Determination of alpha-s from energy-energy correlations measured on the Z0 resonance
Adeva, B.; Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.P.; Akbari, H.; Alcaraz, J.; Aloisio, A.; Alverson, G.; Linde, F.L.

Published in:
Physics Letters B

DOI:
10.1016/0370-2693(91)91925-L

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Determination of α_s from energy–energy correlations measured on the Z^0 resonance

L3 Collaboration

a European Laboratory for Particle Physics, CERN, CH-1211 Geneva 23, Switzerland
b INFN – Sezione di Firenze and University of Firenze, I-50125 Florence, Italy
c Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, E-28040 Madrid, Spain
d Johns Hopkins University, Baltimore, MD 21218, USA
e INFN – Sezione di Napoli and University of Naples, I-80125 Naples, Italy
f Northeastern University, Boston, MA 02115, USA
g World Laboratory, FBLJA Project, CH-1211 Geneva, Switzerland
h Eidgenössische Technische Hochschule, ETH Zürich, CH-8093 Zurich, Switzerland
i Massachusetts Institute of Technology, Cambridge, MA 02139, USA
j Leningrad Nuclear Physics Institute, SU-188 350 Gatchina, USSR
k Central Laboratory of Automation and Instrumentation, CLANP, Sofia, Bulgaria
l INFN – Sezione di Bologna, I-40126 Bologna, Italy
m Institute of Theoretical and Experimental Physics, ITEP, SU-117 259 Moscow, USSR
n University of Michigan, Ann Arbor, MI 48109, USA
We present a study of energy-energy correlations based on 83,000 hadronic \(Z^0\) decays. From this data we determine the strong coupling constant \(\alpha_s\) to second order QCD:

\[
\alpha_s(91.2 \text{ GeV}) = 0.121 \pm 0.004 \text{(exp.)} \pm 0.002 \text{(hadr.)} \pm 0.004 \text{(scale)} \pm 0.006 \text{(theor.)}
\]

from the energy-energy correlation and

\[
\alpha_s(91.2 \text{ GeV}) = 0.115 \pm 0.004 \text{(exp.)} \pm 0.002 \text{(hadr.)} \pm 0.003 \text{(scale)} \pm 0.003 \text{(theor.)}
\]

from its asymmetry using a renormalization scale \(\mu = 0.1 \text{ GeV}^3\). The first error (exp.) is the systematic experimental uncertainty, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).

1. Introduction

The energy-energy correlation (EEC) and its asymmetry (AEEC) were introduced by Basham et al. [1] as observables well suited for a determination of the strong coupling constant \(\alpha_s\). The EEC can be defined as a histogram of all angles between any particles \(i, j\) in hadronic events weighted with the product of their energies, and averaged over \(N\) events:

\[
\text{EEC}(\chi_{\text{bin}}) = \frac{1}{A_{\text{bin}} N} \sum_{\text{events}} \sum_{i,j} E_i E_j \delta_{\text{bin}}(\chi_{\text{bin}} - \chi_{ij})
\]

\(\delta_{\text{bin}}(\chi_{\text{bin}} - \chi_{ij})\) is 1 for angles \(\chi_{ij}\) inside the bin around

1 Supported by the German Bundesministerium für Forschung und Technologie.
\(\chi_{\text{bin}} \) and 0 otherwise. \(A_{\text{bin}} \) denotes the bin width.
\(E_{\text{vis}} = \sum_i E_i \) is the total energy of the event. For 2-jet events most angles are close to 0° or 180°, while events with hard gluon radiation contribute to the central region. Hence the integral of the EEC distribution in a range of \(\approx 30° \) to \(\approx 150° \) is a measure of the strong coupling constant. Events with hard gluon radiation contribute asymmetrically to the EEC distribution such that the asymmetry in the energy–energy correlation

\[
A_{\text{EEC}}(\chi) = \text{EEC}(180° - \chi) - \text{EEC}(\chi)
\]

is positive for \(\chi > 10° \). Also the integral of the AEEC distribution in the range of \(\approx 30° \) to 90° is a measure of \(\alpha_s \).

