Novel DNA structures resulting from Dtam3 excision in tobacco

Published in:
Plant Molecular Biology

DOI:
10.1007/BF00037139

Citation for published version (APA):
Novel DNA structures resulting from dTam3 excision in tobacco

Michel A. Haring¹,³, Steve Scofield², Marianne J. Teeuwen-de Vroomen¹, Gerjan S. Leuring¹, H. John J. Nijkamp¹ and Jacques Hille¹*

¹Dept. of Genetics, Free University, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands (*author for correspondence); ²The Sainsbury Laboratory, John Innes Institute, Colney Lane, Norwich NR4 7UH, United Kingdom; ³Present address: Molecular Cell Biology, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, Netherlands

Received 19 March 1991; accepted in revised form 1 July 1991

Key words: transposition, Tam3, two-element system, excision sites, rearrangements

Abstract

A Tam3 two-element system has been designed by combining an immobilized Tam3 element with a non-autonomous dTam3 element inserted into the HPT gene. The phenotypic assay employed, restored hygromycin resistance, indicated that trans-activation of the non-autonomous dTam3 element occurred. Molecular analyses of the excision sites revealed that the ends of the dTam3 element remain in the empty donor sites. The predominant consequence of this type of excision appears to be that excised fragments fail to re-integrate into the tobacco genome. Only one case of dTam3 re-integration could be detected. The ends of this element had been degraded upon integration into the tobacco genome. Either the altered structure of the Tam3 derivatives or tobacco host factors are influencing the trans-activation of a dTam3 element, resulting in aberrant excision.

Introduction

The plant transposable elements Ac, Spm (from maize) and Tam1 and Tam3 (from snapdragon) are thought to transpose by a mechanism which involves excision of a single copy of the transposon from one site in the plant genome and re-integration of the same copy at a new site. During this process all of these transposable elements induce a target site duplication upon integration into the host genome [3, 6, 20, 25]. Perfect excision of a plant transposable element would thus generate a direct repeat of this sequence, but frequently, if not always, an altered sequence is generated as a result of imprecise repair of the empty donor site by the DNA repair mechanisms of a plant cell. These empty donor site changes include deletions, inversions or additions of several base pairs [2, 6, 31]. One model explaining these small-scale rearrangements proposes that upon excision the DNA repair mechanism induces these changes, while repairing the staggered cut made by the transposase. This model predicts that an extra-chromosomal form of the transposon would occur after cleavage at both termini during excision and prior to re-integration. This extra-chromosomal form, however, could be very transitory. In the case of the maize transposable element Mu extra-chromosomal circles have been detected which might represent such intermedi-
ates and, more recently, PCR analysis of dSpm transposition in tobacco has provided evidence for a linear dSpm intermediate of transposition [23].

An alternative model has been proposed by Robbins et al. [26], based on large-scale rearrangements induced by Tam3 transposition. This model proposes that the donor and recipient site of the host chromosome become associated during the transposition process. In the course of excision cleavage occurs at both termini sequentially. The first end is cut and becomes ligated to the new site of insertion prior to cleavage at the second end. In this case no extra-chromosomal form of the transposon occurs. Not only does this model explain why transposable elements can cause large-scale rearrangements and chromosome breakage, it also provides an explanation for the preferential transposition of the plant transposable elements Ac, Spm and Tam3 to closely linked sites on the chromosome [9, 16, 17]. As Ac retains this property in a new host (tobacco) it can be envisaged that this behaviour is inherent in the transposition mechanism.

With the introduction of Ac into new hosts it became clear in subsequent analyses that the maize Ac and Ds elements retain most of their properties in heterologous hosts [1, 11, 13, 14]. On the contrary, a Tam3 two-element system appears to be unable to perform the transposition process with the same efficiency and accuracy as the autonomous Tam3 element in both tobacco and Antirrhinum [20, 21]. A non-autonomous Tam3 element (dTam3), which is activated in trans by a 'wings-clipped' Tam3 element (Tam3 ATIR), produces rearrangements in the HPT gene it excises from, while re-integration of the dTam3 element was detected in only one out of six plants analysed [12]. In this paper we present the analysis of the empty donor sites produced by aberrant dTam3 excision. Only one re-integrated dTam3 element could be recovered from the tobacco genome. Analysis of this dTam3 element and its flanking sequences indicates deletion of the ends of the transposable element and integration by a process different from transposon-induced integration.

