Data-driven methods in application to flood defence systems monitoring and analysis

Pyayt, A.L.

Publication date
2014

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 1. Introduction
1.1. Levee health monitoring problem ... 1
1.2. Overview of flood defence monitoring technologies 2
 1.2.1. Sensor technologies .. 2
 1.2.2. Modelling approach for flood monitoring ... 3
1.3. Motivation and scientific challenges .. 5
1.4. Outline of the thesis ... 6

Chapter 2. Description of the Monitored Flood Defence Structures 9
2.1. Short description of the projects ... 9
 2.1.1. UrbanFlood project .. 9
 2.1.2. IJkdijk All-in-One Sensor Validation Test (AIO SVT) 10
2.2. Description of the sensor technologies .. 12
 2.2.1. Alert Solutions ... 12
 2.2.2. GTC Kappelmeyer ... 12
2.3. The monitored levees .. 14
 2.3.1. Stammer dike in the Netherlands .. 14
 2.3.2. Boston dike in the United Kingdom .. 15
 2.3.3. Rhine levee in Germany ... 15
 2.3.4. Retaining dam .. 16
 2.3.5. Zeeland dike in the Netherlands .. 16
2.4. Conclusions ... 17

Chapter 3. Data Analysis and Anomaly Detection Approach 19
3.1. State-of-the-art .. 19
 3.1.1. Application of data-driven methods for monitoring tasks 19
 3.1.2. Anomaly/fault detection methods overview .. 21
3.2. General data analysis scheme .. 23
3.3. Data complexity evaluation ... 24
3.4. Data pre-processing ... 26
 3.4.1. Common time grid ... 26
 3.4.2. Filtering .. 29
 3.4.3. Time series decomposition .. 31
3.5. Feature extraction ... 33
3.6. Post-processing ... 34
 3.6.1. Neural Clouds .. 34
3.7. Description of the anomaly detection concept ... 36
 3.7.1. One-side classification approach ... 36
 3.7.2. Transfer function approach ... 37
3.8. Description of the data processing ... 38
 3.8.1. FFT and STFT components analysis .. 38
 3.8.2. CWT and MODWT components analysis .. 39
 3.8.3. Transfer function analysis ... 39
3.9. Conclusions ... 40
Chapter 4. Results of the Anomaly Detection

4.1. Stammer dike non-destructive macro-stability experiment
 4.1.1. Description of the experiment
 4.1.2. Results of the anomaly detection

4.2. Zeeland dike non-destructive piping experiment
 4.2.1. Description of the experiment
 4.2.2. First results
 4.2.3. Feature extraction
 4.2.4. Anomaly detection using feature extraction
 4.2.5. Results and conclusions

4.3. Analysis of the Rhine levee data
 4.3.1. Analysis of the Alert Solutions measurements
 4.3.2. Analysis of the GTC Kappelmeyer measurements

4.4. Detecting leaks in the retaining dam
 4.4.1. Anomaly detection results
 4.4.2. The analysis of the Rhine levee and of the retaining dam

4.5. Boston dike sensor faults detection
 4.5.1. Introduction to the Boston levee
 4.5.2. Input sensors selection
 4.5.3. Results from applying the linear transfer function model
 4.5.4. Results from applying the non-linear transfer function model
 4.5.5. Results and conclusions

4.6. Conclusions

Chapter 5. Artificial Intelligence Component

5.1. Requirements for the early warning system component
5.2. Artificial intelligence component development
5.3. AI component of the UrbanFlood EWS
5.4. AnySense Messages Generator
5.5. Combination of AI and ASMG components
5.6. Evolution of the AI component
5.7. Conclusions

Chapter 6. Combination of Data-driven Methods and Physical Modelling

6.1. Approach for combination
6.2. Combination within the UrbanFlood project
 6.2.1. Virtual Dike
 6.2.2. Detection of artificially generated anomaly
6.3. Combination within the IJkdijk project
 6.3.1. Results of physical modelling
 6.3.2. Comparison of virtual and real measurements for the East levee
 6.3.3. Comparison of virtual and real measurements for the West levee
 6.3.4. Anomaly detection on the example of the East levee
6.4. Conclusions

Chapter 7. Conclusions

Summary
Nederlandse Samenvatting 97
Acknowledgements 99
Publications 101
Appendix A. Acronyms and Abbreviations 103
Appendix B. Additional results of Stammer dike data analysis 105
 B.1. Short-time Fourier transform ... 105
 B.2. CWT and MODWT components analysis ... 107
Appendix C. Description of the Methods 111
 C.1. FFT, STFT and phase shift ... 111
 C.2. Maximum overlap discrete wavelet transform (MODWT) 113
 C.3. Daily-seasonal-annual (DSA) transform ... 114
 C.4. Universal threshold .. 115
 C.5. Polynomial autoregressive model .. 115
 C.6. Artificial neural networks .. 116
 C.7. Model quality assessment .. 117
References 119