We report here on measurements of the energy–energy correlation and its asymmetry at the Z° resonance using the L3 detector at LEP. Comparing our data to the predictions of perturbative QCD in second order we derive values for \(\alpha_s^{(5)} \) and \(\alpha_s \) at \(\sqrt{s} = M_Z \). These results are compared to the \(\alpha_s \) value which we measured from the fraction of 3-jet events [2]. In order to study the energy dependence of the strong coupling constant we compare \(\alpha_s \) measurements from AEEC obtained by several experiments at different center of mass energies to the QCD calculations.

3. Selection of hadronic events

Events collected at a center of mass energy of \(\sqrt{s} = 91.2 \) GeV from the 1990 LEP running period are used for this analysis.

The primary trigger for hadronic events requires a total energy of about 15 GeV in the calorimeters. This trigger is in local OR with a trigger using the barrel scintillation counters and with a charged track trigger. The combined trigger efficiency for selected hadronic events exceeds 99.95%.

The selection of \(e^+e^- \rightarrow \text{hadrons} \) events is based on the energy measured in the electromagnetic detector and in the hadron calorimeter. Events are accepted if

\[
0.6 < \frac{E_{\text{vis}}}{\sqrt{s}} < 1.4 \\
|E_l| < 0.40 \frac{E_{\text{vis}}}{\sqrt{s}} < 0.40 \\
N_{\text{cluster}} > 12
\]

where \(E_{\text{vis}} \) is the total energy observed in the detector, \(E_\parallel \) is the energy imbalance along the beam direction, and \(E_\perp \) is the transverse energy imbalance. The cut on the number of clusters rejects low multiplicity events, for example \(\tau^+\tau^- \) final states.

In total 83 000 events were selected. Applying the same cuts to simulated events, we find that 97% of the hadronic decays from the Z° are accepted. The contamination from final states \(e^+e^- \rightarrow \tau^+\tau^- \) and \(e^+e^- \rightarrow \text{hadrons} \) in the event sample is below 0.2% and can be neglected.

Monte Carlo events were generated by the parton shower program JETSET 7.2 [4] and passed through the L3 detector simulation [5] which includes the effects of energy loss, multiple scattering, interactions and decays in the detector materials and beam pipe.
4. Measurements of energy–energy correlations and unfolding

Fig. 1 shows the measured EEC and AEEC distributions with a bin width of 1.8° together with the predictions of the JETSET parton shower MC. The small disagreement between data and Monte Carlo in both distributions can only be removed if A_{LL} in the parton shower is chosen larger for the EEC distribution than for the AEEC distribution.

For the comparison of the measured distributions to the predictions of perturbative QCD we select the angular ranges

$$57.6° \leq \chi \leq 138.6° \text{ (EEC)} ,$$

$$36.0° \leq \chi \leq 90.0° \text{ (AEEC)} . \hspace{1cm} (2)$$

For these angles the ratio of the second order QCD calculation [6] and the predictions of the parton shower MC including hadronization is constant within about 5%. Outside the chosen angular ranges the second order calculations and parton shower predictions disagree, which is probably due to higher order contributions and/or fragmentation effects. The χ interval is asymmetric for the EEC with respect to $\chi=90°$.

To be able to study the dependence of our results on the angular interval we present the distributions for an enlarged angular range (46.8°–149.4° and 25.2°–90.0°).

To compare EEC and AEEC to the QCD calculations we correct our measured EEC distribution for (a) detector effects, acceptance and resolution, (b) hadronization and decays and (c) initial and final state photon radiation. We apply bin-by-bin correction factors:

$$E_{EEC}^{\prime \text{corr}} = c_{\text{det}}^{i} c_{\text{hadr}}^{i} c_{\text{rad}}^{i} E_{EEC_{\text{meas}}}^{i} ,$$

where i denotes the bin number. The unfolded AEEC distribution is then calculated from the corrected EEC. We choose a bin width of 5.4° (3×1.8°) which exceeds the experimental resolution by a factor or two.

