Covariant w_infinity gravity and its reduction to W_N gravity
Schoutens, C.J.M.; Sevrin, A.; van Nieuwenhuizen, P.

Published in:
Physics Letters B

DOI:
10.1016/0370-2693(90)90719-M

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Covariant \(w_{\infty} \) gravity and its reduction to \(W_N \) gravity

K. Schoutens, A. Sevrin and P. van Nieuwenhuizen

Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA

Received 27 May 1990

By gauging the linear \(w_{\infty} \) algebra, imposing constraints on the curvatures and choosing suitable gauges, we obtain the covariant formulation of \(w_{\infty} \) gravity. This theory is coupled to matrix valued scalar fields, where the set of matrices is closed under symmetrized products. For the case of the vector representation of \(u(N) \), the theory can be reduced to \(W_N \) gravity. We present closed expressions for the reduction to a covariant theory of \(W_3 \) gravity which we obtained previously.

Recently, a new gauge theory for the \(W_3 \) algebra was constructed in refs. [1,2]. The \(W_3 \) algebra is an example of a nonlinear algebra, in which products of generators appear on the right-hand side of the fundamental brackets. Gauge theories of this type go beyond the gauge theories for linear algebras, such as Yang–Mills and conventional gravity and supergravity theories, and could have interesting applications in particle physics. For example, in the context of supersymmetry, nonlinear algebras offer a mechanism which avoids supersymmetry breaking and still explains why supersymmetric theories do not have a supersymmetric spectrum [3].

The \(W_N \) algebras contain the Virasoro generators \(L_m \) and higher spin generators, and lead to theories of gravity which may be called “\(W \) gravities”. Our work is intended to form a suitable starting point for the description of quantum \(W \) gravities [4] and, eventually, \(W \) strings [5].

After the construction of \(W_3 \) gravity in the chiral gauge [1] and the light-cone gauge [2], we derived by a systematic procedure a covariant formulation of \(W_3 \) gravity [6], which reproduced the previous formulations in refs. [1,2] and allows one to analyze the theory, in particular its anomalies, in the conformal gauge and in other interesting gauges. Another approach to classical \(W \) gravity was advocated in ref. [7], where it was proposed to view the \(W_N \) gravities as reductions of a \(w_{\infty} \) gravity. The latter corresponds to the \(w_{\infty} \) algebra which is, however, a linear algebra. The authors of ref. [7] constructed \(w_{\infty} \) gravity in the light-cone gauge, and indicated how the reduction to \(W_N \) gravity could be achieved.

In this letter we return to \(w_{\infty} \) gravity [7] and its reductions to \(W_N \) gravity. First we construct a covariant formulation of \(w_{\infty} \) gravity by gauging the \(w_{\infty} \) algebra, which does not have the complications that go with the gauging of nonlinear algebras. We couple the gauge fields corresponding to the generators of \(w_{\infty} \) to scalar fields that take values in an algebra of matrices, \(\varphi = \varphi^T \). The set of matrices \(T \) must be closed under the operation of taking symmetric products. Our final action for \(w_{\infty} \) is given by \(I_{\infty} = \int \mathcal{L}_{\infty} \), where

\[\mathcal{L}_{\infty} \]
The gauge fields are $e^{u, (-)}$ and $\tilde{e}^{u, (-)}$ in the two chiral sectors with $j \geq 2$. The vielbein fields $e^{u, +} \equiv e^{u, (1)}$ and $e^{u, -} \equiv \tilde{e}^{u, (1)}$ are used to convert curved to flat indices (as in $e_{+}^{u, (1)}$), and F_{+}, F_{-} are 1.5 order fields [8] corresponding to $\sigma_{+} \varphi$ and $\sigma_{-} \varphi$, which are also matrix valued: $F_{\pm} = F_{\pm}^{I}T_{I}$.

In the light-cone gauge, our action and transformation rules reduce to expressions which are similar but not identical to those of ref. [7]. The difference can be traced back to a different treatment of the gravitational gauge field $e^{u, (1)}$. For the reduction to W_{N}, we found it necessary to start from $u(N)$ valued scalar fields. In this we differ from the approach in ref. [7] which uses $su(N)$ valued fields. We find that the elimination of the scalar field φ_{0} corresponding to the extra $U(1)$ generator contributes in an essential way to the nonlinear extra terms in the W_{N} transformation rules. For the case of W_{3} we find complete agreement with our results in ref. [6].

