Bose-Einstein condensation in trapped atomic gases
Kagan, Y.; Shlyapnikov, G.; Walraven, J.T.M.

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.76.2670

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Bose-Einstein Condensation in Trapped Atomic Gases

Yu. Kagan,¹, ² G. V. Shlyapnikov,¹, ² and J. T. M. Walraven

¹Van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65-67, 1018 XE Amsterdam, The Netherlands
²Russian Research Center, Kurchatov Institute, Kurchatov Square, 123182 Moscow, Russia

(Received 29 June 1995)

We discuss Bose-Einstein condensation in a trapped atomic gas and analyze how the sign of the scattering length a and the ratio η of the interaction between particles to the level spacing in the trap influence the behavior of the condensate wave function ψ_0. We find that for $a < 0$ and $\eta \ll 1$ it is possible to form a metastable Bose condensate, with a long characteristic lifetime with respect to contraction and transitions of particles to excited trap states. For $\eta \gg 1$ a negative scattering length prevents the formation of the condensate. If $a > 0$, then an increase of density is accompanied by the evolution of ψ_0 to a comparatively wide quasihomogeneous distribution.

PACS numbers: 34.20.Cf, 03.75.Fi

One of the main goals in the study of low-temperature atomic gases is to observe Bose-Einstein condensation (BEC) and related macroscopic quantum phenomena. Magnetostatic trapping is a powerful method of achieving BEC, since it provides surface-free confinement and allows efficient evaporative and optical cooling [1–4]. A growing interest in trapped gases is stimulated by recent experiments with trapped rubidium [3], lithium [4] and sodium [5], where densities $n \sim 10^{12} - 10^{14}$ cm$^{-3}$ and temperatures $T \approx 1 \mu$K have been reached.

The character of BEC in trapped atomic gases is influenced by the presence of discrete trap levels. For noninteracting particles, Bose condensation occurs in the ground state of the trapping potential. In a weakly noninteracting particles, Bose condensation occurs in the ground state of the trapping potential, i.e., BEC can be regarded as macroscopic occupation of this state. By increasing N_0 we arrive at the opposite limiting case $\eta \gg 1$, which can be called quasihomogeneous. In this case the size of the BEC spatial region, $l \gg l_0$, and the structure of trap levels becomes unimportant as the levels will be smeared out by the interaction between particles.

For attractive interaction between particles ($a < 0$) the picture drastically changes. A Bose condensate with $\eta > 1$, for which the discrete structure of trap levels is not important, cannot be formed at all, since in this case the accumulation of particles in one quantum state would be associated with an increase of energy (see below). Moreover, even prepared artificially, such a Bose-condensed state will be absolutely unstable. On the other hand, the case $\eta \ll 1$ is characterized by the presence of an energy gap ϵ_0 for one-particle excitations. As shown below, in this case it is possible to form a metastable Bose-condensed state. This state is separated by a large energy barrier from lower states, which ensures a long characteristic lifetime of the metastable condensate.

We consider a Bose gas with a fixed number of particles N in a potential well $V(r)$. Under the conditions $|a| \ll l_0$ and $n_0|a|^3 \ll 1$, one can use the potential of pair interaction in the form $U(r) = U(r) = \hat{U}\delta(r)$. Then the Schrödinger equation for the Heisenberg field operator of atoms, $\hat{\psi}(r, t)$, reads

$$i\hbar(\partial \hat{\psi}/\partial t) = -(\hbar^2/2m)\Delta \hat{\psi} + V(r)\hat{\psi} + \hat{U}\hat{\psi}\hat{\psi},$$

where the last term in the right-hand side of Eq. (3) corresponds to the interaction of atoms with each other. The field operator $\hat{\psi}$ can be represented as a sum of the above-condensate part $\hat{\psi}'$ and the condensate wave function which is a c-number (see, e.g., [6]):