Fig. 2a shows the correction factor c_{det} for detector effects in the angular range 25.2°–154.8°. It has been calculated from

$$c_{\text{det}}^{i} = E_{\text{EEC}_{\text{hadr}}}/E_{\text{EEC}_{\text{det}}}^{i} ,$$

where $E_{\text{EEC}_{\text{det}}}$ stands for the JETSET Monte Carlo calculations with detector simulation and $E_{\text{EEC}_{\text{hadr}}}$ denotes the MC predictions at the hadron level. The uncertainty in c_{det}^{i} was studied by comparing EEC and AEEC distributions for data and MC in different detector regions and by changing the energy response in different detector components in the Monte Carlo simulation by up to 10%. Larger variations are incompatible with the measured energy distributions in the calorimeters. We find a systematic uncertainty in c_{det}^{i} of 4%. The measured EEC values, corrected for detector effects, are shown in table 1 in the angular interval 25.2°–154.8°.

To study the effects of hadronization and decays we use the JETSET parton shower MC program with...
string fragmentation. For b and c quarks we use the Peterson fragmentation function [7] with the parameters $\epsilon_c=0.07$ and $\epsilon_b=0.015$ [8]. The value of (i) the parton shower scale A_{\perp}, (ii) the fragmentation parameter σ_\perp, which controls the transverse momentum of the hadrons, and (iii) the parameter b influencing the longitudinal momentum spectrum, were determined from a fit to our data. All other JETSET parameters were kept at their default values.

First we have unfolded [9] the three measured distributions

(a) differential 3-jet fraction d^3f/dy [10,2],
(b) minor (narrow side) [11] and
(c) fourth Fox-Wolfram moment [12]

for detector effects. Then we have fitted the three parameters A_{\perp}, σ_\perp and b for various values of the parton shower termination parameter Q^2_0 [4]. The fitted parameter values are shown in table 2 with their systematic uncertainties, which are due to uncertainties in the unfolding. For the determination of c'_{det} and in fig. 1 the parameter set for $Q^2_0=1$ GeV 2 (JETSET default) has been used. Table 2 shows also the average number of partons produced as a function of Q^2_0.

Since we want to compare our data to the second order QCD calculations with a maximum of four partons we calculate the hadronization correction for the case $Q^2_0=16$ GeV 2, for which on average four partons are produced:

$$c_{\text{hadr}} = \frac{\text{EEC}_{\text{part}}}{\text{EEC}_{\text{hadr}}}.$$

EEC$_{\text{part}}$ is the Monte Carlo predictions for partons and EEC$_{\text{hadr}}$ denotes the EEC calculated for hadrons after fragmentation and decays. Fig. 2b shows the result. To estimate the uncertainty we recalculate the hadronization correction for $Q^2_0 = 1$ GeV 2 and $Q^2_0 = 32$ GeV 2.

Finally we apply a correction for initial and final state radiation:

$$c_{\text{rad}} = \frac{\text{EEC}_{\text{no_rad}}}{\text{EEC}_{\text{rad}}}.$$

Here EEC$_{\text{rad}}$ and EEC$_{\text{no_rad}}$ are the parton shower calculations with and without initial and final state photon radiation, respectively. The correction factor

