The balance between Gαi-Cdc42/Rac and Gα12/13-RhoA pathways determines endothelial barrier regulation by sphingosine-1-phosphate

Published in:
Molecular Biology of the Cell

DOI:
10.1091/mbc.E17-03-0136

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Supplemental Materials

Molecular Biology of the Cell

Reinhard et al.
Reinhard et al., Supplementary data

Legends to supplementary figures.

Figure S1. S1P induces EC morphology changes, resulting in net EC spreading. (A) ECs, transiently transfected with mTq2, were grown to a monolayer. Local changes in the area of a single cell were measured before and after stimulation with S1P at t= 0:30 min. Colors represent area change following S1P stimulation (LUT on the right). Scale bar = 25 μm. (B) Normalized mean EC area changes before and after S1P stimulation. Graphs and tables represent two technical replicates of a total of n=14.

Figure S2. Rac1 activation via recruitment of TIAM induces an increase in cell area, while p63RhoGEF-mediated activation of Rho induces a decrease in cell area. (A and B) Normalized mean EC area changes, before and after rapamycin addition at t= 1:10. Plots on the right represent total cell area changes after 12 min. for TIAM (n=23) and p63RhoGEF (n=20).

Figure S3. S1P induces RhoB and RhoC activation. (A) Ratiometric images of ECs that were transfected with the RhoB or RhoC FRET sensor and stimulated with S1P (500 nM) at t=1 min, 50 sec. Warm colors represent high activation (high YFP/CFP ratios), corresponding to emission ratio’s (ER) on the right. Scale bar = 15 μm (B) Normalized mean YFP/CFP ratio traces (±SEM) for RhoB (n=23) and RhoC (n=17) FRET sensor-expressing EC before and after stimulation with S1P.

Figure S4. S1P stimulation of Rac1 FRET sensor expressing cells, shows two populations of responders. (A and B) Normalized mean YFP/CFP ratio traces (±SEM) for (A) Rac1 FRET sensor expressing EC reaching an YFP/CFP_max above baseline (n=18) and (B) Rac1 FRET sensor expressing EC lacking an YFP/CFP_max above baseline (n=14), before and after stimulation with S1P.

Figure S5. PTX induces a transient decrease in endothelial resistance. ECs, plated on ECIS electrodes, were stimulated with PTX (100 ng/ml) at t= 1:51 before stimulation with S1P (Figure 6D). Endothelial resistance (4000 Hz) was measured using the ECIS.
Figure S6. Membrane-linked p115-RGS most efficiently inhibits G\(\alpha_{13}\)-QL-mediated RhoA activation. YFP/CFP ratios (error bars depict 95% CI) of HeLa cells transfected with RhoA FRET sensor + mCherry (n=55), RhoA FRET sensor + mCherry + G\(\alpha_{13}\)-QL (n=74), RhoA FRET sensor + RGS-mCherry + G\(\alpha_{13}\)-QL (n=81), RhoA FRET sensor + mCherry-RGS + G\(\alpha_{13}\)-QL (n=85) or RhoA FRET sensor + Lck-mCherry-RGS + G\(\alpha_{13}\)-QL (n=96).
A

TIAM

- Normalized cell area over time for Rapamycin treatment.
- Cell area change (%) for Rapamycin.

B

p63RhoGEF

- Normalized cell area over time for Rapamycin treatment.
- Cell area change (%) for p63RhoGEF.
A

B

Time (min)

YFP/CFP

0 5 10 15 20

1.2

1.1

1.0

0.9

0.9

1.2

1.1

1.0

0.9

Time (min)

S1P

Rac1

Rac1
RhoA activation

+ Ga13-QL

Control-mCherry
Control-mCherry
RGS-mCherry
mCherry-RGS
Lck-mCherry-RGS

YFP/CFP

0 1 2 3