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Abstract The paper proposes Bayesian framework in an M/G/1 queuing system
with optional second service. The semi-parametric model based on a finite mixture
of Gamma distributions is considered to approximate both the general service and
re-service times densities in this queuing system. A Bayesian procedure based on
birth-death MCMC methodology is proposed to estimate system parameters, predic-
tive densities and some performance measures related to this queuing system such
as stationary system size and waiting time. The approach is illustrated with several
numerical examples based on various simulation studies.

Keywords Gamma mixtures · Bayesian inference · MCMC · Birth-death predictive
distribution · M/G/1 queue · Optional service

1 Introduction

Bayesian analysis of queuing systems is a relatively recent research area. Some useful
references are Armero and Bayarri (1994a,b), Rios et al. (1998), Ausin et al. (2004,
2007), Ausin and Wiper (2007), and Ramirez et al. (2008). The queuing systems that
they considered customers depart the system after taking their service. But in many
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684 A. Mohammadi et al.

applied queuing systems, some customers need to be re-serviced after taking their
main service. For example, in a production line, some items might fail and require
repair. In these kinds of problems, we must re-service some items.

The primary aim of this paper is to propose a Bayesian inference scheme for an
M/G/1 queuing system in which some customers with probability p need re-servicing.
This queuing system has a service unit, in which customers arrive according to a Pois-
son process and demanding service with a general distribution. A fraction p of these
customers request re-service with possibly another general distribution. From a clas-
sical queuing theory perspective, this queuing system has been studied by Salehi-Rad
and Mengersen (2002) and Salehi-Rad et al. (2004); they considered three alternatives
for re-servicing in this queuing system and obtained the mean busy period, the proba-
bility of the idle period and the probability generating function (pgf) of the steady-state
system size. More recently, this queuing system has been studied by Mohammadi and
Salehi-Rad (2012) based on Bayesian approach by using a mixture of truncated Normal
distributions.

The main contribution of this paper is to introduce a semi-parametric model for
the general density of service and re-service based on a mixture of Gamma distri-
butions, providing an alternative Bayesian approach for approximating the general
distributions in queuing systems based on former work. Secondly, we will introduce
a Bayesian algorithm based on the birth-death MCMC approach of Stephens (2000a)
in order to fit this model to data.

The use of finite mixture distributions is very common and the Bayesian approach
provides an important tool in semi-parametric density estimation, see for instance
Diebolt and Robert (1994) and Robert (1996). Recently, MCMC methods for fully
Bayesian mixture models of unknown dimension have been proposed; see Frühwirth-
Schnatter (2006). Green (1995) introduced the reversible jump technique (RJ-MCMC)
and Richardson and Green (1997) used this methodology to analyze Normal mixtures.
This type of algorithm was used by Rios et al. (1998) for mixture of Exponential distri-
butions, Wiper et al. (2001) for mixture of Gamma distributions and Ausin et al. (2004)
for mixture of Erlang distributions. More recently, in the context with this method-
ology, Stephens (2000a) rekindled interest in the use of continuous time birth-death
methodology (BD-MCMC) for variable dimension problems. This type of method-
ology was used by Ausin and Wiper (2007) for mixture of Erlang distributions and
Ramirez et al. (2008) for the mixture of Pareto distributions and Mohammadi and
Salehi-Rad (2012) for the mixture of truncated Normal distributions. Moreover, Cappé
et al. (2003) investigated the similarity between the reversible jump and birth-death
methodology.

The paper is structured as follows. Section 2 illustrates the M/G/1 queuing system
with optional second service where we consider a mixture of Gamma distributions
to approximate the general densities of service and re-service times. Then, we use
some results obtained by Salehi-Rad and Mengersen (2002), Salehi-Rad et al. (2004)
and Mohammadi and Salehi-Rad (2012) which allow us to estimate the mean num-
ber of customers in the system, mean busy period and probability of the idle period
for this queuing system. Section 3 describes our Bayesian approach by defining prior
distributions, obtaining posterior conditional distributions and propose a birth-death
MCMC algorithm to obtain a sample from the posterior distributions of the parameters
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Using mixture of Gamma distributions for Bayesian analysis 685

of the predictive service and re-service times distributions. Section 4 explains how to
approximate the general densities of service and re-service times by using the data
generated from the birth-death MCMC algorithm. Section 5 demonstrates how to esti-
mate the system parameters and some performance measures of our queuing system
from the BD-MCMC output. Section 6 illustrates our methodology by performing
several simulation studies. The paper concludes with a discussion of the relevance of
the various extensions in Sect. 7.