<table>
<thead>
<tr>
<th>χ</th>
<th>EEC(χ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.2°-30.6°</td>
<td>0.196</td>
</tr>
<tr>
<td>30.6°-36.0°</td>
<td>0.157</td>
</tr>
<tr>
<td>36.0°-41.4°</td>
<td>0.134</td>
</tr>
<tr>
<td>41.4°-46.8°</td>
<td>0.117</td>
</tr>
<tr>
<td>46.8°-52.2°</td>
<td>0.107</td>
</tr>
<tr>
<td>52.2°-57.6°</td>
<td>0.098</td>
</tr>
<tr>
<td>57.6°-63.0°</td>
<td>0.092</td>
</tr>
<tr>
<td>63.0°-68.4°</td>
<td>0.088</td>
</tr>
<tr>
<td>68.4°-73.8°</td>
<td>0.085</td>
</tr>
<tr>
<td>73.8°-79.2°</td>
<td>0.083</td>
</tr>
<tr>
<td>79.2°-84.6°</td>
<td>0.083</td>
</tr>
<tr>
<td>84.6°-90.0°</td>
<td>0.083</td>
</tr>
<tr>
<td>90.0°-95.4°</td>
<td>0.083</td>
</tr>
<tr>
<td>95.4°-100.8°</td>
<td>0.086</td>
</tr>
<tr>
<td>100.8°-106.2°</td>
<td>0.090</td>
</tr>
<tr>
<td>106.2°-111.6°</td>
<td>0.096</td>
</tr>
<tr>
<td>111.6°-117.0°</td>
<td>0.102</td>
</tr>
<tr>
<td>117.0°-122.4°</td>
<td>0.111</td>
</tr>
<tr>
<td>122.4°-127.8°</td>
<td>0.123</td>
</tr>
<tr>
<td>127.8°-133.2°</td>
<td>0.138</td>
</tr>
<tr>
<td>133.2°-138.6°</td>
<td>0.159</td>
</tr>
<tr>
<td>138.6°-144.0°</td>
<td>0.190</td>
</tr>
<tr>
<td>144.0°-149.4°</td>
<td>0.233</td>
</tr>
<tr>
<td>149.4°-154.8°</td>
<td>0.303</td>
</tr>
</tbody>
</table>
Table 2
Fitted JETSET parameters A_{LL}, σ_4 and b for three values of the parton shower termination parameter Q_0^2. The systematic errors are due to uncertainties in the unfolding. The average number of partons is also shown.

<table>
<thead>
<tr>
<th>Q_0^2 [GeV2]</th>
<th>Partons</th>
<th>A_{LL} [GeV]</th>
<th>σ_4 [GeV]</th>
<th>b [GeV$^{-2}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.0</td>
<td>0.30 \pm 0.03</td>
<td>0.40 \pm 0.05</td>
<td>0.75 \pm 0.05</td>
</tr>
<tr>
<td>16</td>
<td>4.0</td>
<td>0.31 \pm 0.03</td>
<td>0.50 \pm 0.05</td>
<td>0.60 \pm 0.10</td>
</tr>
<tr>
<td>32</td>
<td>3.5</td>
<td>0.28 \pm 0.03</td>
<td>0.50 \pm 0.05</td>
<td>0.40 \pm 0.05</td>
</tr>
</tbody>
</table>

is shown in fig. 2c. It is close to one and its uncertainty is negligible.

The unfolded EEC and AEEC distributions with their statistical errors are shown in fig. 3.

5. Comparison to perturbative QCD

QCD (calculated to second order) predicts the EEC and AEEC distributions as a function of the strong coupling constant α_s, the center of mass energy squared $s \approx M_Z^2$, and the renormalization scale $f=\mu^2/s$ [6]:

$$E_{EC}(\chi) = F(\chi) \alpha_s \left[1 + \left[b_0 \ln f + R(\chi) \right] \alpha_s \right],$$

and similarly for AEEC. In these calculations 2-, 3- and 4-parton final states are included. There is no invariant mass cut applied. The coupling constant α_s is given by [13]

$$\alpha_s(A, \mu^2) = \frac{1}{b_0 \ln (\mu^2/A^2)} - \frac{b_1}{b_0^2} \left[\frac{\ln (\mu^2/A^2)}{\ln (\mu^2/A^2)} \right]^2,$$

where

$$b_0 = \frac{33-2n_f}{12\pi}, \quad b_1 = \frac{153-19n_f}{24\pi^2}, \quad n_f = 5.$$

$A = A_{QCD}^{\mu^2}$ denotes the QCD scale parameter for five active flavours.

