Conformational instability of the lowest triplet state of benzene: the result of ab initio calculations

Buma, W.J.; van der Waals, J.H.; Schmidt, J.

DOI
10.1021/ja00183a015

Publication date
1989

Published in
Journal of the American Chemical Society

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Conformational Instability of the Lowest Triplet State of Benzene: The Result of ab Initio Calculations

W. J. Buma,* J. H. van der Waals,† and M. C. van Hemert†

Contribution from the Center for the Study of Excited States of Molecules, Huygens Laboratory, University of Leiden, P.O. Box 9504, 2300 RA Leiden, The Netherlands, and Department of Chemistry, Gorlaeus Laboratories, University of Leiden, P.O. Box 9502, 2300 RA Leiden, The Netherlands. Received June 14, 1988

Abstract: Experiments on the 3Blu state of benzene in the past have established that this state is conformationally unstable due to vibronic coupling with the 3Elu state and that this instability is critically dependent on the influence of a crystal field and substituents. For the 3Blu state of the free molecule, however, the energy differences and sizes of distortion are not known. Since these quantities are of importance for the interpretation of the spectroscopic and photochemical behavior of benzene, the potential energy surface of the 3Blu state along the two-dimensional deformation coordinate S_2 was calculated with large ab initio MRDCI calculations, including σ-π and σ-π correlation. The results show the hexagonal conformation to be unstable and to lie 800 cm$^{-1}$ above an almost cylindrical trough. Calculation of spectroscopic observables yields good agreement with the experimentally observed vibrational spacing and Franck-Condon factors.

The geometry of benzene in its lowest triplet state (3Blu) has received considerable attention since Moffit and Liehr pointed out that, in a static picture, the hexagonal conformation might be unstable because of vibronic coupling between the 3Blu and 3Elu states through ε_g modes. Low-temperature EPR experiments on benzene in a glassy matrix9 and subsequent EPR and ENDOR20 experiments on the C$_6$H$_6$ in C$_6$D$_6$ crystal established that in the solid state the electron spin distribution in the 3Blu state, indeed, is nonhexagonal. Spectroscopic observations1 supported this result; most remarkable amongst these was the strong doublet, of spectroscopic and EPR result9. Because of their semiempirical state have been made, which helped the qualitative interpretation of minimal energy. The dependence on φ, if it exists at all, is very small and much smaller than the stabilization energy. With this

*Huygens Laboratory.
†Gorlaeus Laboratories.
in mind we can understand the dependence of the distortion on a
crystal field and perturbing substituents since these will

in Figure 1. Potential energy curves for the $^3\text{Bu}_1$ state (—) and the component of the $^3\text{Bu}_2$ state (—) to which the $^3\text{Bu}_1$ state is vibronically coupled as a function of the $S_\phi(\rho,\psi)$ symmetry coordinate. Energy 0.0 corresponds to the energy of the $^3\text{Bu}_1$ state in the hexagonal conformation. $\phi = 0^\circ$ and $\psi = 180^\circ$ correspond respectively to quinoid and anti-quinoid conformations.

in order to calculate spectroscopic observables, we have to solve a two-dimensional nuclear Schrödinger equation. When the ϕ dependence of the potential is neglected, which seems justified by our results, the problem is reduced to a one-dimensional differential equation. The vibrational eigenfunctions then are

$$x_{\phi,l} = R_{\rho,l}(\rho) \exp(i\phi)$$ \hspace{1cm} (1)

The radial part of this function was solved variationally.

In Figure 2 the first six calculated vibrational levels are depicted. The energy difference between the two lower levels is 220 cm$^{-1}$, which compares very well with the experimental difference of 245 cm$^{-1}$. The 245 cm$^{-1}$ actually was measured in the presence of a crystal field as a doublet, which agrees with the degeneracy of the $\phi = 1$; $l = \pm 1$ level.

One of the remarkable features in the phosphorescence is the
strong intensity of the 8,9 emission relative to the 8,9 emission.
Using Franck-Condon factors, we derive a ratio of 0.25 in
accordance with the experimentally found ratio of 0.16.

In summary, we have been able to calculate a potential energy
surface for the distortion of the $^3\text{Bu}_1$ state of benzene. The accord
of calculated spectroscopic observables with measured ones gives
us reason to believe that this surface is a good starting point for
the interpretation of the spectroscopy and photochemistry of benzene in its lowest triplet state.

After completion of our manuscript, a paper was published by Osamura, who also investigated the deformation of the lowest triplet state of benzene with results somewhat similar to ours. His work, however, differs from ours in two respects: the correlation not only leads to a lowering of the relative energy minima by some 300 cm$^{-1}$ but, more importantly, also causes the energy difference between the quinoidal and anti-quinoidal forms to vanish, in agreement with the evidence provided by EPR experiments.

Because of the anharmonicity of the potential surface and its
two-dimensional nature, the frequencies inferred from the second
derivatives at the extrema determined in ref 12 express certain
trends but cannot be compared with spectroscopic observables.

Acknowledgment. This work was supported by The Netherlands Foundation for Chemical Research (SON) with financial aid from The Netherlands Organization for Scientific Research (NWO).