Molecular simulations in electrochemistry

Electron and proton transfer reactions mediated by flavins in different molecular environments

Kılıç, M.

Publication date
2014

Document Version
Final published version

Citation for published version (APA):
Contents

1 Introduction .. 1
 1-1 Electron transfer in chemistry 2
 1-2 Proton transfer in chemistry 3
 1-3 Flavins in chemistry 4
 1-4 Molecular simulation 5
 1-5 Model and methods 5
 1-6 This thesis ... 6

2 Techniques .. 9
 2-1 Marcus theory ... 10
 2-2 Calculation of pKₐ using molecular simulation 13
 2-3 Statistical thermodynamics 15
 2-4 Molecular dynamics 16
 2-5 DFT–based molecular dynamics 17
 2-5.1 Density Functional Theory 19
 2-5.2 Born–Oppenheimer molecular dynamics 21
 2-6 Hybrid quantum mechanics / molecular mechanics . 22

3 First and second one-electron reduction of lumiflavin in water – a first principles molecular dynamics study 23
 3-1 Introduction ... 24
 3-2 Methods ... 25
 3-2.1 Computational setup 29
 3-3 Results ... 30
 3-3.1 Lumiflavin in the gas phase 30
 3-3.2 Lumiflavin in water, the solvent structure 33
 3-3.3 Lumiflavin in water, redox properties 39
 3-3.4 Non–linearity, inner sphere fluctuations, temperature and finite size effects 41
 3-4 Conclusions .. 44
 3-5 Supporting information 46
4 A microscopic picture of the solvent reorganization during electron
transfer to flavin in water 51
 4-1 Introduction .. 52
 4-2 Methods .. 53
 4-2.1 Calculation of redox potential 53
 4-2.2 Computational setup 55
 4-3 Results .. 56
 4-3.1 Reduction of lumiflavin in vacuum 56
 4-3.2 Reduction of lumiflavin in water solvent 58
 4-3.3 Inner sphere and solvent reorganization, solvation shell struc-
 ture rearrangement .. 62
 4-3.4 Solvent reorganization, electronic effects 63
 4-3.5 Solvent reorganization, electrostatic potential and fluctuations .. 67
 4-4 Conclusions .. 69
 4-5 Appendix .. 74

5 Acidity constants of lumiflavin from first principles molecular dy-
namics simulations 75
 5-1 Introduction .. 76
 5-2 Methods .. 79
 5-2.1 Calculation of pK_a from constrained dynamics 79
 5-2.2 Computational details 81
 5-3 Results and discussion 82
 5-4 Conclusions .. 87
 5-5 Supplementary information 89
 5-5.1 Radial distribution functions 89
 5-5.2 Free energy profiles using the addition H_3O^+ restraint 91

6 The reorganization free energies for electron transfer in proteins:
Redox properties of flavin in BLUF and LOV Domains 93
 6-1 Introduction .. 94
 6-2 Methods .. 97
 6-2.1 Computational setup 98
 6-3 Results .. 99
 6-3.1 Reduction of flavin in different environments 99
 6-3.2 Characterization of protein and solvent coupling with flavin re-
 dox properties .. 103
 6-4 Conclusions .. 118

Summary .. 121

Samenvatting .. 123