2 The M/G/1 queuing system with optional second service

Throughout, we are considering an M/G/1 queue in which some customers with prob-
ability p need re-service, with First Come First Serve discipline, and independence
between inter-arrival and service times. In this queuing system failed items are stock-
piled in a failed queue (FQ) and re-serviced only after all customers in main queue
(MQ) are serviced. After completion of re-service of all items in FQ, the server returns
to MQ if there are any customers waiting in MQ; otherwise, the server is idle.

The variable T is the inter-arrival time with an exponential distribution. For service
times, we suppose that service (S) and re-service (S̃) times are independent and have
general distributions, denoted by B1(.) and B2(.) with means μ1, μ2 and variances
δ1, δ2 respectively. For these general distributions, we need a model flexible enough
to deal with typical features in service and re-service time distributions (skewness,
multimodality, lots of mass near zero, even possibly a mode) and permits usual com-
putations in queuing applications. Thus, we propose a semi-parametric model based
on a mixture of Gamma distributions. If S is a service time, we assume

B1

(
s

∣∣∣∣θ
∼1

)
=

k1∑
i=1

π1i G (s |α1i , β1i ) , s > 0

where θ
∼1

=
(

k1, π
∼ 1
, α

∼1
, β

∼1

)
, k1 is the unknown number of mixture components,

π
∼ 1

= (
π11, π12, . . . , π1k1

)
are weights and G (s |α1i , β1i ) represents the Gamma

density function, for i = 1, . . . , k1, that is,

G ( s|α1i , β1i ) = (β1i )
α1i

� (α1i )
sα1i −1e−β1i s, s > 0.

Likewise, if S̃ is a re-service time, we have

B2

(
s̃

∣∣∣∣θ
∼2

)
=

k2∑
i=1

π2i G ( s̃|α2i , β2i ) , s̃ > 0

where θ
∼2

=
(

k2, π
∼ 2
, α

∼2
, β

∼2

)
, k2 and π

∼ 2
= (

π21, π22, . . . , π2k2

)
have the same

interpretation as for the service times density.
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686 A. Mohammadi et al.

Thus, we have a queuing system with two queues, main queue and failed queue,

and one server. Therefore, all parameters of these queuing system are

(
λ, θ

∼1
, θ

∼2
, p

)
,

in which λ is the parameter of inter-arrival times and p is the probability of the items
needing re-service.

2.1 Some performance measures in this queuing system

We assume that the queuing system is in equilibrium. This assumption is equivalent
with assuming that the traffic intensity, ρ, is less than one (Medhi 1982). For our
queuing system ρ = ρ1 + pρ2, in which ρ1 = λμ1 is traffic intensity in MQ and
ρ2 = λμ2 is traffic intensity in FQ. As a result

ρ = λ(μ1 + pμ2). (1)

Under this steady state condition, other performance measures will be obtained.

2.1.1 The expectation of busy period and probability of idle period

To acquire the expectation of busy period for this queuing system we have

E[busy period] = E[busy period in MQ] + pE[busy period in FQ],

which the first expressions is equal toμ1/(1 − λμ1) and the second is pμ2/(1 − λμ1).
Therefore, by some computation

E[busy period] = μ1 + p2μ2

1 − λμ1
. (2)

Furthermore, the probability of idle period is

Pr(idle period) = 1 − λμ1

1 + p2λμ2
. (3)

For more details see Salehi-Rad and Mengersen (2002) and Salehi-Rad et al. (2004).

2.1.2 The expectation of the system size

For our queuing system, suppose that Xn is the number of customers remaining in
MQ at the completion of the nth customer’s service time also Yn is the number of
customers remaining in FQ at the completion of the nth customer’s service time in
the steady state. Mohammadi and Salehi-Rad (2012), by using the joint probability
general function of (Xn,Yn) obtained the following expression of the mean system
size.

123



Using mixture of Gamma distributions for Bayesian analysis 687

Theorem 2.1 (Mohammadi and Salehi-Rad 2012) Mean number of customers in MQ
and FQ are as below

i)

E(Xn) = ρ1 + λ2δ1 + ρ2
1

2(1 − ρ1)
+

p
[
λ2δ2 + ρ2

2 + pρ2
2

(
λ2δ1+ρ1(2−ρ1)

(1−ρ1)

)]
2
(

pρ2 + (1 − ρ1)
(1 − p + pB∗
2 (λ))

) (4)

ii)

E(Yn) = p
(
2(1 − ρ1)

2 + λ2δ1 + ρ1(1 − ρ1)
)

2
(

pρ2 + (1 − ρ1)
(1 − p + pB∗
2 (λ))

) (5)

respectively, where


(u) = u B∗
1 [λ(1 −
(u))],

B∗
1 (.) and B∗

2 (.) are the Laplace Stieltjes Transform (LST) of the service and re-service
times density, respectively.

