Data-driven methods in application to flood defence systems monitoring and analysis

Pyayt, A.L.

Publication date
2014

Citation for published version (APA):
Chapter 1. Introduction

1.1. Levee health monitoring problem

1.2. Overview of flood defence monitoring technologies

1.2.1. Sensor technologies

1.2.2. Modelling approach for flood monitoring

1.3. Motivation and scientific challenges

1.4. Outline of the thesis

Chapter 2. Description of the Monitored Flood Defence Structures

2.1. Short description of the projects

2.1.1. UrbanFlood project

2.1.2. IJkdijk All-in-One Sensor Validation Test (AIO SVT)

2.2. Description of the sensor technologies

2.2.1. Alert Solutions

2.2.2. GTC Kappelmeyer

2.3. The monitored levees

2.3.1. Stammer dike in the Netherlands

2.3.2. Boston dike in the United Kingdom

2.3.3. Rhine levee in Germany

2.3.4. Retaining dam

2.3.5. Zeeland dike in the Netherlands

2.4. Conclusions

Chapter 3. Data Analysis and Anomaly Detection Approach

3.1. State-of-the-art

3.1.1. Application of data-driven methods for monitoring tasks

3.1.2. Anomaly/fault detection methods overview

3.2. General data analysis scheme

3.3. Data complexity evaluation

3.4. Data pre-processing

3.4.1. Common time grid

3.4.2. Filtering

3.4.3. Time series decomposition

3.5. Feature extraction

3.6. Post-processing

3.6.1. Neural Clouds

3.7. Description of the anomaly detection concept

3.7.1. One-side classification approach

3.7.2. Transfer function approach

3.8. Description of the data processing

3.8.1. FFT and STFT components analysis

3.8.2. CWT and MODWT components analysis

3.8.3. Transfer function analysis

3.9. Conclusions