The first order term F can be written in analytical form [1]. The second order correction R has been calculated by four different groups [14–16,6], some of those using different methods for cancelling singularities. The four results differ from each other. For the integral over the angular ranges defined in (2) the second order correction R varies by about $\pm 25\%$ for EEC and AEEC. These discrepancies are not understood. For the determination of α_s we use the calculations in ref. [6] and take into account the differences as a theoretical error. R is about 3 for EEC and 1 for AEEC.

To interpret the measured energy–energy correlations in the framework of QCD the renormalization scale f needs to be fixed. Various principles have been
suggested for choosing f \cite{17-19,15}. One of them, the principle of minimal sensitivity \cite{18}, postulates a scale f_0 for which the derivative of an observable such as EEC with respect to f vanishes. This would be fulfilled automatically if calculated to all orders. The size of f_0 depends on the size of R. We conservatively allow a variation of f in the range $\frac{1}{2}f_0 - 1$ to estimate the scale uncertainty in α_s. This yields

$$0.001 \leq f \leq 1 \text{ (EEC)}, \quad 0.03 \leq f \leq 1 \text{ (AEEC)}. \quad (3)$$

We choose as central value in both cases $f=0.1$.

The integrals of the corrected EEC and AEEC distributions are

$$\int_{138.6^0}^{56.6^0} \text{EEC}(\chi) \, d\chi = 0.123 \pm 0.0002 \text{ (stat.)},$$

$$\pm 0.005 \text{ (exp.)} \pm 0.002 \text{ (hadr.)},$$

$$\int_{90.0^0}^{36.0^0} \text{AEEC}(\chi) \, d\chi = 0.0225 \pm 0.0002 \text{ (stat.)},$$

$$\pm 0.0009 \text{ (exp.)} \pm 0.0009 \text{ (hadr.)}.$$

The statistical errors (stat.) are negligible. The experimental systematic errors (exp.) correspond to the uncertainty in the detector correction factor c'_det. The hadronization uncertainty (hadr.) is estimated by recalculating the hadronization correction for the different sets of Monte Carlo parameters given in table 2.

For a renormalization scale $f=0.1$ we derive for the QCD scale parameter using the second order calculations in ref. \cite{6}:

$$\Lambda \text{ (EEC)} = 270 \pm 60 \text{ (exp.)} \pm 30 \text{ (hadr.)}$$

$$\pm 150 \text{ (scale)} \pm 80 \text{ (theor.)} \text{ MeV},$$

$$\Lambda \text{ (AEEC)} = 190 \pm 20 \text{ (exp.)} \pm 20 \text{ (hadr.)}$$

$$\pm 30 \text{ (scale)} \pm 30 \text{ (theor.)} \text{ MeV}.$$

The corresponding α_s values at $\sqrt{s} = 91.2$ GeV are

$$\alpha_s \text{ (EEC)} = 0.121 \pm 0.004 \text{ (exp.)} \pm 0.002 \text{ (hadr.)}$$

$$\pm 0.009 \text{ (scale)} \pm 0.006 \text{ (theor.)} \quad (4)$$

$$\alpha_s \text{ (AEEC)} = 0.115 \pm 0.004 \text{ (exp.)} \pm 0.004 \text{ (hadr.)}$$

$$\pm 0.003 \text{ (scale)} \pm 0.003 \text{ (theor.)}. \quad (5)$$

The scale uncertainty (scale) is calculated by varying f in the range given in (3). It is small for AEEC due to the smallness of the second order correction. The theoretical error (theory) is estimated by repeating the α_s calculation using the different second order calculations (at a scale $f=0.1$) for R. For a renormalization scale $f=1$ we obtain for the central values of the strong coupling constant at $\sqrt{s} = 91.2$ GeV $\alpha_s \text{ (EEC)} = 0.130$ and $\alpha_s \text{ (AEEC)} = 0.117$.