According to mixture of Gamma distributions for service and re-service times, the
LST of service and re-service times are given by

B∗
j (t) =

k j∑
i=1

π j i

(
α j i

t + β j i

)α j i

, j = 1, 2

and the variance of service and re-service times are given by

δ j =
k j∑

i=1

π2
j i

(
α j i

β2
j i

)
, j = 1, 2.

3 Bayesian inference

In this section we propose the Bayesian approach to infer the system parameters(
λ, θ

∼1
, θ

∼2
, p

)
. We observe nt inter-arrival times t

∼

= {ti }nt
i=1 , ns1 service times

s
∼1

= {s1i }ns1
i=1 , ns2 re-service times s

∼2
= {s2i }ns2

i=1 and n p indicators u
∼

= {ui }n p
i=1, in

which ui = 1 if customer need re-service and ui = 0 if customer does not need re-
service. We assume independence between the arrival, service times, re-service times
and the probability of re-service.

For the arrival rate, λ, we assume a Gamma prior distribution, λ ∼ G(ξ, ψ).
Conditional on arrival data, the posterior distribution of λ is also Gamma distributed
as G

(
ξ + nt , ψ +∑nt

i=1 ti
)
.

For the parameter p, we assume a Beta prior distribution, p ∼ Beta(a, b). The

posterior distribution of p given u
∼

is Beta
(

a +∑n p
i=1 ui , b + n p −∑n p

i=1 ui

)
.
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688 A. Mohammadi et al.

In the following section, we propose a Bayesian framework for mixture of Gamma
distributions to approximate the general distribution of the service and re-service times,
B1(.) and B2(.).

3.1 Bayesian inference for mixture of Gamma distributions

To determine a Bayesian framework for the general distributions B1(.) and B2(.) based
on mixture of Gamma distribution we assume that

B
(

s
∣∣∣θ
∼

)
=

k∑
i=1

πi G (s |αi , βi ) , s > 0

where θ
∼

=
(

k, π
∼

, α
∼

, β
∼

)
. First, as is usually done in mixture models (e.g. Diebolt and

Robert 1994), we use a data augmentation algorithm, introducing for each datum, S j ,
component indicator variables, Z j , such that

P
(

Z j = i
∣∣∣k, π

∼

)
= πi , i = 1, . . . , k

Then, the conditional service time density, S j , given that Z j , is

S j
∣∣Z j = i ∼ G

(
s j
∣∣αi , βi

)
, j = 1, . . . , ns .

Following Richardson and Green (1997), we assume that the joint prior distribution

on the mixture Gamma parameters, θ
∼

=
(

k, π
∼

, α
∼

, β
∼

)
can be factorized as

f (k, π
∼

, α
∼

, β
∼

, z
∼

) ∝ f (k) f (π
∼

|k ) f (z
∼

∣∣∣π
∼

, k ) f (α
∼

|k ) f (β
∼

|k ).

To determine the prior distributions for the parameters of mixture distribtuon, first,
we assume a truncated Poisson distribution for the mixture size, k, as below

P(K = k) ∝ γ k

k! , k = 1, . . . , kmax (6)

We define prior distributions for remaining parameters given that k, as below

π
∼

|k ∼ D (φ1, . . . , φk) (7)

αi |k ∼ G (ν, υ) , i = 1, . . . , k (8)

βi |k ∼ G (η, τ ) , i = 1, . . . , k (9)

where D(φ1, . . . , φk) denotes a Dirichlet distribution with parameters φi > 0.
Typically, we might set φi = 1, for all i = 1, . . . , k, giving a uniform U (0,1) prior for
the weights.
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Using mixture of Gamma distributions for Bayesian analysis 689

Given k and the data, s
∼

, then it is straightforward to show the required posterior

conditional distributions for the MCMC algorithm are as below

P

(
Z j = i

∣∣∣∣s
∼

, k, π
∼

, α
∼

, β
∼

)
∝ πi G

(
s j
∣∣αi , βi

)
, i = 1, . . . , k,

π
∼

∣∣∣∣s
∼

, z
∼

, k ∼ D (φ1 + n1, . . . , φk + nk)