Materials and methods

Plant materials and transformation

Transgenic tobacco plants were used for a second round of Agrobacterium transformation. Plant numbers 2001, 2002 and 2008 harbour a single copy of the T-DNA from plasmid pTT21806 (Tam3 ATIR). Plant number 2105 harbours the T-DNA of plasmid pTT21840 (dTam3). Plants were selected from a F1 progeny by DNA gel blot analysis and grown in the greenhouse prior to transformation. Leaf discs of the tobacco plants were incubated with Agrobacterium LBA4404 strains containing plasmid pTT21808 (Tam3 ATIR), in the case of plant 2105 and plasmid pTT21840 (dTam3-HPT) in the case of plants 2001, 2002 and 2008. Selection was carried out on medium containing hygromycin (20–40 mg/l) [10, 12].

Molecular techniques

DNA gel blots were performed as described [10]. The polymerase chain reaction [28] was carried out to amplify the empty donor site fragments from hygromycin-resistant plants using a CaMV 35S primer (GGCTGCAGTCTCCACTGACGTAAGGGATGACG), a reverse HPT primer (AGCTGAAAGCA CCGAGAATTCTTCGC) and the following thermal cycle: denaturation 94°C 30 s, annealing 55°C 30 s, extension 72°C 1 min, performed 30 times. Fragments were gel-purified, amplified for a second time using the same cycle and cloned into M13 mpl8 taking advantage of the Pst I and Eco RI sites of the primers. Dideoxy sequencing [29] was performed with Klenow polymerase and 35S dATP or with Taq-polymerase and fluorescently labelled M13 primers employing a DNA sequencer (Applied Biosystems).

Electroporation of Escherichia coli MC1061

DNA of plant 4202 was digested with Hind III or with Eco RV and 20 μg was ligated in 500 μl re-
action volume with 20 units T4-ligase, 16 h at 16 °C in order to circularize the plant DNA fragments. After precipitation and dialysis the DNA was resuspended in 20 μl distilled water and mixed with electro-competent *E. coli* MC1066 cells in 40 μl. Using the Biorad Gene Pulser set to 20 kV/cm and 0.1 cm cuvettes (Biorad), the plant DNA mixture was electroporated into the *E. coli* cells [4]. Transformants were selected on chloramphenicol-containing medium (20 mg/ml).

Results

Upon combination of a non-autonomous element and an immobilized Tam3 element, both inserted into a HPT gene, hygromycin-resistant tobacco plants can be obtained (Fig. 1). As neither of these elements can excise autonomously [10] these results indicate that the non-autonomous dTam3 element is activated *in trans* by the immobilized element Tam3 ΔTIR. To confirm the excision of the dTam3 element from the HPT gene a DNA gel blot of hygromycin-resistant plants was performed. The *Eco RI/Eco RV* digested DNA of these plants was hybridized with a 0.4 kb CaMV 35S-HPT gene probe, spanning the empty donor site (Fig. 2). As expected none of the fragments that hybridized with this probe had the original size of 0.4 kb, because upon perfect excision of the dTam3 element 64 base pairs flanking the element remain in the empty donor site. However, most fragments representing an empty donor site differ from the predicted 0.46 kb. Plant 3902 contains a smaller fragment, plants 4004, 4202 and 4203 contain larger fragments. Only plants 3903 and 4002 contain fragments of the expected size. The results from this DNA gel blot were confirmed by a PCR experiment with a CaMV 35S primer flanking the *Eco RV* site and a reverse HPT primer containing the *Eco RI* site. No PCR

Fig. 1. A Tam3 two-element system: *trans*-activation of a non-autonomous dTam3 element from the HPT gene. Combination of the components of the Tam3 two-element system is achieved by successive transformation of transgenic tobacco plants. Direct selection on hygromycin-containing medium results in recovery of plants where excision of the non-autonomous element has occurred.

