Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at \(s = 7 \) TeV with the ATLAS detector

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.110.011802

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for Dark Matter Candidates and Large Extra Dimensions in Events with a Photon and Missing Transverse Momentum in \(pp \) Collision Data at \(\sqrt{s} = 7 \) TeV with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 20 September 2012; published 3 January 2013)

Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum in proton-proton collisions at \(\sqrt{s} = 7 \) TeV are reported. Data collected by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 4.6 fb\(^{-1}\) are used. Good agreement is observed between the data and the standard model predictions. The results are translated into exclusion limits on models with large extra spatial dimensions and on pair production of weakly interacting dark matter candidates.

DOI: 10.1103/PhysRevLett.110.011802

Events with an energetic photon and large missing momentum in the final state constitute a clean and distinctive signature in searches for new physics at colliders. In particular, monophoton, and monojet final states have been studied [1–8] in the context of searches for supersymmetry and large extra spatial dimensions (LED), aiming to provide a solution to the mass hierarchy problem, and the search for weakly interacting massive particles (WIMPs) as candidates for dark matter (DM).

The Arkani-Hamed, Dimopoulos, and Dvali (ADD) model for LED [9] explains the large difference between the electroweak unification scale \(O(10^2) \) GeV and the Planck scale \(M_{Pl} \sim O(10^{19}) \) GeV by postulating the presence of \(n \) extra spatial dimensions of size \(R \), and defining a fundamental Planck scale in \(4 + n \) dimensions, \(M_D \), given by \(M_D^2 \sim M_P^4 R^n \). The extra spatial dimensions are compactified, resulting in a Kaluza-Klein tower of massive graviton modes. At hadron colliders, these graviton modes may escape detection and can be produced in association with an energetic photon or a jet, leading to a monophoton or monojet signature.

The presence of a nonbaryonic DM component in the Universe is inferred from the observation of its gravitational interactions [10], although its nature is otherwise unknown. A WIMP \(\chi \) with mass \(m_\chi \) in the range between 1 GeV and a few TeV is a plausible candidate for DM. It could be detected via its scattering with heavy nuclei [11], the detection of cosmic rays (energetic photons, electrons, positrons, protons, antiprotons, or neutrinos) from \(\chi \bar{\chi} \) annihilation in astrophysical sources [10], or via \(\chi \bar{\chi} \) pair production at colliders where the WIMPs do not interact with the detector and the event is identified by the presence of an energetic photon or jet from initial-state radiation. The interaction of WIMPs with standard model (SM) particles is assumed to be driven by a mediator with mass at the TeV scale and described using a nonrenormalizable effective theory [12] with several operators. The vertex coupling is suppressed by an effective cutoff mass scale \(M_* \sim M/\sqrt{8g_1^2g_2^2} \), where \(M \) denotes the mass of the mediator and \(g_1 \) and \(g_2 \) are the couplings of the mediator to the WIMP and SM particles.

This Letter reports results of the search for new phenomena in the monophoton final state, based on \(\sqrt{s} = 7 \) TeV proton-proton collision data corresponding to an integrated luminosity of 4.6 fb\(^{-1}\) collected with the ATLAS detector at the LHC during 2011. The ATLAS detector is described in detail elsewhere [13]. The data are collected using a three-level trigger system that selects events with missing transverse momentum greater than 70 GeV. In the analysis, events are required to have a reconstructed primary vertex and \(E_T^{miss} > 150 \) GeV, where \(E_T^{miss} \) is computed as the magnitude of the vector sum of the transverse momentum of all noise-suppressed calorimeter topological clusters with \(|\eta| < 4.9\) [14,15]. A photon is also required with transverse momentum \(p_T > 150 \) GeV and \(|\eta| < 2.37\), excluding the calorimeter barrel or endcap transition regions 1.37 < |\(\eta\)| < 1.52 [13]. With these criteria, the trigger selection is more than 98% efficient, as determined using events selected with a muon trigger. The cluster energies are corrected for the different response of the calorimeters to hadronic jets, \(\tau \) leptons, electrons or photons, as well as dead material and out-of-cluster energy losses. The photon candidate must pass tight identification criteria [16] and is required to be isolated: the energy not associated with the photon cluster in a cone of radius \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4 \) around the candidate is required to be less than 5 GeV. Jets are defined using the anti-\(k_T \) jet algorithm [17] with the distance parameter set to \(R = 0.4 \). The measured jet \(p_T \) is corrected for detector effects.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
effects and for contributions from multiple proton-proton interactions per beam bunch crossing (pileup) [18].

