Molecular simulations in electrochemistry

Electron and proton transfer reactions mediated by flavins in different molecular environments

Kılıç, M.

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction 1
 1-1 Electron transfer in chemistry .. 2
 1-2 Proton transfer in chemistry .. 3
 1-3 Flavins in chemistry ... 4
 1-4 Molecular simulation .. 5
 1-5 Model and methods .. 5
 1-6 This thesis ... 6

2 Techniques 9
 2-1 Marcus theory .. 10
 2-2 Calculation of pK_a using molecular simulation 13
 2-3 Statistical thermodynamics ... 15
 2-4 Molecular dynamics ... 16
 2-5 DFT–based molecular dynamics ... 17
 2-5.1 Density Functional Theory .. 19
 2-5.2 Born–Oppenheimer molecular dynamics 21
 2-6 Hybrid quantum mechanics / molecular mechanics 22

3 First and second one-electron reduction of lumiflavin in water – a first principles molecular dynamics study 23
 3-1 Introduction ... 24
 3-2 Methods ... 25
 3-2.1 Computational setup ... 29
 3-3 Results ... 30
 3-3.1 Lumiflavin in the gas phase .. 30
 3-3.2 Lumiflavin in water, the solvent structure 33
 3-3.3 Lumiflavin in water, redox properties 39
 3-3.4 Non–linearity, inner sphere fluctuations, temperature and finite size effects 41
 3-4 Conclusions .. 44
 3-5 Supporting information .. 46
4 A microscopic picture of the solvent reorganization during electron transfer to flavin in water 51

4-1 Introduction ... 52
4-2 Methods ... 53
 4-2.1 Calculation of redox potential 53
 4-2.2 Computational setup .. 55
4-3 Results .. 56
 4-3.1 Reduction of lumiflavin in vacuum 56
 4-3.2 Reduction of lumiflavin in water solvent 58
 4-3.3 Inner sphere and solvent reorganization, solvation shell structure rearrangement 62
 4-3.4 Solvent reorganization, electronic effects 63
 4-3.5 Solvent reorganization, electrostatic potential and fluctuations ... 67
4-4 Conclusions .. 69
4-5 Appendix ... 74

5 Acidity constants of lumiflavin from first principles molecular dynamics simulations 75

5-1 Introduction .. 76
5-2 Methods .. 79
 5-2.1 Calculation of pK \textsubscript{a} from constrained dynamics ... 79
 5-2.2 Computational details .. 81
5-3 Results and discussion .. 82
5-4 Conclusions .. 87
5-5 Supplementary information 89
 5-5.1 Radial distribution functions 89
 5-5.2 Free energy profiles using the addition H\textsubscript{3}O+ restraint .. 91

6 The reorganization free energies for electron transfer in proteins: Redox properties of flavin in BLUF and LOV Domains 93

6-1 Introduction .. 94
6-2 Methods ... 97
 6-2.1 Computational setup .. 98
6-3 Results ... 99
 6-3.1 Reduction of flavin in different environments 99
 6-3.2 Characterization of protein and solvent coupling with flavin redox properties 103
6-4 Conclusions .. 118

Summary .. 121

Samenvatting ... 123