Fig. 2. DNA gel blot analysis of empty donor site fragments of hygromycin-resistant plants. A. Restriction endonuclease map of the chimaeric CaMV 35S-HPT-nos gene. Upon excision of the dTam3 element a 460 bp *Eco RI-Eco RV* fragment is expected (E.D.S., empty donor site). B. DNA of independent hygromycin-resistant plants was digested with *Eco RI/Eco RV* and the DNA gel blot probed with the E.D.S. fragment indicated in A. Fragment sizes are in base pairs.
products could be detected in DNA from \textit{Agrobacterium} strains harbouring either plasmid \textit{pTT21808} or \textit{pTT21840} (results not shown). The PCR fragments were cloned into \textit{M13mp18} and sequenced (Fig. 3). A perfect excision of the dTam3 element would generate a sequence with a target site duplication of the flanking DNA. Surprisingly, three of the five fragments sequenced contained the terminal inverted repeats and part of the ends of dTam3. The dTam3 element of plants 4202, 4203 and 3903 has excised leaving 25–30 bp from the right end of the element and at a variable part of the left end of the dTam3 element (the left end sequence of the empty donor site of plant 3903 does not originate from Tam3 nor from flanking sequences). The empty donor site of plant 3902 contains no Tam3 sequences nor part of the \textit{pallida} flanking sequences that are expected to remain upon excision of dTam3.

These sequence data reveal that none of the sequences produced upon dTam3 excision matches the empty donor site for autonomous Tam3 excision in \textit{Antirrhinum} or tobacco [20, 21].

Closer inspection of the left part of the empty donor site from plant 4002 reveals that this fragment has resulted from the excision of the ‘wings-chipped’ Tam3ΔTIR. This can be deduced from the sequence of the left end of the excision site because the Tam3 end fits the deletion that had been introduced by Bal31 deletion [10]. This is a surprising observation as we were unable to detect excision (hygromycin resistance) in control experiments with both \textit{pTT21808}, \textit{pTT21806} (Tam3ΔTIR) and \textit{pTT21840} (dTam3). These control experiments were performed in duplicate with the same number of leaf discs from untransformed tobacco plants as in the trans-activation experiments, employing the same selection pro-

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig3.png}
\caption{DNA sequence of dTam3 excision sites. The chimaeric CaMV-HPT gene is projected as two boxes with the last bases of the promoter region and the first bases of the structural gene. The 64 bp DNA flanking the dTam3 element prior to excision are depicted in the top half of the figure, with the target site duplication underlined. The five dTam3 excision sites sequenced have been aligned by the right target site duplication (shaded box). The breakpoints have been indicated by –A-. The DNA sequence that is different from the expected empty donor site is printed in bold face. The bottom half of the figure illustrates the excision product of an autonomous Tam3 element from a chimaeric nos-HPT gene (for details, see Discussion). This sequence is aligned to the other dTam3 excision sites by its right-end inverted repeat.}
\end{figure}
procedure. The case of Tam3ΔTIR excision described above is apparently a rare event.

Re-integration of the dTam3 element

As the excision of the dTam3 elements from the HPT gene appears to occur through a process different from the mechanism of autonomous Tam3 transposition in Antirrhinum or tobacco [21], it is interesting to see whether the dTam3 elements re-integrated into the genome of the new host. From DNA gel blot analyses it could be deduced that only in plant 4202 the dTam3 element had re-integrated (data not shown and [12]). To establish whether this integration had taken place in a genetically linked site, hygromycin-resistant progeny of a selfing were screened for cross-over events by DNA gel blot analysis. A cross-over event should be visible as the loss of the re-integrated dTam3 fragment in the Tam3 hybridization pattern of these plants. The analysis indicated that two other T-DNA copies carrying non-transposed dTam3 elements were not linked to the hygromycin resistance trait, as these bands were absent in the DNA of some plants (Fig. 4, lanes 4, 5 and 7). Because plant 4202 is homozygous for the activator Tam3ΔTIR element all progeny contain the fragments characteristic of this element. In a total of 48 progeny plants no loss of the re-integrated dTam3 element could be detected. Therefore it can be concluded that the hygromycin resistance trait (the excision site) and the re-integrated dTam3 element are closely linked.