$$\hat{\psi} = \psi_0 + \hat{\psi}'.$$

Averaging both sides in Eq. (3) and recalling that in thermal equilibrium $\psi_0 \sim \exp(-i\mu t)$, where μ is the
Here $\mu = \mu - 2n'\hat{U}$, and $n'(r) = \langle \hat{\psi}^\dagger \hat{\psi} \rangle$ is the density of above-condensate particles in the spatial BEC region. At $a > 0$ and $T \gg n\hat{U}$ the density n' is coordinate independent and equals the critical BEC density $n_c = 2.6\Lambda_T^{-3}$ [7–10], where $\Lambda_T = (2\pi \hbar^2/mT)^{1/2}$ is the thermal de Broglie wavelength of the atom. For $T \ll n\hat{U}$ we have $n' \ll n_0$, and $\mu = \mu$. In Eq. (5), due to the condition $n[a]^2 \ll 1$, we neglected the anomalous average $\langle \hat{\psi}^\dagger \hat{\psi} \rangle$. This equation should be solved using the normalization condition

$$\int_\mathbb{R} \psi_0^2(\mu, r) d^3 r = N_0,$$

which gives a relation between μ and N_0.

The possibility to turn to representation (4) and introduce ψ_0 as an average of the field operator $\hat{\psi}$ assumes that ψ_0 is a quantity averaged over a volume containing a large number of particles. At the same time, the linear size of this volume should be small compared to a characteristic distance at which ψ_0 changes due to the field inhomogeneity. Therefore, Eq. (5) can be used for finding a unified condensate wave function only if inequality (2) is satisfied.

For $a > 0$ we numerically solved Eq. (5), with the normalization condition (6), in a harmonic potential

$$V(r) = m\omega^2 r^2/2,$$

where ω is the trap frequency. The results for $\psi_0(r)$ at various values of the parameter η are presented in Fig. 1. These results show how the structure of the condensate wave function changes under variations of N_0 or η.

For $\eta \ll 1$ the nonlinear term in Eq. (5) is of minor importance, and the solution is close to

$$\psi_0 = (N_0/\pi^{3/2} l_0^{3/2}) \exp(-r^2/2l_0^2).$$

The size of the condensate l is close to the amplitude of zero point oscillations in the trap, $l_0 = (\hbar/m\omega)^{1/2}$, and the condensate density $n_0 \propto N_0$. The parameter η takes the form $\eta \approx (3a/l_0)N_0$, and the inequality $\eta \ll 1$ can be rewritten as

$$1 \ll N_0 \ll l_0/a.$$

In fact, under this condition one can consider BEC as macroscopic occupation of the ground state in the trapping field.

In the limiting case $\eta \gg 1$, where the correlation length

$$l_c = \hbar/(2mn_0\hat{U})^{1/2} \approx l_0/(2\eta)^{1/2} \ll l_0,$$

the kinetic energy term in Eq. (5) is unimportant, as well as the discrete structure of trap levels. The solution is close to a well-known result [7,8] following directly from Eq. (5). With $V(r)$ given by Eq. (7), we have

$$\psi_0 \approx (\langle \hat{\mu} - V(r) \rangle/\hat{U})^{1/2} = n_0^{1/2}(1 - r^2/2l_0^2 \eta)^{1/2}.$$

We call this case quasihomogeneous, since ψ_0 is a smooth function of r, and, due to inequality (10), spatial correlation properties are governed by the local value of l_c. The quantity $\hat{\mu} = n_{0\text{max}}\hat{U} \gg \hbar\omega$ and the size of the BEC spatial region, $l = l_0(2\eta)^{1/2} \gg l_0$. The parameter $\eta = n_{0\text{max}}\hat{U}/\hbar\omega$, which can be rewritten as $\eta = (3a/l_0^2/3N_0)$, takes the value $(3aN_0/l_0)^{2/5}$ and the maximum condensate density $n_{0\text{max}} \approx N_0^{2/5}$.

We now turn to the BEC in an inhomogeneous field at $a < 0$ and discuss the possibility of the formation of a long-lived metastable gaseous phase. In this case, for $N \gg 1$ and sufficiently low temperature, the thermodynamic equilibrium corresponds to a condensed phase or a two-phase system. Usually, the condensed phase formation is a first-order phase transition. The kinetics of this transition is determined by the formation of condensation nuclei with a large number of particles. In a low-density gas the probability of such a nucleation is extremely small. Even the formation of dimers, which can stimulate the nucleation, requires three-body collisions and will be suppressed at sufficiently low density. The physical picture is dominated by elastic pair collisions. For $a < 0$ these collisions prevent the formation of a Bose condensate with densities $n_0|U| \gg \hbar\omega$, since in this quasihomogeneous case the structure of trap levels is essentially smeared out by interatomic interaction, and there is no gap for the excitation of particles from the condensate. If $a < 0$, the excitation is energetically favorable because the interaction energy per particle in the condensate is $n_0\hat{U}$, whereas the interaction of the above-condensate particle with the condensate equals $2n_0\hat{U}$.

