Seasonal reproduction leads to population collapse and an Allee effect in a stage-structured consumer-resource biomass model when mortality rate increases

Sun, Z.; de Roos, A.M.

Published in:
PLoS ONE

DOI:
10.1371/journal.pone.0187338

Citation for published version (APA):
Sun, Z., & de Roos, A. M. (2017). Seasonal reproduction leads to population collapse and an Allee effect in a stage-structured consumer-resource biomass model when mortality rate increases. PLoS ONE, 12(10), [e0187338]. https://doi.org/10.1371/journal.pone.0187338
Supplementary material to Sun and De Roos: Seasonal reproduction leads to population collapse and an Allee effect in a stage-structured consumer-resource biomass model when mortality rate increases

Here we present the derivation of R_0 shown in Eq. 2 in the main text.

For $\theta = 1$ juveniles and adults have the same net biomass productivity. To simplify the discussion we denote the net biomass productivity of the consumer individuals as $\nu (R)$, defined as:

$$\nu (R) = \sigma I_{\max} R - Q, \quad (1)$$

Because consumers never starve during the season (Figure 4a), the mortality rates of juveniles and adults are also the same and equal to μ. The probability, denoted by $P_j(t)$, that the consumer individual is still in the juvenile stage at time t follows a dynamics described by the following ordinary differential equation:

$$\frac{dP_j}{dt} = (-\gamma (\nu (R(t)), \mu) - \mu) P_j, \quad P_j(0) = 1. \quad (2)$$

This ODE can be formally solved to yield as solution:

$$P_j(t_m) = \exp \left(\int_0^{t_m} -\mu - \gamma (\nu (R(\tau)), \mu) \, d\tau \right)$$

$$= \exp (-\mu t_m) \exp \left(-\int_0^{t_m} \gamma (\nu (R(\tau)), \mu) \, d\tau \right), \quad (3)$$

The maturation rate at time t_m out of the juvenile stage is then given by

$$h(t_m) = \gamma (\nu (R(t_m)), \mu) P_j(t_m). \quad (4)$$

If we would consider a cohort of N newly produced offspring, $h(t_m) \cdot N$ would represent the expected rate of maturation of these individuals at time t_m.

The underlying assumption in the model about consumer life history [1] [2] is that juvenile individuals are born at the beginning of a season with body size $s(0) = s_b$, which we set without loss of generality equal to 1. They subsequently grow following:

$$\frac{ds}{d\tau} = \nu (R(\tau)) s, \quad s(0) = s_b.$$

Individual body size at t_m hence equals:

$$s(t_m) = \exp \left(\int_0^{t_m} \nu (R(\tau)) \, d\tau \right). \quad (5)$$

In the period from t_m to the end of the season an individual maturing at t_m accumulates and stores reproductive energy at a rate $s(t_m) \nu (R(\tau))$, which is proportional to its size at maturation. The contribution to the reproductive output at the end of the season by the individuals that mature at time t_m in the growing season is thus given by
\[R_0(t_m) = h(t_m) \int_{t_m}^{1} s(t_m) \nu(R(\tau)) \, d\tau \cdot \exp(-\mu(1-t_m)) \]
\[= h(t_m) s(t_m) \int_{t_m}^{1} \nu(R(\tau)) \, d\tau \cdot \exp(-\mu(1-t_m)). \]

Using Equations (3)-(5) this expression can be rewritten as:

\[R_0(t_m) = \gamma(\nu(R(t_m)), \mu) \exp \left(-\mu + \int_{0}^{t_m} \nu(R(\tau)) - \gamma(\nu(R(\tau)), \mu) \, d\tau \right) \int_{t_m}^{1} \nu(R(\tau)) \, d\tau. \]

References
