Molecular simulations in electrochemistry

Electron and proton transfer reactions mediated by flavins in different molecular environments

Kılıç, M.

Citation for published version (APA):
Contents

1 Introduction .. 1
 1-1 Electron transfer in chemistry 2
 1-2 Proton transfer in chemistry 3
 1-3 Flavins in chemistry .. 4
 1-4 Molecular simulation 5
 1-5 Model and methods ... 5
 1-6 This thesis .. 6

2 Techniques .. 9
 2-1 Marcus theory ... 10
 2-2 Calculation of pK_a using molecular simulation 13
 2-3 Statistical thermodynamics 15
 2-4 Molecular dynamics 16
 2-5 DFT–based molecular dynamics 17
 2-5.1 Density Functional Theory 19
 2-5.2 Born–Oppenheimer molecular dynamics 21
 2-6 Hybrid quantum mechanics / molecular mechanics 22

3 First and second one-electron reduction of lumiflavin in water – a first principles molecular dynamics study 23
 3-1 Introduction ... 24
 3-2 Methods .. 25
 3-2.1 Computational setup 29
 3-3 Results .. 30
 3-3.1 Lumiflavin in the gas phase 30
 3-3.2 Lumiflavin in water, the solvent structure 33
 3-3.3 Lumiflavin in water, redox properties 39
 3-3.4 Non–linearity, inner sphere fluctuations, temperature and finite size effects 41
 3-4 Conclusions ... 44
 3-5 Supporting information 46
4 A microscopic picture of the solvent reorganization during electron transfer to flavin in water

4-1 Introduction ... 52
4-2 Methods .. 53
 4-2.1 Calculation of redox potential 53
 4-2.2 Computational setup 55
4-3 Results ... 56
 4-3.1 Reduction of lumiflavin in vacuum 56
 4-3.2 Reduction of lumiflavin in water solvent 58
 4-3.3 Inner sphere and solvent reorganization, solvation shell structure rearrangement 62
 4-3.4 Solvent reorganization, electronic effects 63
 4-3.5 Solvent reorganization, electrostatic potential and fluctuations 67
4-4 Conclusions 69
4-5 Appendix ... 74

5 Acidity constants of lumiflavin from first principles molecular dynamics simulations

5-1 Introduction .. 76
5-2 Methods .. 79
 5-2.1 Calculation of pK_a from constrained dynamics 79
 5-2.2 Computational details 81
5-3 Results and discussion 82
5-4 Conclusions 87
5-5 Supplementary information 89
 5-5.1 Radial distribution functions 89
 5-5.2 Free energy profiles using the addition H_3O^+ restraint 91

6 The reorganization free energies for electron transfer in proteins: Redox properties of flavin in BLUF and LOV Domains

6-1 Introduction 94
6-2 Methods .. 97
 6-2.1 Computational setup 98
6-3 Results .. 99
 6-3.1 Reduction of flavin in different environments 99
 6-3.2 Characterization of protein and solvent coupling with flavin redox properties ... 103
6-4 Conclusions 118

Summary ... 121

Samenvatting ... 123