Fig. 3 compares the EEC and AEEC distributions calculated in second order QCD to our measurements.

If α_s is derived from a fit to the distributions in fig. 3 the result differs by less than 1% from the numbers obtained by comparing the integrals. A variation in the angular ranges (2) by up to $\pm 10.8^0$ (open circles in fig. 3) yields a change in the strong coupling constant by less than 2% for EEC and less than 1% for AEEC.

To study theoretical uncertainties further, we have repeated the α_s determination using the ERT \cite{20} matrix element generator implemented in the JETSET program with an invariant mass cutoff $\gamma_{\text{min}} = 0.01$ and a scale $f=0.1$. We have used fragmentation parameters determined from a comparison of measured event shape distributions to those generated with the matrix element generator and string fragmentation. We obtain α_s values from both the EEC and the AEEC which agree with the results in (4) and (5) within the estimated hadronization error.

The α_s values derived from EEC and AEEC agree with each other and also with the strong coupling constant determined from the 3-jet fraction, $\alpha_s = 0.115 \pm 0.005 \text{ (exp.)} \pm 0.012 \text{ (theor.)} \quad [2]$. The values of α_s determined by the OPAL \cite{21} and DELPHI \cite{22} collaborations for energy-energy correlations at the Z^0 resonance are in agreement with our numbers.

6. Energy dependence of α_s derived from AEEC

Several groups have used various methods to determine the strong coupling constant α_s in second order from the asymmetry of energy-energy-correlations in e^+e^- annihilation \cite{21-23}. Fig. 4 shows only results obtained using the string fragmentation model for hadronization corrections and a renormalization scale $f=1$. Measurements based on the FKSS \cite{24} or GKS \cite{25} matrix element calculations, which were
Fig. 4. Energy dependence of α_s measured from AEEC in e^+e^- annihilation at different center of mass energies in comparison with second order QCD. The energy dependence of α_s is reproduced by the QCD predictions, which have been calculated using our measured value of $A = (220^{+110}_{-50})$ MeV (for $f=1$), rather than from a fit to all data points. For a better readability of this graph different points at the same center of mass energy were slightly shifted horizontally.

found to be incomplete [26], are not shown. Statistical and systematic errors are combined quadratically.

The energy dependence of α_s is reproduced by QCD for our measured value of $A = (220^{+110}_{-50})$ MeV (for $f=1$).

7. Summary

From the energy–energy correlation and its asymmetry measured for 83,000 hadronic Z^0 decays we determine the strong coupling constant α_s to second order QCD at $\sqrt{s} = 91.2$ GeV. We derive

$$\alpha_s = 0.121 \pm 0.004 \text{(exp.)} \pm 0.002 \text{(hadr.)} \pm 0.009 \text{(scale)} \pm 0.006 \text{(theor.)}$$

from the energy–energy correlation and

$$\alpha_s = 0.115 \pm 0.004 \text{(exp.)} \pm 0.002 \pm 0.003 \text{(scale)} \pm 0.005 \text{(theor.)}$$

from its asymmetry. The running of α_s as predicted by QCD is confirmed by a comparison of α_s values measured from the asymmetry of the energy–energy correlations at different center of mass energies.

Acknowledgement

We wish to express our gratitude to the CERN accelerator divisions for the excellent performance of the LEP machine. We acknowledge the effort of all engineers and technicians who have participated in the construction and maintenance of this experiment. We are grateful to G. Altarelli, T. Sjöstrand and P. Zerwas for useful discussions.

References

[5] GEANT Version 3.13 (September 1989), see R. Brun et al., GEANT 3, CERN DD/EE/84-1 (Rev.) (September 1987); to simulate hadronic interactions the program GHEISHA is used, see H. Fesefeldt, RWTH Aachen preprint PITHA 85/02 (1985).
PLUTO Collab., C. Berger et al., Z. Phys. C 28 (1985) 395;