To obtain the action for w_{∞} gravity, we proceed as in refs. [9,10,6], and gauge the classical w_{∞} algebra. The latter is given by [11]

$$[t^{m, j}, t^{n, k}] = [(j - 1)n - (k - 1)m]t^{m+j+n+k-2}.$$

We consider henceforth two commuting copies of the subalgebra with $j, k \geq 2$ and $m \geq -j + 1, n \geq -k + 1$. Introducing ζ^{+} or ζ^{-} dependent gauge fields $e_{\mu}^{(j-1)}, \tilde{e}_{\mu}^{(j-1)}$ and local parameters $k^{(j-1)}$ and $\tilde{k}^{(j-1)}$ as in $e_{\mu}^{(j-1)} = \sum_{m=-j+1}^{+} e_{\mu}^{(j-1), m}(x^{+}, x^{-})(\zeta^{+})^{m+j-1}$, we obtain for the gauge field transformation laws

$$\delta e_{\mu}^{(j-1)}(x^{+}, x^{-}, \zeta^{+}) = \bar{\partial}_{\zeta} e_{\mu}^{(j-1)} + \sum_{i=2}^{j} \{(l-1)k^{(l-1)}\delta_{\zeta}^{+} e_{\mu}^{(j-1), l} - (j-l+1)\delta_{\zeta}^{-} k^{(l-1)} e_{\mu}^{(j-1), l+1}\}, \quad j \geq 2.$$

The result for $\delta \tilde{e}_{\mu}^{(j-1)}(x^{+}, x^{-}, \zeta^{-})$ is similar. (We shall from now on understand without mention that all steps are taken in both chiral sectors.) Note that $e_{\mu}^{(j-1)}$ varies only into $e_{\mu}^{(l-1)}$ with $l \leq j$ and that the vielbein $e_{\mu}^{(1)} \equiv e_{\mu}^{+}$ varies only under $k^{(1)}$ and ∂_{ζ}^{+}.

Next we evaluate the curvatures $R_{\mu\nu}^{(j-1)}, j \geq 2$, and impose the constraint that they all vanish. This leads to

$$e_{-}^{\mu} \delta_{\zeta}^{+} e_{\mu}^{(j-1)} \equiv A^{(j-1)},$$

Choosing in addition the gauge where all $e_{\mu}^{+} \delta_{\zeta}^{+} e_{\mu}^{(j-1)}$ vanish for $j \geq 2$ completely fixes the ζ^{+} dependence of $e_{\mu}^{(j-1)}$ and determines $\partial_{\zeta}^{+} e_{\mu}^{(j-1)}$ in terms of the $e_{\mu}^{(k-1)}$ with $k < j$. For $j = 2$ we have $A^{(1)} \equiv A^{+} = (e_{\mu}^{+} \delta_{\zeta}^{+} e_{\mu}^{(2)} - e_{\mu}^{+} \delta_{\zeta}^{-} e_{\mu}^{(2)}) - 2e_{\mu}^{+} \partial_{\zeta}^{+}$, and for $j = 3$ we obtain $A^{(2)} \equiv A^{-} = (e_{\mu}^{+} \delta_{\zeta}^{+} (e_{\mu}^{(3)} - e_{\mu}^{+} \delta_{\zeta}^{+} e_{\mu}^{(2)} - e_{\mu}^{+} \delta_{\zeta}^{-} e_{\mu}^{(2)}) - 2e_{\mu}^{+} \partial_{\zeta}^{+}$. These expressions agree with ref. [6] in the linear limit.

The residual gauge degrees of freedom after choosing the above gauge conditions, are parametrized by the values of $k^{(j-1)}$ and $\partial_{\zeta}^{+} k^{(j-1)}$ at $\zeta^{+} = 0$, which we will denote by $k^{(j-1)}$ and $\tilde{k}^{(j-1)}$. Note that $k_{w}^{(1)}$ and $\tilde{k}_{w}^{(1)}$ denote the ordinary local Weyl and local Lorentz symmetries.