Events with more than one jet with $p_T > 30$ GeV and $|\eta| < 4.5$ are rejected. Events with one jet are retained to increase the signal acceptance and reduce systematic uncertainties related to the modeling of initial-state radiation. The reconstructed photon, E_T^{miss} vector, and jets (if found) are required to be well separated in the transverse plane with $\Delta \phi (\gamma, E_T^{\text{miss}}) > 0.4$, $\Delta R (\gamma, j) > 0.4$, and $\Delta \phi (\text{jet, } E_T^{\text{miss}}) > 0.4$. Additional quality criteria [19] are applied to ensure that jets and photons are not produced by noisy calorimeter cells, and to avoid problematic detector regions. Events with identified electrons or muons are vetoed to reject mainly $W/Z + j$ and $W/Z + \gamma$ background processes with charged leptons in the final state. Electron (muon) candidates are required to have $p_T > 20$ GeV and $|\eta| < 2.47$ ($p_T > 10$ GeV and $|\eta| < 2.4$), and to pass the medium (combined) criteria [20]. The final data sample contains 116 events, where 88 and 28 events have zero and one jet, respectively.

The SM background to the monophoton signal is dominated by the irreducible $Z(\rightarrow \nu \bar{\nu}) + \gamma$ process, and receives contributions from $W/Z + \gamma$ events with unidentified electrons, muons or hadronic τ decays, and $W/Z + j$ events with an electron or jet misreconstructed as a photon. In addition, the monophoton sample receives small contributions from top-quark, $\gamma\gamma$, diboson (WW, ZZ, WZ, $\gamma + j$, $\gamma + \gamma$, and multijet processes.

Background samples of simulated $W/Z + \gamma$ events are generated using ALPGEN 2.13 [21], interfaced to HERWIG 6.510 [22] with JIMMY 4.31 [23], and SHERPA 1.2.3 [24], using CTEQ6L1 [25] parton distribution functions (PDFs), and requiring a minimum photon p_T of 40 GeV. Background samples of $W/Z + j$ and $\gamma + j$ processes are generated using ALPGEN plus HERWIG/JIMMY, with CTEQ6L1 PDFs. Top-quark production samples are generated using MC@NLO 4.01 [26] and CT10 [27] PDFs, while diboson processes are generated using HERWIG/JIMMY normalized to next-to-leading-order (NLO) predictions with MRST2007 [28] PDFs. Multijet and $\gamma\gamma$ processes are generated using PYTHIA 6.426 [29] with MRST2007 PDFs.

Signal Monte Carlo (MC) samples are generated according to the ADD model using the PYTHIA 8.150 leading-order (LO) perturbative QCD (pQCD) implementation with default settings, requiring a minimum photon p_T of 80 GeV, and an ATLAS tune for the underlying event (UE) contribution [30] including the CTEQ6L1 PDFs. The number of extra dimensions n is varied from 2 to 6 and values of M_D in the 1–2 TeV range are considered. For consistency with a previous monojet analysis performed in ATLAS [7,8], the yields corresponding to CTEQ6.6 [31] PDFs are used, as obtained by reweighting these samples. The samples are normalized to NLO total cross sections [32]. The LO-to-NLO factors decrease from 1.5 to 1.1 as n increases.

Simulated events corresponding to the $\chi^0 + \gamma$ process with a minimum photon p_T of 80 GeV are generated using LO matrix elements from MADGRAPH [33] interfaced to PYTHIA 6.426 using CTEQ6L1 PDFs. Values for m_χ between 1 GeV and 1.3 TeV are considered. In this analysis, WIMPs are assumed to be Dirac fermions and the vertex operator is taken to have the structure of a scalar, vector, axial-vector or tensor, corresponding, respectively, to the operators D_1, D_5, D_8, and D_9 in Refs. [12,34]. These operators correspond to spin-independent (D_1 and D_5) and spin-dependent (D_8 and D_9) interactions. The MC samples are passed through a full simulation [35] of the ATLAS detector and trigger system, based on GEANT4 [36]. The simulated events are reconstructed and analyzed as the data.