βi

∣∣∣∣s
∼

, z
∼

, k ∼ G

⎛
⎝η + niαi , τ +

∑
j :z j =i

s j

⎞
⎠ , i = 1, . . . , k

f

(
αi

∣∣∣∣s
∼

, z
∼

, k , β
∼

)
∝
(
β
αi
i

� (αi )

)ni

⎛
⎝ ∏

j :z j =i

s j

⎞
⎠
αi

αν−1
i e−υαi , (10)

where ni = #
{
z j = i

}
for i = 1, . . . , k.

This mixture model is invariant to permutation of the labels i = 1, . . . , k. For iden-
tifiability, it is important to adopt a unique labeling. Unless stated otherwise, we use
that the πi are increasing; thus the prior distributions of the parameters are k! times
the product of the individual Gamma densities, restricted to the set π1 < · · · < πk ,
for more details see Stephens (2000b) and Sperrin et al. (2010).

In order to sample the posterior distributions, there are two main approaches in the
context of mixture modeling with an unknown number of components: one approach
is Green’s (1995) reversible jump MCMC (RJ-MCMC) methodology. Another alter-
native approach is Stephens (2000a) birth-death MCMC (BD-MCMC) methodology.
Stephens (2000a) introduced continuous time birth-death MCMC processes for var-
iable dimension problems. Cappé et al. (2003) showed that the essential mechanism
in this approach was the same as with RJ-MCMC algorithm. Here we apply the
BD-MCMC, which is simpler to implement and we have found to give better results in
practice. We briefly outline this algorithm in the following section. For more details,
including details of the construction of the BD-MCMC methodology see Stephens
(2000a) and Frühwirth-Schnatter (2006).

3.2 BD-MCMC algorithm

In this subsection, we obtain a sample from the posterior distributions of the param-

eters, θ
∼

=
(

k, π
∼

, α
∼

, β
∼

)
, by a BD-MCMC algorithm. This algorithm is based on a

birth-death process and was introduced by Stephens (2000a) in the context of Normal
mixtures. With this approach, the model parameters are interpreted as observations
from a marked point process and the mixture size, k, changes so that births and deaths
of the mixture components occur in continuous time. The rates at which this happens
determine the stationary distribution of the process.

In the birth-death process, births of mixture components occur at a constant rate
which we might set equal to the parameter, γ , from the prior distribution of k in (6).
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690 A. Mohammadi et al.

A birth increases the number of mixture components by one. Whenever a new compo-
nent is born, its weight is generated from a Beta distribution with parameters (1, k) and
the remaining parameters are sampled from their posterior distributions. To include the
new component, the old component weights are scaled down proportionally to make
all the weights, including the new one, sum to 1, i.e. πi := πi/(1 + π). The death rate
of every mixture component is a likelihood ratio of the model with and without this
component, given by

� j =
ns∏

r=1

(
B(sr )− π j g

(
sr
∣∣α j , β j

)
(
1 − π j

)
B(sr )

)
, j = 1, . . . , k (11)

The total death rate, � = ∑
j � j , of the process at any time is the sum of the

individual death rates. A death decreases the number of mixture components by one.
The birth and death processes are independent Poisson processes. Thus, the time
of birth/death event is exponentially distributed with mean 1/(�+ γ ). Therefore, a
birth or death occurs with probabilities proportional to γ and �, respectively. With
this explanation, we define an BD-MCMC algorithm based on Stephens (2000a) as
follows.

Algorithm 3.1 Starting with initial values k(0), π
∼

(0), α
∼

(0) and β
∼

(0), iterate the following steps:

1. Run the birth-death process for a fixed time t0and the birth rate γ
1.1. Compute the death rates for each component, � j , and the total death rate, � =∑ j � j

1.2. Simulate the time to the next jump from an exponential distribution with mean1/(�+ γ )

1.3. If the run time is less than t0 continue otherwise proceed with step 2
1.4. Simulate the type of jump: birth or death with probabilities

Pr(birth) = γ
γ+�, Pr(death) = �

γ+�
1.5. Adjust the mixture components

MCMC steps conditional on k

2. Update the latent variables by sampling from z
∼

(i+1) ∼ z
∼

∣∣∣∣s
∼

, k(i+1), π
∼

(i), α
∼

(i), β
∼

(i)

3. Update the weights by sampling from π
∼

(i+1) ∼ π
∼

∣∣∣∣s
∼

, k(i+1), z
∼

(i+1)

4. for r = 1, . . . , k(i+1)

4.1. Update βr by sampling from β
(i+1)
r ∼ βr

∣∣∣∣s
∼

, k(i+1), z
∼

(i+1)

4.2. Update αr using a Metropolis-Hastings
5. Set i = i + 1 and go to step 1.

Step one of the algorithm is the birth-death process described above. Following
Stephens (2000a), we have chosen t0 = 1 and a birth rate equal to the parameter, γ .
As expected, we have found in practice that larger values of the birth rate produce
better mixing but require more time in the computation of the algorithm.