![FIG. 1. Condensate wave function $\psi_0(r)$ for potential (7). The parameter $\eta = n_{0\text{max}}\hat{U}/\hbar\omega$, with $n_{0\text{max}} = \psi_0^2(0)$ being the maximum condensate density. Solid curves represent numerical solutions of Eq. (5) for $\eta 10(\mu \approx 10\hbar\omega)$, $\eta = 2(\mu \approx 2.5\hbar\omega)$, and $\eta = 0.5(\mu \approx 1.7\hbar\omega)$. The dashed curve corresponds to approximate solution (11) for $\eta = 10$, and the dotted curve to approximate solution (8).](image)
In the opposite limiting case, \(\eta \ll 1 \), the pair collisions, as themselves, do not destroy the quasiequilibrium state formed by \(N_0 \) atoms accumulated in the ground state of the trapping potential. From Eq. (5) one can find the wave function \(\psi_0 \) for this state, which is again close to Eq. (8). One can also construct a many-particle wave function which, to first approximation, is a product of one-particle wave functions \(\phi_0 \). Each of these functions is the wave function of an atom in the self-consistent field created by the trapping potential and other particles.

It is important that, even in the absence of inelastic processes, the considered state is quasistationary. The attraction between particles enables the existence of a much more dense state of \(N_1 \) atoms, with the same total energy \(E = 0 \) \((E = \frac{1}{2} N_0 \hbar \omega - \frac{1}{2} n_0 N_0 | \tilde{U} \rangle) \). For particles localized in a spatial region of size \(L_0 \), we have

\[
E = \hbar^2 N_0 / 2 m L_0^2 - N_0^2 | \tilde{U} \rangle / (8 \pi^3 L_0^3) .
\]

(12)

This energy is equal to zero at \(L_0 = L \), where

\[
L_0 = 3 | a | N_0 = 0 \eta \ll l_0 ,
\]

(13)

and, hence, the dense state is strongly compressed compared to the initial state of the trapping potential.

There is a large energy barrier between these two states. From Eq. (12) it follows that, with diminishing \(L_0 \), the energy increases and reaches a maximum at \(L_0 = (9/2) | a | N_0 \). Denoting the one-particle wave function of the dense state as \(\phi \delta (r) \), for the overlap integral between the wave functions of the two states, we obtain

\[
I = \left(\int d^3 r \phi \alpha (r) \phi \delta (r) \right)^N \sim \left(\frac{3}{2} \right) N \ln \frac{L_0}{L_\delta} .
\]

(14)

For sufficiently large \(N_0 \) the factor in the exponent of Eq. (14) is huge. Since in any case the system will live a finite time, one can claim that the considered dense state will not be formed.

However, there can be other states coinciding in energy with the initial state. These are states containing dense clusters of \(N_1 \) particles, with

\[
1 \ll N_1 \ll N_0 .
\]

(15)

With \(N_0 \) replaced by \(N_1 \) in Eq. (12), one finds the size \(L_1 \) or the density at which \(E = 0 \):

\[
L_1 = 3 | a | N_1 .
\]

(16)

The many-particle wave function will have an admixture of states with \(N_1 \) particles localized in a region of the size \(L_1 \). The amplitude of the admixture is [cf. Eq. (14)]

\[
C_{N_1} \sim \exp \left(- (3/2) N_1 \ln (l_0 / L_1) \right) .
\]

(17)

The local density in these clusters, \(n_1 = N_1 / (4 \pi / 3) L_1^3 \), satisfies the condition

\[
n_1 | \tilde{U} | \gg \hbar \omega ,
\]

(18)

and elastic pair collisions can transfer particles to excited trap states, with a simultaneous contraction of the rest of the cluster. In a collisional event leading to the excitation of two particles, the size of the cluster containing the remaining \(N_1 - 2 \) particles reduces to [cf. Eq. (16)]

\[
L_1 = 3 | a | (N_1 - 2) ,
\]

(19)

and the cluster energy decreases by an amount \(n_1 | \tilde{U} | \).