Matter is coupled as in ref. [6]; we introduce a set of matrix valued fields

$$356$$
\[\varphi = \sum \varphi^l(x^+, x^-, \zeta^+, \zeta^-) T_l, \]

which transform as \[\delta \varphi = \sum (k^{l-1})(\partial_{\zeta^+} \varphi)^{l-1} + \bar{k}^{l-1}(\partial_{\zeta^-} \varphi)^{l-1}, \]

with \(l \geq 2 \). We impose the constraint that their covariant derivatives \(D_\mu \varphi \) vanish, where

\[D_\mu \varphi = \partial_\mu \varphi - \sum_{l=2}^{\infty} e_\mu^{l-1}(\partial_{\zeta^+} \varphi)^{l-1} - \sum_{l=2}^{\infty} \bar{e}_{\mu}^{l-1}(\partial_{\zeta^-} \varphi)^{l-1}. \]

This allows us to solve for \(\partial_{\zeta^\pm} \varphi \). Denoting \(\partial_{\zeta^\pm} \varphi \) by \(F_{\pm} \), we obtain the constraints

\[F_+ = \partial_+ \varphi - \sum_{l=3}^{\infty} e_+^{l-1}(F_+)^{l-1} - \sum_{l=3}^{\infty} \bar{e}_+^{l-1}(F_-)^{l-1}, \]

\[F_- = \partial_- \varphi - \sum_{l=3}^{\infty} \bar{e}_-^{l-1}(F_-)^{l-1} - \sum_{l=3}^{\infty} e_-^{l-1}(F_+)^{l-1}. \]

By interpreting these expressions at \(\zeta^- = 0 \) as field equations we find a corresponding action, where we use an integrating factor (compare with ref. [6]). The integrating “factor” is such that the \(F_- \) field equation reads

\[F_+ + \sum_{l=3}^{\infty} \bar{e}_+^{l-1}(F_+)^{l-1} + \sum_{l=3}^{\infty} e_-^{l-1}(F_-)^{l-1}, \]

satisfies the integrability condition and are used to construct a corresponding action. The result is the action given in (1). If we would be dealing with commuting matrices the field equations for \(F_\pm \) would really factorize, but also in the general case it is ensured that they are equivalent to \(F_\pm = 0 \).

A basic difference between our field equations (7) and those of ref. [7] is that the latter authors use the gravitational \((j=2) \) covariantization \[\delta_s \eta - h \] rather than \[\delta_s \eta - h \] (for comparison we give both in the light-cone gauge, compare with ref. [2]). In the approach of ref. [7] one still obtains gravitational covariance after solving for \(F_+ \) and \(F_- \), but the covariance is not manifest as is apparent from the fact that there is no vielbein determinant in front of the action; instead, the gravitational fields are treated on a par with the other gauge fields.

Our final theory is now formulated in terms of \(\zeta \) independent fields. For the transformation rules for \(\varphi \) we obtain \(\delta \varphi = \sum k^{l-1}(F_+)^{l-1} + \bar{k}^{l-1}(F_-)^{l-1} \). The gauge field rules were already obtained in (3), (4). For the proof of the invariance of the action we found it convenient to use rules which are manifestly covariant w.r.t. ordinary gravity \((j=2) \). Choosing suitable linear combinations of the original rules yields

\[\delta e_\mu^{l-1} = \nabla_\mu k^{l-1} + \sum_{l=2}^{j} \left[(l-1)k^{l-1}\bar{e}_\mu^{l-1}A^{(1-l+1)}_{\text{cov}} - (j-l+1)k^{l-1}e_\mu^{(l-1+1)} \right], \]

where \(\nabla_\mu k^{l-1} = \partial_\mu k^{l-1} - (j-1)\omega_\mu k^{l-1} \), with \(\omega_\mu \) the spin connection. We have \(A^{(1)}_{\text{cov}} = 0 \) and

\[A^{(1)}_{\text{cov}} = \nabla_+ e_-^{l-1} - \nabla_- e_+^{l-1} - \sum_{l=3}^{j} (l-1)e_+^{(l-1)}A^{(j-l+1)}_{\text{cov}} \]

for \(j \geq 3 \), where \(\nabla_+ e_-^{l-1} = \partial_+ e_-^{l-1} - j\omega_+ e_-^{l-1} \). Using these transformation rules, and the 1.5 order rules in (7), one easily proves the invariance of the action in (1).

Having found the completely covariant action and transformation rules for \(w_\infty \) gravity, we will now discuss how this result can be used to derive similar results for \(W_N \) gravity, where \(N \) is some integer \(\geq 3 \). We discuss in some detail the case \(N=3 \), where we will make contact with the results obtained in ref. [6]. The theories with \(N \geq 3 \) can be recovered in a completely similar way.