Steps 2, 3 and 4.1 are standard Gibbs sampling moves, whereby the model param-
eters are updated conditional on the mixture size, k. The only complicated is step 4.2,
where we introduce a Metropolis-Hastings step (Hastings 1970), to sample from the
posterior distribution of αi . From the shape of the target distribution, (10), we propose
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Using mixture of Gamma distributions for Bayesian analysis 691

a Gamma distribution with parameters G(ν, υ). With this proposal distribution the
acceptance probability for a candidate point, α∗, becomes

Pr(αr , α
∗) = min

⎧⎪⎨
⎪⎩1,

(
�(αr )

�(α∗)

)nr

⎛
⎝ ∏

j :z j =r

βr s j

⎞
⎠
α∗−αr

⎫⎪⎬
⎪⎭

Remark 3.1 Due to the overall similarity of the shape of the proposal distribution
and the target distribution, the acceptance probability is much better – in simulation
studies, Sect. 6, we get acceptance probabilities of around 20 % compared to 1 %
elsewhere – than previous work (Wiper et al. 2001; Ausin et al. 2004).

Algorithm 3.1 produces a sample from the posterior distributions. Thus, we can run
this BD-MCMC algorithm for the parameters of service and re-service time densities,

θ
∼1

=
(

k1, π
∼ 1
, α

∼1
, β

∼1

)
, θ

∼2
=
(

k2, π
∼ 2
, α

∼2
, β

∼2

)
, respectively.

3.3 Model identification

The parameter k1 and k2 are model parameters, identifying models of a particular
complexity. In this subsection, we discuss briefly how to perform “ideal Bayesian
model identification” and a comparison with other approaches. There are many model
selection criteria such as AIC, BIC, DIC, DIC+, MDL, Bayesian p values and pos-
terior predictive checks (for more details see Claeskens and Hjort 2008). But most
of them are either unsuitable for mixture models or complex (Celeux et al. 2006).
This diversity of approaches, especially for variable-dimension parameters, reflects
the different flavours of the model determination question that statisticians face.

In reality there are a number of reasons why this simple idealized view fails to
reflect practical applications. We briefly describe some fundamental issues that face
the practitioner wishing to perform model choice for a real Bayesian problem. We
omit further details as they are covered in Green (2003) and Hastie and Green (2012).

First at all, prior model probabilities may be fictional: the ideal Bayesian has real
prior probabilities reflecting scientific judgment or belief across the model space. In
practice, however, such priors may not be commonly available. Secondly, Bayesian
models have no chance of passing the test of a sensitivity analysis: in ordinary para-
metric problems we commonly find that inferences are rather insensitive to moderately
large variations in prior assumptions, except when there are very few data. In fact, the
opposite case, of high sensitivity, poses a greater challenge to the non-Bayesian as
perhaps the data carry less information than hoped. Moreover, there may be improper
parameter prior problems: in ordinary parametric problems it is commonly true that it is
safe to use improper priors, specifically when posterior distributions are well-defined
as limits of a sequence of approximating proper priors. However, when comparing
models, improper parameter priors make Bayes factors indeterminate.

For this reason, we use the marginal posterior probabilities for k1 and k2 to do model
inference. In fact, rather than selecting the “best” model, these probabilities allow the
Bayesian to use model averaging strategies or more qualitative model comparisons.
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4 Predictive densities

By using the BD-MCMC algorithm we can produce samples from the posterior distri-
butions of the service and re-service times distribution. Thus, given the BD-MCMC
output of size N after a burn-in period, for θ

∼1
and θ

∼2
, and suitable regularity conditions

[see, e.g., Tierney 1996, p. 65], these quantities of interest can be consistently esti-
mated by the sample path averages. We first estimate the mixture size of service and
re-service distribution, k1 and k2. The estimates of the marginal posterior distributions
of k1 and k2 are

Pr(Kr = k |data ) = lim
N→∞

1

N
#
{

n : k(n)r = k
}

≈ 1

N
#
{

n : k(n)r = k
}
, (N large), r = 1, 2 (12)

This probability provides a tool for determining the number of phases of service
and re-service distributions.

