Switching Colloidal Superstructures by Critical Casimir Forces

Nguyen, T.A.; Newton, A.; Veen, S.J.; Kraft, D.J.; Bolhuis, P.G.; Schall, P.

DOI
10.1002/adma.201700819

Publication date
2017

Document Version
Final published version

Published in
Advanced materials

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date: 13 Jun 2021
Switching Colloidal Superstructures by Critical Casimir Forces

Truc A. Nguyen, Arthur Newton, Sandra J. Veen, Daniela J. Kraft, Peter G. Bolhuis, and Peter Schall*

Recent breakthroughs in colloidal synthesis promise the bottom-up assembly of superstructures on nano- and micrometer length scales, offering molecular analogues on the colloidal scale. However, a structural control similar to that in supramolecular chemistry remains very challenging. Here, colloidal superstructures are built and controlled using critical Casimir forces on patchy colloidal particles. These solvent-mediated forces offer direct analogues of molecular bonds, allowing patch-to-patch binding with exquisite temperature control of bond strength and stiffness. Particles with two patches are shown to form linear chains undergoing morphological changes with temperature, resembling a polymer collapse under poor-solvent conditions. This reversible temperature switching carries over to particles with higher valency, exhibiting a variety of patch-to-patch bonded structures. Using Monte Carlo simulations, it is shown that the collapse results from the growing interaction range favoring close-packed configurations. These results offer new opportunities for the active control of complex structures at the nano and micrometer scale, paving the way to novel temperature-switchable materials.

Both nature and chemistry provide many examples of molecular compounds whose structures adapt depending on changes in their environment, from the pH-dependent state of proteins to light-sensitive compounds in photochemistry. In the field of nano and microassembly, such exquisite control over structural complexity and functionality remains challenging. Still, recent progress in colloidal particle synthesis promises the assembly of complex colloidal structures, offering analogues of molecular compounds with designed structure and properties at orders of magnitude larger length scale. In particular, patchy particles promise the ability to build colloidal superstructures, opening a new route toward bottom-up structural design. Moreover, the use of specific ligands and DNA bonding has allowed the assembly of several dedicated colloidal structures and can be finely adjusted via the temperature-dependent solvent correlation length. Independent of whether these forces involve critical fluctuations or preferential wetting, recent research has highlighted the unique opportunities to assemble both equilibrium and out-of-equilibrium structures.

Combined with recently synthesized multivalent patchy particles, this promises a generic way to assemble dedicated superstructures: As the Casimir force depends uniquely on the boundary conditions, the use of specific superstructures that are analogues of molecular bonds and structures.

Here, we show that the application of critical Casimir forces on multivalent patchy particles indeed allows fine control over the assembly of colloidal superstructures. We demonstrate specific and adjustable critical Casimir bonding of hydrophobic and hydrophilic particle patches with in situ control over bond energy, range, and bond stiffness. We assemble dimer particles into colloidal analogues of molecular polymers with adjustable bending stiffness, which we measure directly from thermally activated bending fluctuations. These colloidal polymers exhibit a collapse transition close to the solvent critical point, reminiscent of molecular polymer collapse when solvent conditions change from good to poor. Using Monte Carlo simulations with an optimized potential based on experimentally measured pair correlation functions, we show that the colloidal chain collapse results from the growing interaction range due to the increasing solvent correlation length close to the solvent critical point. We demonstrate that this experimental control
applies also to particles with higher valence such as trimers and tetramers, allowing the assembly of even more complex, switchable structures. These results open new routes to the in situ control of nanostructures with actively controllable mechanical properties and morphologies.

