Magnetic-Properties of CeCuX Compounds

DOI
10.1063/1.348279

Publication date
1991

Published in
Journal of Applied Physics

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Magnetic properties of CeCuX compounds

Fuming Yang, J. P. Kuang, and Jingyuan Li
Institute of Physics, Academia Sinica, P.O. Box 603, Beijing, China

E. Brück, H. Nakotte, and F. R. de Boer
Natuurkundig Laboratorium, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

Xiucheng Wu, Zhenxiao Li, and Yupeng Wang
Cryogenic Laboratory, Academia Siuica, l? 0. Bo.u 2 71 I, Beijing, Chitla

The temperature dependence of the magnetic susceptibility, the magnetization at 4.2 K in fields up to 35 T, and the specific heat between 1.3 and 40 K in fields up to 5 T of the ternary Ce intermetallic compounds CeCuX (X = Si, Ge, Sn) have been studied. All three compounds form in ordered ternary structures related to the hexagonal AlB$_2$ type. Ferromagnetic order is found below 14.9 K for CeCuSi and below 10.2 K for CeCuGe. The magnetic order of CeCuSn below 8.6 K is of antiferromagnetic type but probably complex, as indicated by a double peak in the specific heat and the occurrence of a very low zero field moment.

I. INTRODUCTION

Within the framework of a research program on ternary Ce intermetallics of the type CeTX with T a transition metal and X an element from the p-block in the periodic table, we have prepared compounds with $T = Cu$ and $X = Si, Ge, Sn$, all belonging to the tetravalent metals of group 1VB of the periodic table.

All three compounds, CeCuSi, CeCuGe and CeCuSn, crystallize in structures derived from the hexagonal AlB$_2$ type of structure with Ce on the Al positions. CeCuSi has been reported to form at high temperatures in the AlB$_2$ structure, but upon annealing at 750 °C an ordered ternary phase with doubled c axis has been reported to form. Also CeCuGe has been reported to crystallize in the AlB$_2$ structure. In the case of CeCuSn, the Cu and Sn atoms form a zigzag arrangement, leading to the CaIn$_2$ type of structure.

II. EXPERIMENT

Polycrystalline samples were prepared by arc-melting stoichiometric amounts of the pure metals in a Ti-gettered argon atmosphere. The obtained buttons were wrapped into Ta foil and sealed in quartz tubes under 300 mbar argon. CeCuSi and CeCuGe were annealed for 1 week at 800 °C and CeCuSn for 2 weeks at 750 °C. The quality of the samples was checked by x-ray powder diffraction. All compounds were found to have crystallized in the hexagonal structure with doubled c axis indicating an ordered ternary structure. The lattice parameters are for CeCuSi, $a = 4.238$ Å and $c = 7.988$ Å, for CeCuGe, $a = 4.311$ Å and $c = 7.933$ Å, and for CeCuSn, $a = 4.583$ Å and $c = 7.865$ Å. According to the x-ray pattern, the compounds CeCuGe and CeCuSn were single phase, whereas CeCuSi was found to contain a second AlB$_2$-type phase with slightly smaller lattice parameters. The composition of this phase was determined by electron microprobe to correspond to CeCu$_{0.8}$Si$_{1.2}$.

III. RESULTS AND DISCUSSION

The temperature dependence of the inverse susceptibility is displayed in Fig. 1. Above 100 K, for all three compounds Curie-Weiss behavior is observed with effective moments of about 2.5 μ_B, almost the full Ce free-ion value, and with negative paramagnetic Curie temperatures of about -20 K. At 15 K the susceptibility of CeCuSi diverges, which is also the case for CeCuGe at 10 K. In CeCuSn, below 10 K, slightly above the magnetic ordering temperature of 8.6 K as observed in the specific heat measurement (see below), the magnetization curves no longer pass through the origin. The value of $M(0)$, obtained by extrapolating the magnetic isotherms which are almost linear in the field range between 0.1 and 1 T to zero field, increases when the temperature is lowered reaching a value of 0.07 μ_B at 1.6 K. At present, it is not clear whether the existence of $M(0)$ is an intrinsic property of CeCuSn or whether this small contribution is due to an impurity phase. The observed differential susceptibility below 10 K is approximately temperature independent.

In Fig. 2 the magnetization at 4.2 K in fields up to 35 T is shown, measured on free-powder particles free to orient themselves in the applied field, simulating a single crys-
FIG. 2. Magnetization vs applied magnetic field at 4.2 K for CeCuSi, CeCuGe, and CeCuSn. The measurements have been carried out on powder free to be oriented by the applied magnetic field (●), randomly oriented powder fixed by frozen alcohol (○), and bulk pieces (+).

FIG. 3. \(C_p/T \) vs \(T \) for CeCuSi in applied magnetic fields of 0 T (○), 1 T (□), 3 T (●), and 5 T (△). Lines are guides to the eye.

FIG. 4. \(C_p/T \) vs \(T \) for CeCuGe in applied magnetic fields of 0 T (○), 1 T (□), 3 T (●), and 5 T (△). Lines are guides to the eye.

FIG. 5. \(C_p/T \) vs \(T \) for CeCuSn in applied magnetic fields of 0 T (○), 3 T (●), and 5 T (△). The 1-T result is represented by the solid line. The dashed lines are guides to the eye.

Figure 2 shows the temperature dependence of \(C_p/T \) of CeCuSi between 1.3 and 30 K at 0, 1, 3, and 5 T. At 0 T a sharp peak is observed at 14.9 K, which is broadened and shifted to higher temperatures by an applied magnetic field, as expected for a ferromagnetic material. The shoulder around 5 K is probably due to some impurity. The entropy under the peak after subtraction of an estimated phonon contribution equals about \(R \ln 2 \).

In Fig. 4 \(C_p/T \) vs \(T \) is shown for CeCuGe at 0, 1, 3, and 5 T. Similar to CeCuSi, the zero-field peak at 10.2 K is smeared out and shifted to higher temperatures upon applying an external field. The anomalies at about 6 K are due to Ce oxide. Again, for the entropy a value of about \(R \ln 2 \) is found.

The temperature and field dependence of \(C_p/T \) of CeCuSn are displayed in Figs. 5 and 6, and are much more complex than for the other two compounds. The broad double peak appearing in zero field below 8.6 K becomes a sharp feature in an applied field of 1 T. In an applied field of 2 T the peak becomes double again, becoming slightly more pronounced and shifted to lower temperatures, at 3 T it is again a single peak and at 5 T only a broad shoulder is left. The feature at about 2.5 K can not be ascribed to Ce oxide. It is not yet clear whether it is an intrinsic feature of CeCuSn. The magnetic entropy under the peak is estimated to be somewhat less than \(R \ln 2 \). The general tendency of \(C_p/T \) to shift to lower temperature in an applied field is consistent with an antiferromagnetic type of ordering. The very complex structure of the specific heat will be subject of further study.

FIG. 5. \(C_p/T \) vs \(T \) for CeCuSn in applied magnetic fields of 0 T (○), 3 T (●), and 5 T (△). The 1-T result is represented by the solid line. The dashed lines are guides to the eye.

IV. CONCLUSIONS

From the temperature dependence of the magnetic susceptibility and the field dependence of the specific heat it is concluded that CeCuSi and CeCuGe order ferromagneti-
The magnetic ground state of CeCuSn. The results indicate a complex antiferromagnetic structure, which needs further investigation by microscopic methods.

ACKNOWLEDGMENTS

The present investigation has been carried out within the scientific exchange program between China and the Netherlands. The work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). The work has been supported by the Magnetism Laboratory, Institute of Physics, Academia Sinica, Beijing.