We can estimate the predictive density of the service and re-service time distribu-
tions using

B̂r

(
t

∣∣∣∣s
∼1

)
≈ 1

N

N∑
j=1

k( j)
r∑

i=1

π
( j)
ri G

(
t
∣∣∣α( j)

ri , β
( j)
ri

)
, r = 1, 2 (13)

also, the predictive density of the service and re-service time distributions can be
estimated by

B̂r

(
t

∣∣∣∣θ
∼r

)
=

k̂r∑
i=1

π̂ri G
(

t
∣∣∣α̂ri , β̂ri

)
, r = 1, 2

where k̂r has a maximum posterior probability in (12). Note that in the case where the
posterior distribution of kr , α

∼r
andβ

∼r
is fairly spread out or even multimodal, these

plug-in estimates would give a poor approximation of the predictive densities.

5 Estimation of some performance measures via the BD-MCMC output

Given a sample realization of the MCMC output and a sample from f
(
λ

∣∣∣ t
∼

)
and

f
(

p
∣∣∣x
∼

)
of equal size, we can estimate performance measures. For example, given

sample data, we would like to assess whether or not the system is stable. The system
is stable if and only if the traffic intensity, ρ, is less than one. Thus, the estimation of
the probability of having a stable system is

Pr

(
ρ < 1

∣∣∣∣ t
∼

, x
∼

, s
∼1
, s

∼2

)
≈ 1

N
#
{
ρ(n) < 1

}
(14)
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where according to (1) we have

ρ(n) = λ(n)

⎛
⎜⎝

k(n)1∑
i=1

π
(n)
1i

α
(n)
1i

β
(n)
1i

+ p(n)
k(n)2∑
i=1

π
(n)
2i

α
(n)
2i

β
(n)
2i

⎞
⎟⎠

in which

{(
k(i)1 , π

∼

(i)

1
, α

∼

(i)

1
, β

∼

(i)

1

)}N

i=1
and

{(
k(i)2 , π

∼

(i)

2
, α

∼

(i)

2
, β

∼

(i)

2

)}N

i=1
are the sam-

ples of size N obtained from the BD-MCMC algorithm, also
{
λ(i)
}N

i=1 and
{

p(i)
}N

i=1 are
the samples of size N generated from the posterior distributions ofλ and p, respectively.
A consistent estimator of the traffic intensity is

E

(
ρ

∣∣∣∣ t
∼

, x
∼

, s
∼1
, s

∼2

)
≈ E

(
λ

∣∣∣ t
∼

) 1

N

N∑
n=1

⎛
⎜⎝

k(n)1∑
i=1

π
(n)
1i

α
(n)
1i

β
(n)
1i

+ p(n)
k(n)2∑
i=1

π
(n)
2i

α
(n)
2i

β
(n)
2i

⎞
⎟⎠

(15)

where E
(
λ

∣∣∣ t
∼

)
= (ξ + nt )/

(
ψ +∑nt

i=1 ti
)
.

Moreover, by using the MCMC estimations of the parameters system, i.e.(
λ, θ

∼1
, θ

∼2
, p

)
, we can estimate the ρ1, ρ2, ρ, δ1, δ2, the mean system size (4) and

(5), the mean busy period (2) and the probability of idle period of the system (3), as
you see in the simulation study below.

6 Simulations

This section illustrates the accuracy of the Bayesian methodology in two simulation
examples of the M/G/1 queuing system with optional second service. In the first exam-
ple we assume both real density of service and re-service times are mixture of Gamma
distributions, mixture of two Gamma distributions for service and mixture of three
Gamma distributions for re-service times. In order to test how our methodology deals
with model misspecification, the second example considers a more complicated model,
in which the true density of service is a mixture of two truncated Normal distributions
and the true density of re-service is Log-Normal distribution. The R codes are avail-
able at http://www.math.rug.nl/stat under the research link and will soon be available
as R-package.

6.1 Simulation study: mixture of Gammas

Without loss of generality, we assume that the inter-arrival rate, λ, is known and equal
to 0.26 and probability of re-service, p, is also known and equal to 0.3. We consider
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samples of 1,000 service data from mixture of two Gamma distributions as below

B1(s) = 0.6G(12, 1)+ 0.4G(3, 2).