Formation of clusters with smaller \(L_1 \) and lower energy is not important as the one-particle wave function in such a cluster should oscillate at distances \(\leq L_1 \), which strongly reduces the transition matrix element. The same remark can be made with respect to the quantity \(L_1 \) (16). From the very beginning we could consider clusters with smaller \(L_1 \) and lower total energy, which would correspond to much smaller amplitude of the admixture in the many-particle wave function than that determined by Eq. (17).

For the system as a whole, the contribution of \(N_1 \)-particle clusters to the probability of the transition from the initial state to the states corresponding to the excitation of two particles, with the simultaneous decrease of energy of the rest of the atoms, is given by

\[
W_{N_1} = Q_{N_1} \frac{2 \pi \hbar}{\hbar} | \tilde{U} | \int \int d e g(e) \delta (2 e - n_1 | \tilde{U} |)
\]

\[
\times \left(\int \phi_1^2 (r) \phi_1^2 (r) d^3 r \right)^2
\]

\[
\times \left(\int \phi (r) \phi_1 (r) d^3 r \right)^{(2N_1 - 2)} ,
\]

(20)

where \(\phi_1 (r) \) and \(\tilde{\phi}_1 (r) \) are the one-particle wave functions in the initial and contracted clusters, respectively. Owing to Eq. (18), we replaced the summation over the final states \(\phi (r) \) of the excited particles by the integration, with \(g(e) \) being the density of states at energy \(e \). The first overlap integral in Eq. (20) comes from the transition matrix element of two particles to the excited state \(\phi_1 \). For this integral, we have

\[
\left(\int \phi_1^2 (r) \phi_1^2 (r) d^3 r \right)^2 = 1 / \Omega_e^2 , \quad \Omega_e = 4 \pi l_0^3 / 3 ,
\]

(21)

where \(l_0 \gg L_1 \) is a linear size of the spatial region in which the exited particles are localized. The transitions to states with energies \(\varepsilon_1 \neq \varepsilon_2 \), being included, do not appreciably change the estimate for \(W_{N_1} \) because in this case the transition matrix element strongly decreases due to oscillations of the integrand in the overlap integral. The last factor in Eq. (20) is the overlap integral between the states of \(N_1 - 2 \) particles before and after the contraction. Using Eqs. (16) and (19), we obtain

\[
\int \phi_1 (r) \tilde{\phi}_1 (r) d^3 r = (\tilde{L}_1 / L_1)^{3/2} = (1 - 2 / N_1)^{3/2} ,
\]

(22)

and for \(N_1 \gg 1 \) the last factor in Eq. (20) reduces to \(e^{-6} \). The factor \(Q_{N_1} \) in Eq. (20) accounts for the number of combinations to select \(N_1 \) from \(N_0 \) particles. One should also include the number of possible locations of the dense cluster in the spatial region of the initial state \((l_0 / L_1)^3 \). Together with the square of the amplitude (17), we obtain

\[
Q_{N_1} = (l_0 / L_1)^3 P_{N_1} ,
\]

(23)
where \(P_{N_1} \) is equivalent to the Poisson distribution:

\[
P_{N_1} = \frac{1}{\sqrt{2\pi N_1}} \exp\left(-N_1 \ln\left[\left(\frac{L_0}{L_1} \right)^3 \left(\frac{N_1}{eN_0} \right) \right] \right). \tag{24}\]

For the density of states in a harmonic potential \((7) \) at \(\varepsilon \gg \hbar \omega \), one has \(g(\varepsilon) = \varepsilon^2 / (2(\hbar \omega)^3) \). Then, integrating over \(d\varepsilon \) in Eq. (20), with \(l_c = (2\varepsilon / m \omega^2)^{1/2} \) we find

\[
W_{N_1} = P_{N_1} (2\varepsilon)^{-6} N_1 |U| / \hbar L_0^3. \tag{25}\]

Equation (25) is valid for \(N_1 > 1 \). But even for rather moderate values of \(N_1 \), the factor \(P_{N_1} \) predetermines a very long kinetic time: The argument of the logarithm in Eq. (24), \((L_0 / L_1)^3 (N_1 / eN_0) = (N_0 / N_1)^2 / \eta^3 \), is very large \((\eta \ll 1)\). The sum of Eq. (25) over \(N_1 \) is practically determined by the terms with minimum possible value of \(N_1 \), and this does not change the above statement.