We synthesize patchy particles by swelling and polymerizing clusters of polymethylmethacrylate spheres of radius \( R = 1.15 \text{ nm} \) with a methylmethacrylate/methacrylic acid shell, resulting in geometrically well-defined patches with rotational symmetry (see the Supporting Information).\[^{[28]}\] Hydrophobic affinity of the particle patches is achieved by grafting a polyhydroxy stearic acid-copolymer onto the patch surface. The central part of the patchy particles is made hydrophilic by using the ionic initiator potassium persulfate. These particles are dispersed in the homogeneous phase of a binary solvent of heavy water and 3-methylpyridine (3MP) at temperatures \( \Delta T \) below the critical temperature \( T_c = 38.55 \degree C \), determined by light scattering and microscopy from solvent phase separation at the critical composition. Solvents were prepared with 3MP weight fractions \( c_{\text{3MP}} = 0.25 \) and \( 0.31 \), slightly to the left and right of the critical composition \( c_c = 0.28 \)[\(^{[29]}\)] respectively. Due to their hydrophobicity, the particle patches have strong affinity for the nonaqueous component (3MP) of the binary solvent, while the hydrophilic shells have affinity for water. When approaching the critical temperature from below, the homogeneous solvent shows increasing composition fluctuations. Confined in the liquid gap between the particle surfaces, these composition fluctuations give rise to a Casimir-like force\[^{[30]}\] known as the critical Casimir force. Because strong critical Casimir forces arise in solvents poor in the component preferred by the particle surfaces,\[^{[31–33]}\] this should lead to binding of the hydrophobic patches in 3MP-poor, and of the hydrophilic shells in 3MP-rich solvents, see Figure 1a,b.

Indeed we observe that in solvents with concentrations \( c_{\text{3MP}} < c_c \), the particle patches approach each other at temperatures close to \( T_c \), and dimer particles assemble into directed, chain-like structures as shown in Figure 1c. By contrast, in 3MP-rich solvents, the particle patches approach each other by parallel structures resulting in distinct parallel structures (Figure 1d). This site-specific interaction leads to increasingly complex structures for higher-valency particles, as shown in Figure 1g–l, where we display trimer particles interacting in the same solvents as before. Here, the patch-to-patch binding in 3MP-poor solvents leads to staggered chains (Figure 1i,k), while the side-by-side binding in 3MP-rich solvents leads to bent filaments associated with the dense alternating stacking of trimers (Figure 1j,l). In all cases, the assembly is fully reversible as confirmed by the break-up of aggregates upon lowering the temperature several degrees below \( T_c \). This specific bonding can be further tuned by varying the patch width: using particles with narrower patches, we observe that bond angles narrow, and the bonding becomes even more specific, in agreement with simulation predictions,\[^{[34]}\] as shown in Figure S1 in the Supporting Information. We hence achieve specific, reversible critical Casimir interactions associated with the surface-specific adsorption preferences that set the boundary conditions of the critical Casimir force.

The advantage of the critical Casimir interaction is that we can in situ control the magnitude and range of the site-specific attraction, thereby changing the bond and bending stiffness of the structures. We focus on dimer particles and measure the bond stiffness directly from thermal fluctuations in the positions and alignment of bonded dimer pairs. For each temperature, we record several thousand images of particle configurations to determine distances between neighboring

