Optical antennas on substrates and waveguides
Bernal Arango, F.

Citation for published version (APA):
Bernal Arango, F. (2014). Optical antennas on substrates and waveguides
Contents

1 Introduction 9
 1.1 Light and nano antennas 9
 1.2 Multipolar scatterers 14
 1.3 Polarizability tensor 17
 1.4 Nano antennas on substrates and waveguides 18
 1.5 Outline of this thesis 20
 References 22

2 Single Rod Antennas 27
 2.1 Introduction 27
 2.2 Experimental setup and methods 28
 2.3 Scattering of guided modes by single element antennas 32
 2.4 In-coupling by a single dipole antenna 36
 2.5 Conclusions 39
 References 40

3 Phased Array Antennas 43
 3.1 Introduction 43
 3.2 Multi-element antennas 45
 3.3 Measurements of waveguide excited multi-element antennas 48
 3.4 In-coupling by a Yagi-Uda antenna 51
 3.5 Conclusions 53
 References 55

4 Localized Excitation of Phased Array Antennas 57
 4.1 Introduction 57
 4.2 Monte Carlo study of random disorder 64
 4.3 Conclusions 69
 References 70
5 Polarizability Tensor Retrieval

5.1 Introduction
5.2 Surface integral equation method and α-tensor retrieval
5.3 Benchmark of vector spherical harmonics and effective current density α-retrieval
5.4 Polarizability retrieval applied to Kerker’s paradox
5.5 Conclusions

References

6 Designing Antennas with the Aid of the Polarizability Retrieval Method

6.1 Introduction
6.2 LC model for split rings
6.3 Retrieved polarizability tensor of split rings
6.4 Single split ring as a magnetic dipole converter
6.5 Split ring array antenna
6.6 Conclusions

References

7 Adding Electric Quadrupolar Terms to the Retrieval of the Polarizability Tensor

7.1 Introduction
7.2 Retrieval of quadrupoles and reduction of terms
7.3 Dolmen α^S-tensor
7.4 Nanopyramids α^S-tensor
7.5 Conclusions

References

8 Correcting the Super Polarizability for Antennas in Scattering Environments

8.1 Introduction
8.2 Back-action correction for hybridization with environments
8.3 Single particle on a Si substrate as directional antenna
8.4 Conclusions

References

9 Applications

9.1 Chemical and biological detection fluidic environment
9.2 Antennas and single emitters
9.3 On-chip integrated Coulomb-blockade photon sources
9.4 Design of antennas with asymmetrical scattering capabilities

References

Appendix A Quadrupolar Fields and $12 \times 12 \alpha^S$-Tensor

Appendix B Dolmen α^S-Tensor Elements
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix C Gold Disk α^S-Tensor Elements</td>
<td>153</td>
</tr>
<tr>
<td>Summary</td>
<td>155</td>
</tr>
<tr>
<td>Samenvatting</td>
<td>159</td>
</tr>
<tr>
<td>List of publications</td>
<td>163</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>165</td>
</tr>
</tbody>
</table>