Also, for the re-service, 1,000 data simulated from a mixture of three Gamma distri-
butions as below

B2(s̃) = 0.6G(100, 100/3)+ 0.3G(200, 50)+ 0.1G(300, 60).

We assumed a Poisson prior distribution for k1 with parameter γ = 2 which is trun-
cated in point 100, and for remaining parameters we assume φ1 = · · · = φk = 1, ν =
__

s2
1/σ

2
s1
, υ = 1/

√
ν, η = (s̄1/σ

2
s1

) 2
3 and τ = 1/

√
η in (7), (8) and (9), respectively. For

the re-service data we take γ = 3 and the other parameters the same as their service
equivalents.

For a service and re-service data set, we carried out the Bayesian approach described
in Sect. 3.2. We ran 200,000 iterations of the BD-MCMC algorithm with 100,000 iter-
ations as burn-in. From the diagnostics it is clear that these numbers exceed what
is needed for reliable results. Methods for choosing a burn-in time and number of
iterations to use after burn-in are discussed in Gilks et al. (1996).

Figure 1 provides the histograms of generated data set with the estimation of the
predictive densities from formula (13) for service and re-service times. This figure
shows that the productive densities for service and re-service times compare quite
well with the true densities.

Figure 2 (left) illustrates the mixing properties of the algorithm in terms of the
evolution of the mixture size k1 and (right) is for k2. An essential element of the
performance of our BD-MCMC algorithm is its ability to move between different
values of k1 and k2. The chains appear to be mixing quite well, visiting many states,
for both service and re-service times.

Figure 3 on the left shows the estimation of posterior distribution of k1, which is
obtained from formula (12), and on the right for k2.
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Fig. 1 Predictive densities (solid line) and the true densities (dotted line) for (left) service time data and
(right) re-service time data
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Fig. 3 (Left) The estimation of posterior distribution of k1, and (right) for k2
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Fig. 4 The cumulative occupancy fractions for (left) service data, k1, (right) the re-service data, k2, for a
complete run including burn-in

A useful check on the stationary is given by the plot of the cumulative occupancy
fractions for different values of k1 and k2 against the number of iterations. These are
represented in Fig. 4 for the service and re-service data set, where it can be seen that
the burn-in is more than adequate to achieve stability in the occupancy fractions.

123



696 A. Mohammadi et al.

Table 1 True values and estimations of mean busy period, probability of idle period, mean number of
customers in the system, and probabilities that system is stable

Performance measures E(busy period) P(idleperiod) E(Xn) E(Yn) P(ρ < 1 |data ) E(ρ |data )

True value 9.0525 0.2982 1.4463 0.0029 0.9646

Estimates 9.036 0.2985 1.423 0.0028 0.9666 0.9666

SD 0.8207 0.017 0.1756 0.0004 0.0225 0.022

Third row is the standard deviation (SD) for these estimates

In the first and second row of Table 1, we respectively tabulate the true values and
the estimated values of traffic intensity, probability of having a stable system, expec-
tation of number of customers in MQ, expectation of number of customers in FQ,
expectation of busy period and probability of idle period of the system. They have
been obtained from formula (2), (3), (4), (5), (14) and (15), respectively. The third row
of the table shows the standard deviation (SD) of these estimates.

Also, the real value of the traffic intensity, ρ, from formula (1) is equal with 0.952.
A 95 % credible interval is roughly given as the estimate ±1.96× SD. Considering this
criterion, it is concluded that all the true values lie inside their 95 % credible intervals.

6.2 Simulation study: mixture of truncated Normal and Log-Normal

In this section we would like to access the effect of model misspecification on our
estimation procedure. Like in previous example, we assume that the inter-arrival rate
and probability of re-service are known, λ = 0.28 and p = 0.45. We consider samples
of 1,000 service data from mixture of two truncated Normal distributions on interval
(−∞, 0) as below

B1(s) = 0.4T N(0,∞)(1.4, 2.3)+ 0.6T N(0,∞)(0.2, 0.3).

Also, for the re-service, 1,000 data simulated from a single Log-Normal distribution
as below

B2(s̃) = L N (1, 0.5).

With the same assumptions in previous example, we ran 200,000 iterations of the
BD-MCMC algorithm with 100,000 iterations as burn-in.

