Rational Optimization of Supramolecular Catalysts for the Rhodium-Catalyzed Asymmetric Hydrogenation Reaction

Daubignard, J.; Detz, R.J.; Jans, A.C.H.; de Bruin, B.; Reek, J.N.H.

Published in:
Angewandte Chemie, International Edition

DOI:
10.1002/anie.201707670
10.1002/ange.201707670

Link to publication

License
CC BY-NC

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 10 Jan 2021
Rational Optimization of Supramolecular Catalysts for the Rhodium-Catalyzed Asymmetric Hydrogenation Reaction

Julien Daubignard, Remko J. Detz, Anne C. H. Jans, Bas de Bruin, and Joost N. H. Reek*

Abstract: Rational design of catalysts for asymmetric transformations is a longstanding challenge in the field of catalysis. In the current contribution we report a catalyst in which a hydrogen bond between the substrate and the catalyst plays a crucial role in determining the selectivity and the rate of the catalytic hydrogenation reaction, as is evident from a combination of experiments and DFT calculations. Detailed insight allowed in situ mutation of the catalyst such that only this hydrogen bond interaction is stronger, predicting that the new catalyst is faster. Indeed, we experimentally confirmed that optimization of the catalyst can be realized by increasing the hydrogen bond strength of this interaction by going from a urea to phosphine oxide H-bond acceptor on the ligand.

The asymmetric hydrogenation reaction is undoubtedly the most powerful asymmetric transformation for the fine chemical industry as it provides a rather general strategy to create chiral centers in organic molecules.[1] As the synthesis of the desired products cannot always be reached using the existing catalysts, the search for new methods and concepts has received considerable attention.[2] Combinatorial chemistry approaches and high-throughput catalyst screenings have been demonstrated to be increasingly important.[3] For the generation of catalyst libraries based on chiral ligands, the use of supramolecular ligand building blocks that form bidentate ligands by self-assembly is a powerful strategy as the number of catalysts grows exponentially with the number of synthesized building blocks.[4] Next to interactions between the two ligand building blocks, hydrogen bonding between functional groups of the substrate and the ligands at the metal complex can contribute to catalyst selectivity.[5] One of the major goals in the area of asymmetric hydrogenation, or more general in the field of catalysis, would be the rational design of transition metal catalysts. Although for several catalyst systems detailed knowledge on the reaction mechanism has been obtained,[6] prediction of the catalyst properties is still very challenging.[7]

However, when the selectivity of a catalytic reaction is controlled by supramolecular interactions, further rational optimization could be performed, guided by theoretical prediction. Herein we report the first example of rational design of a catalyst for the asymmetric hydrogenation reaction by optimization of the supramolecular interactions between the substrate and the catalyst, leading to enhanced activity and superior selectivity in the hydrogenation of hydroxy-functionalized di- and trisubstituted alkenes. In order to allow a rational approach, the reaction mechanism of the supramolecular catalyst used was investigated by means of X-ray crystallography, NMR spectroscopy, kinetic studies, and DFT calculations of the reaction pathway. Subsequently, the relevant supramolecular interactions between the substrate and the catalytic were optimized in silico, resulting in the rational design of a second generation of catalysts. Catalytic and kinetic experiments with the newly prepared catalysts confirmed that both the activity and the selectivity are improved.

We previously reported the use of complex [Rh(L1)(L5)-(cod)]BF4 as a new selective catalyst based on a self-assembled supramolecular hetero-bidentate ligand, formed by a single hydrogen bond between the NH group of a phosphoramidite and the urea carbonyl of a urea-functionalized phosphine (Scheme 1).[8] This complex affords the highest enantioselectivity (> 99% ee) reported up to now for the hydrogenation of methyl 2-hydroxymethylacrylate (and several of its derivatives), which upon hydrogenation forms the so-called “Roche ester”, an important intermediate in the preparation of several biologically active compounds. Catal-

Scheme 1. The chemical structures of the ligand building blocks with H-bond acceptors (L1–L4) and H-bond donor (L5), and a typical example of a self-assembled bidentate ligands around a rhodium complex (6).
ysis results show that hydrogen bonding between the catalyst and the substrate plays an important role for achieving this high selectivity (Table 1).

In the context of further rational optimization by computational strategies we decided to study the origin of the high selectivity in detail. The X-ray analysis of [Rh((L1)(L5))(cod)]BF₄ as the precatalyst as well as the solvento complex that is formed after hydrogenation of the cod (1,5-cyclooctadiene), confirmed the presence of the hydrogen bond between the PNH group of the phosphoramidite and the carbonyl group of the urea-functionalized phosphine, as predicted by the DFT computed structures. (These structures will be published in a full paper.) The acetonitrile complex that was obtained after hydrogenation of the cod was also characterized in solution and in the solid state. This complex appeared to be sufficiently stable to allow further substrate coordination studies.