---

**Figure 1.** Bonding of dimer and trimer particles by critical Casimir forces. a–f) Bonding of dimer particles in 3MP-poor (left) and 3MP-rich solvents (right). a,b) Principle of the specific critical Casimir interaction: 3MP-rich fluctuations confined between hydrophobic patches (P) cause patch-to-patch binding for solvent compositions \( c_{\text{3MP}} < c_c \) (a), while water-rich fluctuations confined between hydrophilic shells (L) lead to shell-to-shell binding for solvent compositions \( c_{\text{3MP}} > c_c \) (b). c,d) Confocal microscope images and e,f) schematic of resulting particle configurations. Chain-like structures in solvents with \( c_{\text{3MP}} = 0.25 < c_c \) demonstrate patch-to-patch binding (c,e), while parallel structures in solvents with \( c_{\text{3MP}} = 0.31 \) demonstrate sideways attraction (d,f). The inset in panel (c) shows scanning electron microscope (SEM) image of dimer particle. g–l) Bonding of trimer particles in 3MP-poor (left) and 3MP-rich solvents (right): schematic (g,h), confocal microscope images (i,j) and schematic of particle configurations (k,l). Staggered chains indicate patch binding (i,k), while curled filaments indicate shell binding (j,l).
particle centres in the form of radial distribution functions (see Figure 2a). These distributions are broadened by particle polydispersity and locating inaccuracies; to find the pair potential, we therefore used simulations to predict pair correlation functions based on an effective pair potential model, and determined those that best match the measured distributions. We use a divalent particle model consisting of two fused spheres (patches) of radius $R$ interacting via effective attractive pair potentials as introduced in ref. [35] In principle also repulsive critical Casimir forces act between unlike parts of the dimer particle, which we account for only implicitly by the choice of fitting parameters below. Furthermore, while for spherical particles, more exact models for critical Casimir interactions are available,[19,23] we find that this simple model provides a good approximation at the relevant (large) particle surface distances.[36] The patch–patch potential is assumed to be isotropic and determined by a balance of a repulsive screened electrostatic potential and a solvent-mediated attractive Casimir potential according to $U = U_{el} - U_{Cas}$, where $U_{el} = A_{el} \exp[-(r - 2R)/l_D]$ and $U_{Cas} = A_{Cas} \exp[-(r - 2R)/\xi]$, with $r$ the separation of the centres of two spheres not belonging to the same dumbbell, $A_{el}$ the strength of the electrostatic repulsion, $A_{Cas}$ the amplitude of the critical Casimir force and the solvent correlation length $\xi = \xi(c_{3MP}, \Delta T)$ that depends on both solvent composition and temperature. For our solvents close to the critical composition, we use the simplified scaling $\xi = \xi(\Delta T/T_c)^{-0.63}$ of the critical composition, which for temperatures $\Delta T \gtrsim 1$ °C is within 5% of the actual off-critical correlation length.[17] We also neglect Van der Waals forces that are not important for the observed reversible assembly. Using
of the polymer-coated patches, which restrict the orientational
structure. This rather high stiffness is not present in the effective
stiffness in Figure 2c. Hence, we can adjust the chain stiffness
to the same order of magnitude as the directly measured bending
stiffness in Figure 2c, after a jump to \( \Delta T = 0.05 \) \( ^\circ \text{C} \) in Figure 3a. The dimer particles
approach each other sideways, and eventually form a close-
packed arrangement. In this close-packed state, a particle has
more bonding neighbours, and hence larger bond energy. The
observed collapse transition is reminiscent of a polymer col-

delicate control to assemble complex colloidal superstructures.
Their temperature dependence offers direct in situ adjustment of
the bond stiffness, allowing the mechanical properties of the
assembled structure to be tailored and switched between dif-

erent morphological states. We have demonstrated this new
control for dimer particles forming chains that resemble molecular polymers. By adjusting the strength and range of the patchy interaction, we varied the chain’s bending rigidity, and induced collapses into compact states resembling molecular polymer collapse. Besides DNA bonding and depletion interaction on anisotropic particles, for which temperature dependence can be in principle introduced using temperature-dependent depletant, our system offers an effective, solvent-mediated interaction that implicitly depends on temperature in a universal way. Application to higher-valency particles allows the formation of more complex superstructures, with in situ control over their mechanical properties and structural morphology. This principle introduces flexibility and responsiveness into complex assembled colloidal structures on the way to analogues of molecular compounds. Because statistical mechanics dictates the equilibrium structure as the one exhibiting the lowest free energy, in analogy to molecular structures, this opens the door to the design of complex colloidal superstructures through fine control of patchy particle interactions.

**Supporting Information**

Supporting Information is available from the Wiley Online Library or from the author.

**Acknowledgements**

This work was supported by the Foundation for Fundamental Research on Matter (FOM), which is subsidized by the Netherlands Organization for Scientific Research (NWO), and by a Vici grant from NWO.

**Conflict of Interest**

The authors declare no conflict of interest.

**Keywords**

colloidal assembly, critical Casimir effect, nanoassembly, patchy colloids

Received: February 9, 2017
Revised: June 9, 2017
Published online: July 10, 2017