Recovery of the transposed dTam3 element of plant 4202 by electroporation

As the dTam3 element employed is equipped with plasmid pACYC184, it should be possible to recover the integrated dTam3 element from the plant genome. This can be accomplished by cutting the plant DNA with a restriction enzyme that does not cut inside the dTam3 element, circularization of the fragments and subsequent electroporation of E. coli with this mixture [4]. Only plasmid sequences will be maintained in E. coli and they can be selected for on chloramphenicol-containing medium (the selection marker of pACYC184). To avoid the recovery of the two non-transposed dTam3 copies from plant 4202, a plant harbouring only the transposed dTam3 element and the activator element was selected from the progeny (Fig. 4, lane 4). Restriction enzyme digestion with Hind III and Eco RV yielded a re-integrated dTam3 fragment of 10 and 7 kb respectively. Other enzymes yielded fragments larger than 15 kb, which are unsuitable for efficient electroporation of E. coli. DNA of the se-
lected plant was digested with Hind III or Eco RV, ligated and electroporated into E. coli MC1066. Only the electroporation with the Eco RV-digested DNA resulted in the recovery of plasmid pACYC184 with dTam3 and flanking sequences. A physical map of this plasmid, pRIT65, was constructed with several restriction enzymes (Fig. 5). From these data it was evident that both ends of the re-integrated dTam3 element had been altered. The Pvu II and Hae II sites of the right end of dTam3 could no longer be detected, while the Sma I and Bgl I sites of the left end had disappeared. Apparently both ends of the dTam3 element had been degraded beyond the position where it had been excised upon re-integration into the tobacco genome.

The dTam3 element has integrated into repetitive tobacco DNA, adjacent to a truncated T-DNA

To establish the nature of the DNA flanking the re-integrated dTam3 element we used the flanking fragments as probes for tobacco DNA. The 0.8 kb Eco RV-Xba I fragment (Fig. 5A, probe A) containing dTam3 and flanking sequences was used as a probe to hybridize with the Eco RV-digested DNA of plant 4202 and Nicotiana tabacum DNA. The hybridization pattern revealed that the flanking plant DNA sequences are repetitive sequences of the tobacco genome (Fig. 6). Surprisingly, the 0.8 kb Pvu II-Eco RV fragment flanking the other end of the dTam3 (Fig. 5A, probe B) did not yield the same hybridization pattern. Some of the hybridizing bands were also present in the NPTII hybridization pattern of plant 4202, but not in the parental plant DNA (data not shown). This suggested that the flanking sequence at this end also contained part of a newly integrated T-DNA fragment. Therefore we sequenced the DNA fragments flanking dTam3. The sequence data confirmed that the right end of a truncated T-DNA copy, containing the nos-NPTII fragment, flanked the dTam3 element (Fig. 5B). The EcoRV site at the right side of the pRIT65 fragment is not derived from T-DNA, but is derived from a small fragment of plant DNA. Apparently, the dTam3 element has integrated next to an incomplete T-DNA fragment. The dTam3 element has excised from the HPT gene of one T-DNA and re-integrated not further than two map units away, directly adjacent to a truncated T-DNA copy. The sequence of the junction between the dTam3 element and

![Fig. 5. Restriction endonuclease map of plasmid pRIT65, containing the re-integrated dTam3 element and its flanking sequence. A. Linear presentation of the re-integrated dTam3 element when digested with Eco RV. The 7 kb fragment contains 3.5 kb pACYC184 DNA with two Tam3 fragments flanking it. Both ends of the dTam3 element have been degraded (open boxes). The restriction endonuclease sites that have disappeared from the Tam3 fragment are indicated below the map in parenthesis. The DNA flanking dTam3 is represented by black bars. Fragments A and B used as probes in DNA gel blot analyses of tobacco DNA are indicated. B. Sequence of tobacco DNA (small caps) flanking the dTam3 fragment and a truncated T-DNA. Numbers above the dTam3 fragment refer to the published Tam3 sequence [15].]
has been the result of a different integration process in tobacco.