The normalization of the MC predictions for the dominant $W/Z + \gamma$ background processes are set using scale factors determined in a data control sample, resulting in a significant reduction of the background uncertainties. A $\gamma + \mu + E_T^{\text{miss}}$ control sample with an identified muon is defined by inverting the muon veto in the nominal event selection criteria discussed above. According to the simulation, the sample contains a 71% (19%) contribution from $W + \gamma$ ($Z + \gamma$) processes. This control sample is used to normalize separately the $W + \gamma$ and $Z + \gamma$ MC predictions determined by ALPGEN and SHERPA, respectively. In each case, the scale factor is defined as the ratio of the data to the given MC prediction, after the contributions from the rest of the background processes are subtracted. The scale factors, extracted simultaneously to take into account correlations, are $k(W + \gamma) = 1.0 \pm 0.2$ and $k(Z + \gamma) = 1.1 \pm 0.2$, where statistical and systematic uncertainties are included (see below).

Dedicated studies are performed to determine the probability for electrons or jets to be identified as photons, resulting in data-driven estimates of $W/Z + j$ event background contributions. (1) A data sample of Z boson candidates is employed to compute the fraction of electrons from the Z boson decay that are reconstructed as photons. This fraction decreases from 2% to 1% as p_T increases from 150 to 300 GeV, and increases from 1% to 3% as $|\eta|$ increases. These rates are employed to determine the $W(\rightarrow e\nu) + j$ background in the signal region, for which a control data sample selected with the nominal selection criteria and an electron instead of a photon is used. This results in a total $W(\rightarrow e\nu) + j$ background estimation of 14 ± 6 events, where the uncertainty is dominated by the limited size of the control data sample. (2) Control samples enhanced in jets identified as photons are defined using nominal selection criteria with nonisolated photon candidates and/or photon candidates passing a loose selection [16] but not the nominal identification requirements. The ratio of isolated to nonisolated photons in the loose-photon selected sample together with the number of nonisolated photons passing the nominal
identification requirements are used to determine the rate of jets identified as photons in the signal region, after the contribution from $W/Z + \gamma$ processes has been subtracted. This gives an estimate of 4.3 ± 1.9 $W/Z + \text{jet}$ background events.

The $\gamma + \text{jet}$ and multijet background contributions to the signature of a photon and large E_T^{miss} originate from the misreconstruction of the energy of a jet in the calorimeter. The direction of the E_T^{miss} vector therefore tends to be aligned with the jet. These background contributions are determined from data using a control sample with the nominal selection criteria and at least one jet with $p_T > 30$ GeV and $\Delta \phi (\text{jet}, E_T^{miss}) < 0.4$. After the subtraction of electroweak boson and top-quark production processes, a linear extrapolation of the measured p_T spectrum to $p_T < 30$ GeV leads to an estimate of 1.0 ± 0.5 background events in the signal region, where the uncertainty is due to the ambiguity in the functional form used in the extrapolation. Background contributions from top-quark, $\gamma\gamma$, and diboson production processes, determined using MC samples, are small. Finally, noncollision backgrounds are negligible.