Thus for \(\eta \ll 1 \) the initial state is practically stable at \(a < 0 \) with respect to collapse and “evaporation” induced by elastic interaction between particles. This statement is also valid at finite temperatures, since for \(\eta \ll 1 \) characteristic excitation energies \(\varepsilon \) are much larger than the gas temperature even at \(T \) close to the BEC transition point, and, hence, \(W_{N_1} \) is temperature independent. The excitation of condensate particles induced by their interaction with above condensate ones can also be neglected as the thermal size of the sample greatly exceeds \(L_1 \).

Let us consider how quantum fluctuations leading to the virtual formation of dense clusters in the considered initial state of a trapped gas influence the rates of intrinsic inelastic processes. For the process of three-body recombination the virtual formation of clusters containing \(N_1 \) atoms gives the recombination rate

\[
R_{N_1}^{(3)} = Q_{N_1}(\alpha n_0^2 N_1). \tag{26}\]

The term in parenthesis represents the number of recombination events per unit time for \(N_1 \) atoms localized in a spatial region of linear size \(L_1 \) (16), \(\alpha \) being the recombination rate constant. Again, the smaller is \(N_1 \), the larger is the rate. Putting formally \(N_1 = 3 \) and using Eqs. (23) and (24), we obtain \(R_{N_1}^{(3)} = \alpha N_0^3 / \Omega_0^2 \), where \(\Omega_0 = (4\pi / 3) l_0^3 \). Hence we arrived at the recombination rate which, independent of the sign of \(a \), is characteristic for \(N_0 \) particles localized in the ground state of the potential well. Similar considerations apply to the two-body relaxation rate or the rate of the formation of a \(N \)-particle bound state: The maximum rate coincides with that in the absence of virtual formation of clusters.

So we come to the conclusion that the quantum fluctuations characteristic for the case \(a < 0 \) at \(\eta \ll 1 \) do not influence the rate of intrinsic inelastic processes. Together with the result of the previous section, this ensures the existence of a long-lived metastable Bose-condensed state in trapped gases with negative scattering length, provided the parameter \(\eta \ll 1 \).

We can now sketch the scenario of BEC in a trapped gas with \(a < 0 \). Once the temperature gets lower than the BEC transition point, the particles start to accumulate in the ground state of the trap. For the maximum number of particles \(N_0 \) still satisfying the condition \(\eta \ll 1 \), the rate of inelastic processes will be sufficiently low to allow a metastable Bose condensate. If \(N_0 \) takes the value corresponding to the condition \(n_0 |U| \gg \hbar \omega \), then the major part of particles will be in the excited states. Only a small fraction will remain in the Bose-condensate state, the parameter \(\eta \) for this particular fraction being smaller than unity.

This work was supported by the Dutch Foundation for Fundamental Research of Matter FOM, by NWO through Project NWO-07-30-002, by the Project INTAS-93-2834, by the International Science foundation, and Russian Foundation for Basic Studies.

Note added.—After this paper was finished, we got Ref. [11], where, on the basis of time-dependent nonlinear Schrödinger equation for the condensate wave function, the authors found a ground-state solution at \(a < 0 \) and made a conclusion on its stability. The physical picture presented in our paper is completely different. Our analysis shows that for \(a < 0 \), due to quantum fluctuations leading to the virtual formation of dense clusters, there is a large set of states with the same energy for fixed \(N_0 \). These fluctuations, with subsequent transitions of condensate particles to excited trap states, open the decay channels of the condensate. For sufficiently small \(\eta \), the characteristic decay time is found to be rather large, and it is this result that predetermines the existence of a metastable Bose-condensed state.