Upon addition of the trisubstituted alkene S₃ to a solution of the solvento complex in dichloromethane (see the Supporting Information), the substrate–catalyst complex A in which both the carbonyl and the alkene of the prochiral substrate are coordinated to the rhodium center was identified by NMR spectroscopy as the major species. Additional 2D ¹H–¹H COSY experiments and DFT calculations revealed that the hydrogen bond between the substrate and the functional group is not with the ester group of L₅, as previously proposed. Instead, the OH group inserts in the existing hydrogen bond between L₁ and L₅, leading to the formation of two hydrogen bonds between the substrate and the complex (Figure 1). This complex was found to be 5.45 kcal mol⁻¹ more stable than the alternative complexes that were computed, and as such is the major catalyst–substrate species observed in solution. The binding of substrate S₃ and S₄, which is the methoxy protected analogue of S₃ that cannot form hydrogen bonds, to the solvento complex was also studied by UV–vis titrations. The binding of S₃ was found to be 2 kcal mol⁻¹ stronger than for S₄ in line with the proposed hydrogen bond formation.

In order to further unravel the mechanism of the hydrogenation reaction with this complex as catalyst, in situ ¹³P NMR experiments were performed, indicating that the solvento complex was the resting state of the reaction. As no hydrides could be detected when the complex was pressurized, the reaction follows the unsaturated pathway (as displayed in Scheme 2), meaning substrate coordination is required prior to oxidative addition of molecular hydrogen.

Next, a series of kinetic experiments were performed, monitored by gas uptake, to elucidate the kinetics of the reaction, which confirmed the earlier described reaction mechanism. The kinetic data obtained for both substrates S₃ and S₄ could be fitted using the Michaelis–Menten rate equation. The Michaelis–Menten constants obtained for these substrates again confirmed a stronger binding of S₃ to the rhodium complex compared to S₄. Interestingly, also Vₘₐₓ (the maximum rate of the catalyst at substrate saturation) appeared to be higher for S₃, suggesting that the hydrogen bond also resulted in an overall lower energy barrier. This was further studied by computing the reaction pathways using DFT calculations. A detailed computational study of the different reaction pathways (unsaturated pathway, dihydride

<table>
<thead>
<tr>
<th>Substrate</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>Conv [%]</th>
<th>ee [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S¹</td>
<td>OH</td>
<td>Me</td>
<td>H</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>S²</td>
<td>OH</td>
<td>tBu</td>
<td>H</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>S³</td>
<td>OH</td>
<td>Me</td>
<td>Ph</td>
<td>83</td>
<td>96(5)</td>
</tr>
<tr>
<td>S⁴</td>
<td>OMe</td>
<td>Me</td>
<td>Ph</td>
<td>67</td>
<td>25(5)</td>
</tr>
</tbody>
</table>

[a] [Rh((L1)(L5))(cod)] = 0.2 mM, [substrate] = 0.1 mM, solvent: CH₂Cl₂, reaction performed at 10 bar H₂ pressure at 25 °C for 16 h. [b] Results previously reported in Ref. [8]. [c] ee obtained for this substrate varies between 96 and 99%. [d] E isomer.

Figure 1. Optimized structure of the catalyst–substrate complex Rh-(L₁)(L₅)(S₃) (left) and the rate-determining transition state of the hydride migration step (right) in which two hydrogen bonds are formed between the catalyst and S₃.

Scheme 2. Proposed catalytic cycle for the supramolecular rhodium-catalyzed asymmetric hydrogenation reaction of hydroxy-functionalized alkenes.
pathway and semi-dihydride pathway) revealed that the unsaturated pathway is energetically favored. Importantly, for the lowest energy pathway, the hydrogen bonds between the substrate and the ligands are present throughout the reaction. The rate-determining transition state is represented by the hydride migration step B (Scheme 2 and Figure 3), in line with the kinetic studies. Importantly, this TS structure is stabilized by the hydrogen bond to a larger extent than the substrate complex, explaining the higher V_{max} obtained for the substrate that can form hydrogen bonds. Inspection of the structures in detail shows that the geometry of transition state is more suited to accommodate the hydrogen bonds as is reflected in the shorter NH–O and OH–carbonyl distances (Figure 1).