For the reduction to \(W_3 \) gravity we start from scalar fields \(\varphi \) that take values in the algebra \(u(3) \) according to

\[\varphi = \varphi^0 \sqrt{2} I + \sum_{i=1}^{8} \varphi^i T^i. \]

Our conventions for the hermitean matrices \(T^i, i=1, \ldots, 8 \), are such that
\[T^{(i'T')} = 2\delta^{ij}T^k, \]

where the \(d \)-symbols \(d^{ijk} \) are completely symmetric and satisfy

\[d^m(ijd^k) = \delta^{ijkl}. \]

As a consequence, we have the trace identities

\[\text{tr}(T^{(i'T')}) = 6\delta^{ij}, \quad \text{tr}(T^{(i'T')T'^k}) = 6d^{ijk}, \quad \text{tr}(T^{(i'T')}T^{(k'T')}) = 12\delta^{ijk}\delta^{kl}. \]

The set of matrix valued fields of the form (10) is closed under symmetrized products (notice that this would no longer be true if we would restrict to su(3) valued fields). Substitution into the action (1) and the transformation rules leads to a theory of \(w_\infty \) gravity in terms of 9 scalar fields \(\varphi^0, \varphi^I, i = 1, \ldots, 8 \). The idea is now that this theory can be reduced to a theory of \(W_3 \) gravity with only the scalar fields \(\varphi^i, i = 1, \ldots, 8 \). The correct transformation rules for the \(W_3 \) theory will follow from the requirement that the reduced action be gauge invariant. We will see that this requirement leads to certain nonlinear corrections to the transformation rules of the \(W_3 \) gauge fields \(\varphi^{(1)}, \varphi^{(2)}, \varphi^{(2)} \) and \(\varphi^{(2)} \). In ref. [6] the same terms were derived by a completely different procedure, namely by solving the curvature constraints for the nonlinear algebra.

Let us now consider the reduction to \(W_3 \) in some detail. Starting from the \(w_\infty \) theory we impose the constraints

\[e^{(1)}(-e^{(1)} = 0, \quad j \geq 3, \quad \varphi^0 = 0, \quad F^0_\pm = 0, \]

which we will denote by (\(\ast \)). At this point working with the 15 order formalism for the fields \(F_\pm \) would lead to inconsistencies since the traces of the relations (7) do not vanish after restriction. We therefore use a completely first order formalism where the fields \(F_\pm \) should give the following contribution to the variation of \(I_\infty \) under transformations with \(k^{(1)}, k_\varphi^{(1)} \) in order that the first order action be gauge invariant

\[\frac{\delta I_\infty}{\delta F^+} = \left(k^{(1)} + \varphi^{(1)} \right) F^+ = \left(-F^+ + \partial_\varphi - \sum_{\ell > 3} \varphi^{(1)}(F^-)^{\ell-1} - \sum_{\ell > 3} e^{(1)}(F^-)^{\ell-1} \right) \]

\[\times \left(k^{(1)} \nabla^+ (F^+)^{\ell-1} + k_\varphi^{(1)} \sum_{\ell < j} (l+1-j) e^{(1)}(F^+)^{\ell-1} \right), \]

with a similar contribution for the \(\varphi^{(1)} \) and \(\varphi^{(1)}_\varphi \) variations through \(F^- \).

We wish to perform the truncation (\(\ast \)) in such a way that we do not lose the invariance under \(W_3 \) gauge transformations with parameters \(k^{(1)}, k_\varphi^{(1)}, k_\varphi^{(1)} \) and \(k_\varphi^{(1)} \). Focussing on \(k^{(1)} \) we first write the identity

\[0 = (\delta(k^{(1)}))I_\infty \]

\[= e \text{tr}(\left[\nabla^+ (\partial_\varphi - \varepsilon^{(2)} F^+_\varphi - \varepsilon^{(2)} F^+_\varphi)^{-1} - \nabla^+(F^+ + e^{(2)} F^+_\varphi)^{-1} \right]k^{(2)} F^+)^{-2} \] (from \(\varphi \))

\[+ e \text{tr}(\left[-F^+_\varphi + \partial_\varphi - \varepsilon^{(2)} F^+_\varphi - \varepsilon^{(2)} F^+_\varphi \right]k^{(2)} F^+)^{-2} \] (from \(F^+ \))