A detailed study of systematic uncertainties on the background predictions has been performed. An uncertainty of 0.3% to 1.5% on the absolute photon energy scale [16], depending on the photon p_T and η, translates into a 0.9% uncertainty on the total background prediction. Uncertainties on the simulated photon energy resolution, photon isolation, and photon identification efficiency introduce a combined 1.1% uncertainty on the background yield. Uncertainties on the simulated lepton identification efficiencies introduce a 0.3% uncertainty on the background predictions. The uncertainty on the absolute jet energy scale [18] and jet energy resolution introduce 0.9% and 1.2% uncertainties on the background estimation, respectively. A 10% uncertainty on the absolute energy scale for low p_T jets and unclustered energy in the calorimeter, and a 6.6% uncertainty on the subtraction of pileup contributions, are taken into account. They affect the E_T^{miss} determination and translate into 0.8% and 0.3% uncertainties on the background yield, respectively. The dependence of the predicted $W/Z + \gamma$ backgrounds on the parton shower and hadronization model used in the MC simulations is studied by comparing the predictions from SHERPA and ALPGEN. This results in a conservative 6.9% uncertainty on the total background yield. Uncertainties due to the choice of PDFs and the variation of the renormalization and factorization scales in the $W/Z + \gamma$ MC samples introduce an additional 1.0% uncertainty on the total background yields. Other sources of systematic uncertainty related to the trigger selection, the lepton p_T scale and resolution, the pileup description, background normalization of the top quark, $\gamma\gamma$ and diboson contributions, and a 1.8% uncertainty on the total luminosity [37] introduce a combined uncertainty of less than 0.5% on the total predicted yields. The different sources of uncertainty are added in quadrature, resulting in a total 15% uncertainty on the background prediction.

In Table I, the observed number of events and the SM predictions are presented. The data are in agreement with the SM background-only hypothesis with a p value of 0.2. Figure 1 shows the measured E_T^{miss} distribution compared to the background predictions. The results are expressed in terms of model-independent 90% and 95% confidence level (C.L.) upper limits on the visible cross section, defined as the production cross section times acceptance times efficiency ($\sigma \times A \times \epsilon$), using the CL$_s$ modified frequentist approach [38] and considering the systematic uncertainties on the SM backgrounds and on the integrated luminosity. Values of $\sigma \times A \times \epsilon$ above 5.6 fb and 6.8 fb are excluded at 90% C.L. and 95% C.L., respectively. Typical event selection efficiencies of $\epsilon \sim 75\%$ are found in simulated ADD and WIMP signal samples.

The results are translated into 95% C.L. limits on the parameters of the ADD model. The typical $A \times \epsilon$ of the selection criteria is $20.0 \pm 0.4 \text{(stat)} \pm 1.6 \text{(syst)}\%$, approximately independent of n and M_D. Experimental

<table>
<thead>
<tr>
<th>Background source</th>
<th>Prediction</th>
<th>$\pm\text{(stat)}$</th>
<th>$\pm\text{(syst)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z(\rightarrow\nu\bar{\nu}) + \gamma$</td>
<td>93</td>
<td>±16</td>
<td>±8</td>
</tr>
<tr>
<td>$Z/\gamma^* (\rightarrow \ell^+\ell^-) + \gamma$</td>
<td>0.4</td>
<td>±0.2</td>
<td>±0.1</td>
</tr>
<tr>
<td>$W(\rightarrow \ell \nu) + \gamma$</td>
<td>24</td>
<td>±5</td>
<td>±2</td>
</tr>
<tr>
<td>$W/Z + \text{jets}$</td>
<td>18</td>
<td>\cdots</td>
<td>±6</td>
</tr>
<tr>
<td>Top</td>
<td>0.07</td>
<td>±0.07</td>
<td>±0.01</td>
</tr>
<tr>
<td>$WW, WZ, ZZ, \gamma\gamma$</td>
<td>0.3</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>$\gamma + \text{jets and multijet}$</td>
<td>1.0</td>
<td>\cdots</td>
<td>±0.5</td>
</tr>
<tr>
<td>Total background</td>
<td>137</td>
<td>±18</td>
<td>±9</td>
</tr>
</tbody>
</table>

Events in data (4.6 fb$^{-1}$) | 116 |

![FIG. 1 (color online). The measured E_T^{miss} distribution (black dots) compared to the SM (solid lines), SM + ADD (dashed lines), and SM + WIMP (dotted lines) predictions, for two particular ADD and WIMP scenarios.](https://example.com/figure1.png)
uncertainties related to the photon, jet, and E_T^{miss} scales and resolutions, the photon reconstruction, the trigger efficiency, the pileup description, and the luminosity introduce a 6.8% uncertainty on the signal yield. Uncertainties related to the modeling of the initial- and final-state gluon radiation translate into a 3.5% uncertainty on the ADD signal yield. Systematic uncertainties due to PDFs result in a 0.8% to 1.4% uncertainty on the signal $A \times \epsilon$ and a 4% to 11% uncertainty on the signal cross section, increasing as n increases. Variations of the renormalization and factorization scales by factors of 2 and $\frac{1}{2}$ introduce a 0.6% uncertainty on the signal $A \times \epsilon$ and an uncertainty on the signal cross section that decreases from 9% to 5% as n increases.