From this mechanistic study it is clear that hydrogen bonds between the substrate and the ligands play a crucial role in determining both the selectivity and the activity. With this knowledge in mind, we wondered if it would be possible to generate a better catalyst based on rational design by targeting these interactions. As phosphine-oxides are known to be the strongest hydrogen bond acceptors, we aimed for replacing urea-phosphine building block L_1 in the complex for a phosphine-oxide analogue. DFT-optimized structures of catalyst substrate complexes based on building block L_2 and L_3 showed that ligand L_3 forms complexes that are structurally most similar to the parent complex (see Figure 2). Clearly, the phosphine oxide takes the role of the urea group: forming a hydrogen bond with the OH group of the substrate. Additionally, we could further optimize the strength of the hydrogen bond by changing the substituents on the phosphine oxide group for methyl groups. NMR studies on a solution of complex $\text{Rh(L3)(L5)(cod)BF}_4$ and $\text{Rh(L4)(L5)(cod)BF}_4$ showed that indeed complexes are formed that are very similar to that of $\text{Rh(L1)(L5)(cod)BF}_4$. In line with a stronger binding between the ligands, a large shift of the NH in 1H NMR was observed with the bis-phosphine monoxide ligands (BPMO). Importantly, 2D COSY NMR experiments showed that the hydrogen bonds between the catalyst and the substrate in complex $\text{Rh(L3)(L5)(S3)BF}_4$ are similar to those found for the analogues urea-based system.

To confirm that the stronger hydrogen bond also translates in better catalysis, we computed the reaction pathway of the hydrogenation of substrate S_3 by complex Rh(L3)-(L5)BF_4 using DFT methods. As for the first generation catalyst, the energy profile of the reaction displays an uphill profile and the rate-determining step is also represented by the hydride migration transition state structure D. The calculated pathways of the hydrogenation of substrate S_3 by complex [Rh(L1)(L5)]BF_4 and [Rh(L3)(L5)]BF_4 are plotted on the same graph in Figure 3 and it is clear that the predicted overall energy barrier is lower by 2.34 kcal mol$^{-1}$ for [Rh(L3)(L5)]BF_4. Therefore, the stronger hydrogen bond acceptor, by going from the urea to the phosphine oxide group, is predicted to provide faster catalysis.

To verify our prediction, the performance of various rhodium complexes based on self-assembled ligands, using hydrogen bond donor L_5 and one of the hydrogen bond acceptors from L_1–L_4, was evaluated in the asymmetric hydrogenation of substrate S_3 by monitoring the reaction rate by gas uptake experiments (Table 2). In line with the prediction from the computational studies, the reaction is much faster when the phosphine oxide-based catalyst [Rh(L3)(L5)]BF_4 is applied, compared to the parent [Rh(L1)-(L5)]BF_4 and also the selectivity significantly improved.

Table 2: Hydrogenation of substrate S_3 by complexes [Rh(L1)(L5)], [Rh(L2)(L5)], [Rh(L3)(L5)] and [Rh(L4)(L5)].

<table>
<thead>
<tr>
<th>Entry</th>
<th>Complex</th>
<th>Conv. [%]$^{[b]}$</th>
<th>TOF$^{[b]}$</th>
<th>$ee^{[c]}$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[Rh(L1)(L5)]BF_4</td>
<td>98</td>
<td>875</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>[Rh(L3)(L5)]BF_4</td>
<td>100</td>
<td>3644</td>
<td>> 99</td>
</tr>
<tr>
<td>3</td>
<td>[Rh(L2)(L5)]BF_4</td>
<td>39</td>
<td>335</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>[Rh(L4)(L5)]BF_4</td>
<td>99</td>
<td>4561</td>
<td>> 99</td>
</tr>
</tbody>
</table>

$^{[a]}$ Reagents and conditions: $[\text{Rh}] = 0.2$ mm, S/C ratio = 1000, 25 °C, 20 hours, pH$_2$ = 10 bar. $^{[b]}$ Determined by 1H NMR spectroscopy. $^{[c]}$ Turnover frequencies calculated at 15% conversion. $^{[d]}$ Determined by HPLC.
Supramolecular ligands - Molecular strategies - Computational chemistry - Catalyst design - Rhodium - Hydrogenation

Keywords: supramolecular ligands - computational chemistry - ligand design - rhodium - supramolecular ligands

How to cite: Angew. Chem. Int. Ed. 2017, 56, 13056–13060
Angew. Chem. 2017, 129, 13236–13240

Acknowledgements

This work was financially supported by a TOP grant to J.N.H.R., provided by the Dutch national science foundation (NWO). We thank Vivek Sinha for his help on the DFT calculations.

Conflict of interest

The authors declare no conflict of interest.

Keywords: asymmetric hydrogenation - catalyst prediction - computational chemistry - ligand design - rhodium - supramolecular ligands

Conflict of interest

The authors declare no conflict of interest.

Keywords: asymmetric hydrogenation - catalyst prediction - computational chemistry - ligand design - rhodium - supramolecular ligands

Conflict of interest

The authors declare no conflict of interest.

Keywords: asymmetric hydrogenation - catalyst prediction - computational chemistry - ligand design - rhodium - supramolecular ligands

Conflict of interest

The authors declare no conflict of interest.

Keywords: asymmetric hydrogenation - catalyst prediction - computational chemistry - ligand design - rhodium - supramolecular ligands

Conflict of interest

The authors declare no conflict of interest.