\[+ e(\nabla^+ k^{(2)}) \text{tr}(F^+ k^{(2)}(F^+ + e^{(2)} F^+_\varphi)^{-1} k^{(2)} F^+)^{-2} \] (from \(e^{(2)} \))

\[+ e(\nabla^+ k^{(2)}) \text{tr}(-\frac{1}{4} F^+ + \partial_\varphi - \varepsilon^{(2)} F^+_\varphi - \varepsilon^{(2)} F^+_\varphi - \frac{1}{4} e^{(2)} F^+)^{-1} \] (from \(e^{(2)} \))

\[- \frac{1}{4} e \text{tr}(F^+ k^{(2)} A_{\varphi\varphi}^{(2)}) \] (from \(e^{(2)}, j > 4 \)),

where the contribution from the higher gauge fields \(e^{(1-)}, j > 4 \), was derived by evaluating the infinite sum

\[\sum_{j > 4} \frac{\delta I_\infty}{\delta e^{(2)}} \left| (\delta(k^{(2)}))e^{(2-)} \right| \]

\[\sum_{j > 4} \left(-e \text{tr}(F^+ e^{(2)}) + e^{(2)} \frac{2e}{j+1} \text{tr}(F^+ e^{(2)}) \right) [2k^{(2)}(-2e^{(2)})]^{-j} A_{\varphi\varphi}^{(2)}, \]

and we used that

358
\[A_{\text{cov}}^{(2)} \big|_{\boldsymbol{a}} = (-2e_+^{(2)})^{-3} A_{\text{cov}}^{(2)}. \]

(18)

Before we proceed, we would like to identify the correct nested covariant derivatives \((\partial_{\pm} \varphi)\)^\', which we obtain by simply extracting the \(i\)th component of the relations (7) \(\big|_{\boldsymbol{a}}\) and identifying \((\partial_{\pm} \varphi)\)^\' with \(F_+^i\). We find

\[F_+^i = \partial_+ \varphi - e_+^{(2)} \, \delta_{ijk} F_{+}^j F_{+}^k - \bar{e}_+^{(2)} \, \delta_{ij} F_{-}^j F_{-}^k, \]

with a similar relation for \(F_-^i\). Since we expect the \(F_+^i\) field equations to be covariant on \(F_+^i\)-shell, these must be the \(F_+^i\) field equations modulo some integrating factor (the latter does not affect the covariance of the \(F_+^i\) field equations as long as we are on \(F_+^i\)-shell).

We now remark that the relations (19) are not compatible with the truncated action \(I_\infty \big|_{\boldsymbol{a}}\), in the sense that the variations \(\delta (I_\infty \big|_{\boldsymbol{a}}) \big/ \delta F_+^i\) do not vanish when the relations (19) are satisfied. We therefore propose the following action for the \(8\)-scalar model of \(W_3\) gravity:

\[I_3 = I_\infty \big|_{\boldsymbol{a}} + 12 \int e e_+^{(2)} \bar{e}_-^{(2)} T_{++} + 6 \int e_+^{(2)} T_{++} + e_+^{(2)} \bar{e}_-^{(2)} T_{--} - T_{--}, \]

(19)

where we introduced the notation \(T_{\pm \pm} = F_{+}^i F_{+}^i\). This action is chosen in such a way that the variations \(\delta I_3 \big/ \delta F_+^i\) vanish if \(F_+^i\) satisfy (19), and is obtained from the restriction of (1) by dropping the contributions that arise from the term \(12e_+^{(2)} e_{-}^{(2)} T_{++}\).

The variation of \(I_3\) under the truncated \(w_\infty\) rules is easily obtained by using the result (16). We will evaluate this variation in a 1.5 formalism for the fields \(F_+^i\), which simply means that we will use the relations (19). We find

\[\delta (k^{(2)}) I_3 = \delta (k^{(2)}) I_3 - (\delta (k^{(2)}) I_\infty) \big|_{\boldsymbol{a}} \]

\[= 12ek^{(2)} \left[\nabla_+ (\bar{e}^{- (2)} T_{--}) + \nabla_- (e_+^{(2)} T_{++}) \right] \quad \text{(from } \varphi^0) \]

