Data-driven methods in application to flood defence systems monitoring and analysis

Pyayt, A.L.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 4. Results of the Anomaly Detection

4.1. Stammer dike non-destructive macro-stability experiment
 4.1.1. Description of the experiment
 4.1.2. Results of the anomaly detection

4.2. Zeeland dike non-destructive piping experiment
 4.2.1. Description of the experiment
 4.2.2. First results
 4.2.3. Feature extraction
 4.2.4. Anomaly detection using feature extraction
 4.2.5. Results and conclusions

4.3. Analysis of the Rhine levee data
 4.3.1. Analysis of the Alert Solutions measurements
 4.3.2. Analysis of the GTC Kappelmeyer measurements

4.4. Detecting leaks in the retaining dam
 4.4.1. Anomaly detection results
 4.4.2. The analysis of the Rhine levee and of the retaining dam

4.5. Boston dike sensor faults detection
 4.5.1. Introduction to the Boston levee
 4.5.2. Input sensors selection
 4.5.3. Results from applying the linear transfer function model
 4.5.4. Results from applying the non-linear transfer function model
 4.5.5. Results and conclusions

4.6. Conclusions

Chapter 5. Artificial Intelligence Component

5.1. Requirements for the early warning system component
5.2. Artificial intelligence component development
5.3. AI component of the UrbanFlood EWS
5.4. AnySense Messages Generator
5.5. Combination of AI and ASMG components
5.6. Evolution of the AI component
5.7. Conclusions

Chapter 6. Combination of Data-driven Methods and Physical Modelling

6.1. Approach for combination
6.2. Combination within the UrbanFlood project
 6.2.1. Virtual Dike
 6.2.2. Detection of artificially generated anomaly
6.3. Combination within the IJkdijk project
 6.3.1. Results of physical modelling
 6.3.2. Comparison of virtual and real measurements for the East levee
 6.3.3. Comparison of virtual and real measurements for the West levee
6.3.4. Anomaly detection on the example of the East levee
6.4. Conclusions

Chapter 7. Conclusions

Summary
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nederlandse Samenvatting</td>
<td>97</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>99</td>
</tr>
<tr>
<td>Publications</td>
<td>101</td>
</tr>
<tr>
<td>Appendix A. Acronyms and Abbreviations</td>
<td>103</td>
</tr>
<tr>
<td>Appendix B. Additional results of Stammer dike data analysis</td>
<td>105</td>
</tr>
<tr>
<td>B.1. Short-time Fourier transform</td>
<td></td>
</tr>
<tr>
<td>B.2. CWT and MODWT components analysis</td>
<td>107</td>
</tr>
<tr>
<td>Appendix C. Description of the Methods</td>
<td>111</td>
</tr>
<tr>
<td>C.1. FFT, STFT and phase shift</td>
<td></td>
</tr>
<tr>
<td>C.2. Maximum overlap discrete wavelet transform (MODWT)</td>
<td>113</td>
</tr>
<tr>
<td>C.3. Daily-seasonal-annual (DSA) transform</td>
<td>114</td>
</tr>
<tr>
<td>C.4. Universal threshold</td>
<td></td>
</tr>
<tr>
<td>C.5. Polynomial autoregressive model</td>
<td>115</td>
</tr>
<tr>
<td>C.6. Artificial neural networks</td>
<td></td>
</tr>
<tr>
<td>C.7. Model quality assessment</td>
<td>117</td>
</tr>
<tr>
<td>References</td>
<td>119</td>
</tr>
</tbody>
</table>