Discussion

The construction of an artificial Tam3 two-element system appears to be possible in a heterologous genetic background. An immobilized transposase donor Tam3 element and an internally deleted non-autonomous Tam3 element are both incapable of excision, as has been determined with a phenotypic assay [10]. When a plant containing either of the constructs is transformed with the second component of the trans-activation system hygromycin, resistant plants can be obtained at low frequencies (5% of the transformed leaf-discs yields a resistant shoot). Still, these results are significant, as control transformation experiments with plasmids pTT 21806, 21808 and 21840 on the same number of leaf discs from wild-type *N. tabacum* SR-1 plants did not yield any resistant shoots. The combination of the Tam3 derivatives can induce excision and restore the expression of the CaMV-HPT gene, although autonomous excision of the ‘wings-clipped’ element at a very low frequency could be detected by molecular assays. We can rule out artefacts resulting from T-DNA plasmid rearrangements as no PCR products could be detected in *Agrobacterium* DNA.

The excision of the dTam3 element from the HPT gene is confirmed by DNA gel blot analysis. The analysed plants have empty donor site fragments of different sizes. This is not unusual as Tam3 is known for the rearrangements it introduces in the empty donor site of the *pallida* and *nivea* locus of *Antirrhinum* [3]. However sequence analysis reveals that the variations in fragment size are not the result of rearrangement of the HPT gene, but are due to the presence of variable lengths of Tam3 DNA. Apparently excision of the dTam3 element from pTT21840 did not occur by a cut outside the transposable element but by internal excision. A more or less constant part of the right end of Tam3 (25–30 bp) remains in the empty donor site while a variable part of the left...

The re-integrated dTam3 element is flanked by repetitive tobacco DNA sequences. Tobacco DNA from an untransformed *Nicotiana tabacum* plant and plant 4202 was digested with Eco RV. The DNA gel blot was probed with fragment A from plasmid pRIT65.

Fig. 6. The re-integrated dTam3 element is flanked by repetitive tobacco DNA sequences. Tobacco DNA from an untransformed *Nicotiana tabacum* plant and plant 4202 was digested with Eco RV. The DNA gel blot was probed with fragment A from plasmid pRIT65.
end of Tam3 remains. This is a surprising finding as Martin et al. [21] have shown that at least in one case an autonomous Tam3 element (from the *pallida* locus) can generate a typical empty donor site. However excision of another autonomous Tam3 copy (from the *nivea* locus) from a nos-HPT chimaeric gene resulted in an excision site that contained 132 bp of Tam3, including both inverted repeats (Fig. 3). The difference between the flanking DNA in the test plasmids may explain these findings. The experiments of Martin et al. have been carried out with a complete *Antirrhinum majus* DNA fragment, while the experiments reported here and the experiments with the dTam3 and Tam3 (*nivea*) were performed with an element that had been cloned, in the same orientation, between a promoter (CaMV or nos) and a reporter gene (HPT). In these constructs the balance in the production of Tam3 'transposase' may have been altered, compared to the natural situation, resulting in an altered target specificity of the enzyme, producing aberrant excision. It is to be expected that the expression of a transposase gene is carefully regulated since this is also the case for the plant transposable element Spm [8]. Because of the altered transposase balance it has been suggested that a dSpm element cannot excise and re-integrate as accurately in tobacco as in maize [23]. This hypothesis can now be tested by employing a Tam3-containing fragment from *Antirrhinum* as the activator in the trans-activation assay. Another explanation for these findings is the assumption that the transposase of Tam3 employs alternative cut sites due to the influence of tobacco host factors or the absence of *Antirrhinum* host factors [21]. When the position of the internal breakpoints is localized on the stem-loop structure that can be formed between the two ends of Tam3, it is clear that the cut is not produced symmetrically (Fig. 7). The factor generating the aberrant excision is obviously not dependent on the secondary structure of the element. The fact that subterminal fragments are retained in the empty donor site suggests that these might function as transposase recognition sites. Subterminal sequences that are important for transposase recognition have been described for Ac [19], Spm [8] and *Drosophila* P-elements [18].