Figure 5 shows the histograms of generated data set with real densities for service
and re-service times and the predictive densities from formula (13). This figure shows
the predictive densities for service and re-service times in comparison with the true
densities. Despite the fact that the true model is not part of our model class, it is
sufficiently rich to approximate quite general densities.

Figure 6 (left) illustrates the mixing properties of the algorithm in terms of the
evolution of the mixture size k1 and (right) is for k2. An essential element of the per-
formance of our BD-MCMC algorithm is its ability to move between different values
of k1 and k2. The chains appear to be mixing quite well, visiting many states, for both
service and re-service times.
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Fig. 5 Predictive densities (solid line) and the true densities (dotted line) for (left) service time data and
(right) re-service time data
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Fig. 7 (Left) The estimation of posterior distribution of k1, and (right) for k2

Figure 7 in the left shows the estimation of posterior distribution of k1, which
obtained from (12), and in the right is for k2.

For checking the stationary, Fig. 8 shows the cumulative occupancy fractions for
different values of k1 and k2 against the number of iterations. These are represented
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Fig. 8 The cumulative occupancy fractions for (left) service data, k1, (right) the re-service data, k2, for a
complete run including burn-in

Table 2 True values and estimations of mean busy period, probability of idle period, mean number of
customers in the system, and probabilities that system is stable

Performance measures E(busy period) P(idleperiod) E(Xn) E(Yn) P(ρ < 1 |data ) E(ρ |data )

True value 5.7974 0.381 1.661 0.227 0.983

Estimates 5.8445 0.3793 1.5863 0.2297 0.973 0.972

SD 0.0793 0.0032 0.0597 0.0024 0.0075 0.0075

Third row is the standard deviation (SD) for these estimations

for the service and re-service data set, where it can be seen that the burn-in is more
than adequate to achieve stability in the occupancy fractions.

Table 2 respectively shows the true values and the estimated values of traffic inten-
sity, probability of having a stable system, expectation of number of customers in MQ,
expectation of number of customers in FQ, expectation of busy period and probability
of idle period of the system.

Also ρ = 0.983, the real value of the traffic intensity from formula (1). Considering
the values of SD, all the true values lie inside their 95 % credible intervals.

7 Discussion and future directions

This paper has developed a Bayesian approach to make inference and prediction for
an M/G/1queuing system with optional second service. It has developed a density
estimation method based on a mixture of Gamma distributions in order to approxi-
mate the general service and re-service time distributions. A BD-MCMC algorithm
has been proposed to make inference on the service and re-service parameters. This
algorithm is based on births and deaths of mixture components making use of the
birth-death technique proposed by Stephens (2000a). Some important measures of
our queuing system, such as the system size mean, the mean busy period and proba-
bility of idle period have been estimated. This methodology has been illustrated with
simulation study.
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For our Bayesian approach, we used the mixture of Gamma distributions, since
all distributions on the positive real can be approximated by such mixture and fea-
tures such as skewness can be well-modeled by asymmetric distributions. There is
previous work in Gamma mixture and Erlang mixture distributions (Wiper et al. 2001;
Ausin et al. 2004, 2007; Ausin and Wiper 2007) but our Bayesian framework is dif-
ferent and its computation is easier and the results are more accurate. For instance,
in the BD-MCMC algorithm, step 4.2., the Metropolis-Hastings step, in this article,
the probability of acceptance is around 20 % which is more reasonable in comparison
with previous work (e.g. see Ausin et al. 2004; Wiper et al. 2001). Furthermore, other
family of distributions was used by Mohammadi and Salehi-Rad (2012), however Nor-
mal distribution is symmetric. A more suitable model would be a mixture of skewed
truncated Normal distributions, which would make inference more complicated.

Our proposal is not limited to this queuing application, and comparisons with stan-
dard mixtures based on truncated normal distributions and skewed truncated normal
distributions, see Frühwirth-Schnatter and Pyne (2010), are part of future work. Also,
density estimation problems seem suitable for our approach. Work is currently in
progress on these models.

An alternative to the BD-MCMC methodology is the RJ-MCMC methodology. This
type of algorithm had been used by Wiper et al. (2001) for mixture of Gamma distri-
butions and Ausin et al. (2004) for the mixture of Erlang distributions. In practice, we
have found that both schemes perform similarly. In the BD-MCMC algorithm, as we
have indicated, larger values of the birth rate produce better mixing, but also increase
the computational cost. We have experienced some problems of non-convergence of
the algorithm if the birth rate is selected too high. Thus, it would be useful to explore
methods for selection of this parameter in order to optimize the algorithm.
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