing, China

The temperature dependence of the magnetic susceptibility, the magnetization at 4.2 K in fields up to 35 T, and the specific heat between 1.3 and 40 K in fields up to 5 T of the ternary Ce intermetallic compounds CeCuX (X = Si, Ge, Sn) have been studied. All three compounds form in ordered ternary structures related to the hexagonal AlB₂ type. Ferromagnetic order is found below 14.9 K for CeCuSi and below 10.2 K for CeCuGe. The magnetic order of CeCuSn below 8.6 K is of antiferromagnetic type but probably complex, as indicated by a double peak in the specific heat and the occurrence of a very low zero field moment.

I. INTRODUCTION

Within the framework of a research program on ternary Ce intermetallics of the type CeTX with T a transition metal and X an element from the p-block in the periodic table, we have prepared compounds with $T = \text{Cu}$ and $X = \text{Si, Ge, Sn}$, all belonging to the tetravalent metals of group IVB of the periodic table.

All three compounds, CeCuSi, CeCuGe and CeCuSn, crystallize in structures derived from the hexagonal AlB₂ type of structure with Ce on the Al positions. CeCuSi has been reported to form at high temperatures in the AlB₂ structure,¹ but upon annealing at 750 °C an ordered ternary phase with doubled c axis has been reported to form.² Also CeCuGe has been reported to crystallize in the AlB₂ structure.³ In the case of CeCuSn, the Cu and Sn atoms form a zigzag arrangement, leading to the CaIn₂ type of structure⁴.

II. EXPERIMENT

Polycrystalline samples were prepared by arc-melting stoichiometric amounts of the pure metals in a Ti-gettered argon atmosphere. The obtained buttons were wrapped into Ta foil and sealed in quartz tubes under 300 mbar argon. CeCuSi and CeCuGe were annealed for 1 week at 800 °C and CeCuSn for 2 weeks at 750 °C. The quality of the samples was checked by x-ray powder diffraction. All compounds were found to have crystallized in the hexagonal structure with doubled c axis indicating an ordered ternary structure. The lattice parameters are for CeCuSi $a = 4.238$ Å and $c = 7.988$ Å, for CeCuGe $a = 4.311$ Å and $c = 7.933$ Å, and for CeCuSn $a = 4.583$ Å and $c = 7.865$ Å. According to the x-ray pattern, the compounds CeCuGe and CeCuSn were single phase, whereas CeCuSi was found to contain a second AlB₂-type phase with slightly smaller lattice parameters. The composition of this phase was determined by electron microprobe to correspond to CeCu₀.₃Si₁.₂.

III. RESULTS AND DISCUSSION

The temperature dependence of the inverse susceptibility is displayed in Fig. 1. Above 100 K, for all three compounds Curie–Weiss behavior is observed with effective moments of about 2.5 μ_B, almost the full Ce free-ion value, and with negative paramagnetic Curie temperatures of about -20 K. At 15 K the susceptibility of CeCuSi diverges, which is also the case for CeCuGe at 10 K. In CeCuSn, below 10 K, slightly above the magnetic ordering temperature of 8.6 K as observed in the specific-heat measurement (see below), the magnetization curves no longer pass through the origin. The value of $M(0)$, obtained by extrapolating the magnetic isotherms which are almost linear in the field range between 0.1 and 1 T to zero field, increases when the temperature is lowered reaching a value of 0.07 μ_B at 1.6 K. At present, it is not clear whether the existence of $M(0)$ is an intrinsic property of CeCuSn or whether this small contribution is due to an impurity phase. The observed differential susceptibility below 10 K is approximately temperature independent.

In Fig. 2 the magnetization at 4.2 K in fields up to 35 T is shown, measured on free-powder particles free to orient themselves in the applied field, simulating a single crys-
tal along the easy axis, and on powder particles fixed in alcohol, representing an ideal polycrystal. For comparison, for CeCuGe and CeCuSn also the results of magnetization measurements on samples consisting of bulk pieces have been included. The results are very similar to those obtained on the fixed-powder particles, showing preferential orientation of the grains in the samples to be relatively unimportant. The difference of about 15% between the free- and fixed-powder magnetizations, which is found for all three compounds and which is still present in fields as high as 35 T, shows that the magnetocrystalline anisotropy in these compounds is considerable. The value of 15% may be indicative for an easy magnetization direction within the basal plane. Extrapolation of the magnetization from high fields to zero field gives moments of about 1.2 μ_B, indicating that we are dealing with a mixture of crystal-field doublets.

Figure 3 shows the temperature dependence of C_p/T of CeCuSi between 1.3 and 30 K at 0, 1, 3, and 5 T. At 0 T a sharp peak is observed at 14.9 K, which is broadened and shifted to higher temperatures by an applied magnetic field, as expected for a ferromagnetic material. The shoulder around 5 K is probably due to some impurity. The entropy under the peak after subtraction of an estimated phonon contribution equals about $R \ln 2$.

In Fig. 4 C_p/T vs T is shown for CeCuGe at 0, 1, 3, and 5 T. Similar to CeCuSi, the zero-field peak at 10.2 K is smeared out and shifted to higher temperatures upon applying an external field. The anomalies at about 6 K are due to Ce oxide. Again, for the entropy a value of about $R \ln 2$ is found.

The temperature and field dependence of C_p/T of CeCuSn are displayed in Figs. 5 and 6, and are much more complex than for the other two compounds. The broad double peak appearing in zero field below 8.6 K becomes a sharp feature in an applied field of 1 T. In an applied field of 2 T the peak becomes double again, becoming slightly more pronounced and shifted to lower temperatures, at 3 T it is again a single peak and at 5 T only a broad shoulder is left. The feature at about 2.5 K can not be ascribed to Ce oxide. It is not yet clear whether it is an intrinsic feature of CeCuSn. The magnetic entropy under the peak is estimated to be somewhat less than $R \ln 2$. The general tendency of C_p/T to shift to lower temperature in an applied field is consistent with an antiferromagnetic type of ordering. The very complex structure of the specific heat will be subject of further study.

IV. CONCLUSIONS

From the temperature dependence of the magnetic susceptibility and the field dependence of the specific heat it is concluded that CeCuSi and CeCuGe order ferromagneti-
FIG. 6. C_p/T vs T in arbitrary units for CeCuSn in applied magnetic fields of 0, 1, 2, 3, and 5 T.

The results indicate a complex antiferromagnetic structure, which needs further investigation by microscopic methods.

ACKNOWLEDGMENTS

The present investigation has been carried out within the scientific exchange program between China and the Netherlands. The work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). The work has been supported by the Magnetism Laboratory, Institute of Physics, Academia Sinica, Beijing.
