Molecular simulations in electrochemistry

Electron and proton transfer reactions mediated by flavins in different molecular environments

Kılıç, M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction .. 1
 1-1 Electron transfer in chemistry 2
 1-2 Proton transfer in chemistry 3
 1-3 Flavins in chemistry 4
 1-4 Molecular simulation 5
 1-5 Model and methods 5
 1-6 This thesis ... 6

2 Techniques .. 9
 2-1 Marcus theory ... 10
 2-2 Calculation of pK_a using molecular simulation 13
 2-3 Statistical thermodynamics 15
 2-4 Molecular dynamics 16
 2-5 DFT–based molecular dynamics 17
 2-5.1 Density Functional Theory 19
 2-5.2 Born–Oppenheimer molecular dynamics 21
 2-6 Hybrid quantum mechanics / molecular mechanics 22

3 First and second one-electron reduction of lumiflavin in water – a first principles molecular dynamics study 23
 3-1 Introduction ... 24
 3-2 Methods .. 25
 3-2.1 Computational setup 29
 3-3 Results .. 30
 3-3.1 Lumiflavin in the gas phase 30
 3-3.2 Lumiflavin in water, the solvent structure 33
 3-3.3 Lumiflavin in water, redox properties 39
 3-3.4 Non-linearity, inner sphere fluctuations, temperature and finite size effects 41
 3-4 Conclusions ... 44
 3-5 Supporting information 46