Excision products containing terminal transposon sequences have not been reported in the case of plant transposable element Ac. Because the behaviour of Ac and Ds in transgenic plants has been characterized in more detail (for a review see [11]), without any report of internal excision products, it is apparent that the phenomena reported here are a special property of Tam3. Still, it could be argued that some of the small dSpm elements cloned from several maize lines have been generated by an internal excision mechanism [7]. The internal deletion of Spm elements after excision from the HPT gene in *N. tabacum* suggests that these deletions can take place upon integration [22, 23].
On the other hand, internal excision is a well-known phenomenon of a transposable element structurally related to Ac and Tam3: the P-element from *Drosophila* [24, 30]. A recent report presents evidence for the suggestion that internal excision of a non-autonomous P-element only occurs when no wild-type locus is present (in the case of strains homozygous for a P-element insertion [5]). Precise restoration of the wild-type sequence is achieved by a homology-dependent gene conversion mechanism. The dTam3 excision products we obtained have similar features as internal excision products of P-elements. Internal P-element excision occurs when no wild-type homologue of the gene it is inserted into is present, it requires the presence of transposase, the sequence breakpoints are variable (15–20 bp inside the element) and are present at (or have generated) short direct duplications [5]. The dTam3 elements (inserted into the HPT gene) have no homologue (wild-type CaMV35S-HPT gene) in the tobacco genome and the excision products only occur in a two-element system with a transposase Tam3ATIR element present. Furthermore, a CGG(C) motif is present as a direct duplication on either end of the breakpoint in four cases. The mechanism that explains the P-element internal excision is a double-stranded gap repair mechanism, that uses the homologous P-element as a template. The internal excision product is the result of an interrupted repair process. Only the ends of the homologous P-element have functioned as templates for repair, instead of restoring the complete P-element. The homologue-dependent gap-repair mechanism can also function on a homologous gene that is present elsewhere in the genome of *Drosophila*. The frequency of reversion is significantly lower in this case [5]. When the dTam3 elements are introduced into the transgenic tobacco plants no homologous dTam3 construct is present, but in all plants multiple copies of the T-DNA carrying the dTam3 (or Tam3ATIR) element have integrated (results not shown). A possible double-stranded gap-repair mechanism, resulting in internal Tam3 excision products could therefore use the other T-DNA copies as templates. However, a contradiction with the P-element system comes from the analyses of re-integration. In the P-element system there still are new insertions in the genome while an internal excision is registered in the empty donor site [5, 30]. Of the six plants we analysed only one plant had a re-integrated non-intact dTam3 element. Therefore we cannot conclude that the dTam3 excision products result from a similar mechanism as the P-element internal excision. However, from the preceding discussion it might be concluded that the Tam3 excision is aberrant either due to an altered balance in the 'transposase' production by Tam3 ATIR or by the interaction with tobacco host factors during the transposition event.

The result of an altered excision specificity of dTam3 could be that the excised elements fail to re-integrate. This is apparently the case for most transformants, the only case of dTam3 re-integration being aberrant. The ends of the transposable element have been degraded and no target site duplication was found. Although it could be reasoned that this element is part of a truncated T-DNA this is very unlikely. Both the left end and the right end of the T-DNA would have to be lost during the integration process. It is more likely that this excised dTam3 fragment has benefitted from the integration process of a truncated right border T-DNA fragment (these two fragments are only separated by 24 bp of DNA), suggesting that this event occurred independent of transposon factors. This would fit in with the fact that these excision phenomena are observed upon or directly after integration of the T-DNA into the tobacco genome, as none of the plants examined is chimaeric for a transposition event and a non-transposed dTam3 element.

Acknowledgements

The cooperation of Cathie Martin in this project, by providing us with a Tam3 clone, pAJ4, is acknowledged. We are grateful for the help of René van der Elk, Jan Bogerd and Guus Smit with the PCR experiments. Part of the DNA sequence of pRIT65 has been determined by Martin Kater...
References