Data-driven methods in application to flood defence systems monitoring and analysis

Pyayt, A.L.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 1. Introduction

1.1. Levee health monitoring problem .. 1
1.2. Overview of flood defence monitoring technologies 2
 1.2.1. Sensor technologies ... 2
 1.2.2. Modelling approach for flood monitoring 3
1.3. Motivation and scientific challenges .. 5
1.4. Outline of the thesis .. 6

Chapter 2. Description of the Monitored Flood Defence Structures 9

2.1. Short description of the projects .. 9
 2.1.1. UrbanFlood project .. 9
 2.1.2. IJkdijk All-in-One Sensor Validation Test (AIO SVT) 10
2.2. Description of the sensor technologies .. 12
 2.2.1. Alert Solutions ... 12
 2.2.2. GTC Kappelmeyer ... 12
2.3. The monitored levees .. 14
 2.3.1. Stammer dike in the Netherlands ... 14
 2.3.2. Boston dike in the United Kingdom 15
 2.3.3. Rhine levee in Germany ... 15
 2.3.4. Retaining dam .. 16
 2.3.5. Zeeland dike in the Netherlands .. 16
2.4. Conclusions .. 17

Chapter 3. Data Analysis and Anomaly Detection Approach 19

3.1. State-of-the-art .. 19
 3.1.1. Application of data-driven methods for monitoring tasks 19
 3.1.2. Anomaly/fault detection methods overview 21
3.2. General data analysis scheme ... 23
3.3. Data complexity evaluation ... 24
3.4. Data pre-processing .. 26
 3.4.1. Common time grid .. 26
 3.4.2. Filtering .. 29
 3.4.3. Time series decomposition ... 31
3.5. Feature extraction ... 33
3.6. Post-processing .. 34
 3.6.1. Neural Clouds .. 34
3.7. Description of the anomaly detection concept 36
 3.7.1. One-side classification approach 36
 3.7.2. Transfer function approach ... 37
3.8. Description of the data processing .. 38
 3.8.1. FFT and STFT components analysis 38
 3.8.2. CWT and MODWT components analysis 39
 3.8.3. Transfer function analysis .. 39
3.9. Conclusions .. 40
Chapter 4. Results of the Anomaly Detection 43

4.1. Stammer dike non-destructive macro-stability experiment 43
 4.1.1. Description of the experiment 43
 4.1.2. Results of the anomaly detection 43

4.2. Zeeland dike non-destructive piping experiment 45
 4.2.1. Description of the experiment 45
 4.2.2. First results 46
 4.2.3. Feature extraction 46
 4.2.4. Anomaly detection using feature extraction 50
 4.2.5. Results and conclusions 52

4.3. Analysis of the Rhine levee data 53
 4.3.1. Analysis of the Alert Solutions measurements 53
 4.3.2. Analysis of the GTC Kappelmeyer measurements 54

4.4. Detecting leaks in the retaining dam 56
 4.4.1. Anomaly detection results 56
 4.4.2. The analysis of the Rhine levee and of the retaining dam 58

4.5. Boston dike sensor faults detection 59
 4.5.1. Introduction to the Boston levee 59
 4.5.2. Input sensors selection 60
 4.5.3. Results from applying the linear transfer function model 60
 4.5.4. Results from applying the non-linear transfer function model 62
 4.5.5. Results and conclusions 64

4.6. Conclusions 64

Chapter 5. Artificial Intelligence Component 67

5.1. Requirements for the early warning system component 67
5.2. Artificial intelligence component development 67
5.3. AI component of the UrbanFlood EWS 69
5.4. AnySense Messages Generator 70
5.5. Combination of AI and ASMG components 71
5.6. Evolution of the AI component 72
5.7. Conclusions 75

Chapter 6. Combination of Data-driven Methods and Physical Modelling 77

6.1. Approach for combination 77
6.2. Combination within the UrbanFlood project 79
 6.2.1. Virtual Dike 79
 6.2.2. Detection of artificially generated anomaly 81
6.3. Combination within the IJkdijk project 82
 6.3.1. Results of physical modelling 82
 6.3.2. Comparison of virtual and real measurements for the East levee 85
 6.3.3. Comparison of virtual and real measurements for the West levee 86
 6.3.4. Anomaly detection on the example of the East levee 87
6.4. Conclusions 90

Chapter 7. Conclusions 91

Summary 95
Nederlandse Samenvatting
Acknowledgements
Publications
Appendix A. Acronyms and Abbreviations
Appendix B. Additional results of Stammer dike data analysis
 B.1. Short-time Fourier transform
 B.2. CWT and MODWT components analysis
Appendix C. Description of the Methods
 C.1. FFT, STFT and phase shift
 C.2. Maximum overlap discrete wavelet transform (MODWT)
 C.3. Daily-seasonal-annual (DSA) transform
 C.4. Universal threshold
 C.5. Polynomial autoregressive model
 C.6. Artificial neural networks
 C.7. Model quality assessment
References