\[+ 12ek^{(2)} (\nabla_+ T_{++}) (\bar{e}_-^{(2)} T_{--} + e_+^{(2)} T_{++}) \quad \text{(from } F_+) \]

\[+ 12e (\nabla_+ k^{(2)}) T_{++} (\bar{e}_-^{(2)} T_{--} + \frac{1}{2} e_+^{(2)} T_{++}) \quad \text{(from } e_+^{(2)}) \]

\[+ 6e (\nabla_+ k^{(2)}) T_{++} T_{++} e_+^{(2)} \quad \text{(from } e_+^{(2)}) \]

\[+ 9ek^{(2)} T_{++} T_{++} A_{\text{cov}}^{(2)} \quad \text{(from } e_{- (j)}^{(2)}, j \geq 4) \]

\[= 3ek^{(2)} T_{++} T_{++} A_{\text{cov}}^{(2)}. \]

(20)

We now observe that this variation of \(I_3\) under \(k^{(2)}\) gauge transformations can be compensated by adding extra terms to the transformation laws of the \(W_3\) gauge fields. Using the relation [6]

\[e \frac{2}{2} T_{++} = \frac{1}{6} \frac{1}{1-2y} \left(e_+^{(2)} \delta I_3 \delta e_-^{(2)} + 3 e_+^{(2)} \delta I_3 \delta \bar{e}_-^{(2)} + \bar{e}_+^{(2)} \delta I_3 \delta \bar{e}_-^{(2)} \right), \]

(21)

where we defined \(y = (e_+^{(2)})^2 T_{++}\), we derive the following extra terms in the \(k^{(2)}\) transformations of the \(W_3\) gauge fields:

\[\delta_{\text{extra}} e_\mu^{(1)} = \frac{1}{1-2y} \bar{e}_\mu^{(1)} k^{(2)} T_{++} A_{\text{cov}}^{(2)}, \quad \delta_{\text{extra}} e_\mu^{(2)} = \frac{-2}{1-2y} e_\mu^{(1)} k^{(2)} T_{++} e_+^{(2)} A_{\text{cov}}^{(2)}, \]

\[\delta_{\text{extra}} \bar{e}_\mu^{(1)} = \delta_{\text{extra}} \bar{e}_\mu^{(2)} = 0. \]

(22)

With these terms added to the transformation rules the action \(I_3\) is now gauge invariant.

In a similar way one reconstructs the complete transformation rules for gauge transformations \(k^{(1)}\) (coordinate transformations), \(k_{W}^{(1)}\) (Weyl and Lorentz) and \(k_{W}^{(2)}\) (\(W_3\) Weyl and Lorentz). These rules agree with the results of ref. [6], which were obtained in a different approach (for the \(k_{W}^{(2)}\) transformation the agreement is
up to a redefinition of the parameters: $\lambda^+\equiv [1/(1-2y)] k_w^{(2)}, k\equiv [-1/(1-2y)] k_w^{(2)} e_+^{(2)} T_+^+$.

In the reduction from w_∞ to W_N gauge theories, we put φ^0, F^0 and the higher gauge fields equal to zero by hand. This suggests to look for an action whose field equations yield these constraints. A natural candidate is the gauge theory for $w_1 + \infty$. The algebra of W_3 can be retrieved from the algebra of $w_1 + \infty$ by considering operators $T^{(1)} = (1/2) \text{tr}(\varphi^0 \varphi^0)$ where φ is $u(3)$ valued, and identifying φ^0 with the $u(1)$ current of the $w_1 + \infty$ algebra. (Strictly speaking, one finds a central term in the $[U_m, U_n]$ commutator proportional to $m\delta_{m+n}$. However, for the process of gauging, we expect that only the truncation for $m > 0$ is needed, in which case the central term is not present.) By expanding the φ products into terms with φ^0 and terms independent of φ^0, one obtains an explicit rule how the generators of $W(3)$ are constructed from the generators of $w_1 + \infty$ (this construction is reminiscent of ideas discussed in ref. [12]). It could be interesting to extend these ideas to the corresponding gauge theories.

We finally mention that the constructed gauge multiplets for W_3 and w_∞ as presented here and in ref. [6] appear to be appropriate starting points for the analysis of topological quantum W gravity along the lines of ref. [13].

A.S. thanks the Quantum Group Workshop in Argonne and the University of Chicago, where part of this work was done, for hospitality.

References