Figure 2 shows the expected and observed 95% C.L. lower limits on M_D as a function of n, as determined using the CL$_{s}$ method and considering uncertainties on both signal and SM background predictions. Values of M_D below 1.93 TeV ($n = 2$), 1.83 TeV ($n = 3$ or 4), 1.86 TeV ($n = 5$), and 1.89 TeV ($n = 6$) are excluded at 95% C.L. The observed limits decrease by 3% to 2% after considering the -1σ uncertainty from PDFs, scale variations, and parton shower modeling in the ADD theoretical predictions (dashed lines in Fig. 2). These results improve upon previous limits on M_D from LEP and Tevatron experiments [1–3]. In this analysis, no weights are applied for signal events in the phase space region with $\hat{s} > M_D^2$, which is sensitive to the unknown ultraviolet behavior of the theory. For M_D values close to the observed limits, the visible signal cross sections decrease by 15% to 75% as n increases when truncated samples with $\hat{s} < M_D^2$ are considered. This analysis probes a kinematic range for which the model predictions are defined but ambiguous.

Similarly, 90% C.L. upper limits on the pair-production cross section of dark matter WIMP candidates are determined. The $A \times \epsilon$ of the selection criteria are typically 11.0 ± 0.2(stat) ± 1.6(syst)% for the D1 operator, 18.0 ± 0.3(stat) ± 1.4(syst)% for the D5 and D8 operators, and 23.0 ± 0.3(stat) ± 2.1(syst)% for the D9 operator, with a moderate dependence on m_χ. Experimental uncertainties, as discussed above, translate into a 6.6% uncertainty on the signal yields. Theoretical uncertainties on initial- and final-state gluon radiation introduce a 3.5% to 10% uncertainty on the signal yields. The uncertainties related to PDFs result in 1.0% to 8.0% and 5.0% to 30% uncertainties on the signal $A \times \epsilon$ and cross section, respectively. Variations of the renormalization and factorization scales lead to a change of 1.0% to 2.0% and 8.0% in the signal $A \times \epsilon$ and cross section, respectively. In the case of the D1 (D5) spin-independent operator, values of M_χ below 31 and 5 GeV (585 and 156 GeV) are excluded at 90% C.L. for m_χ equal to 1 GeV and 1.3 TeV, respectively. Values of M_χ below 585 and 100 GeV (794 and 188 GeV) are excluded for the D8 (D9) spin-dependent operator for m_χ equal to 1 GeV and 1.3 TeV, respectively. These results can be translated into upper limits on the nucleon-WIMP interaction cross section using the prescription in Refs. [12,39]. Figure 3 shows 90% C.L. upper limits on the nucleon-WIMP cross section as a function of m_χ. In the case of the D1 (D5) spin-independent interaction, nucleon-WIMP cross sections above 2.7×10^{-39} cm2 and 5.8×10^{-34} cm2 (2.2 $\times 10^{-39}$ cm2 and 1.7 $\times 10^{-36}$ cm2) are excluded at 90% C.L. for $m_\chi = 1$ GeV and $m_\chi = 1.3$ TeV, respectively. Spin-dependent interactions cross sections in the range 7.6×10^{-41} cm2 to 3.4×10^{-37} cm2 (2.2 $\times 10^{-41}$ cm2 to 2.7×10^{-38} cm2) are excluded at 90% C.L. for the D8 (D9) operator and m_χ varying between 1 GeV and 1.3 TeV. The quoted observed limits on M_χ typically decrease by 2% to 10% if the -1σ theoretical uncertainty is considered. This translates into a 10% to 50% increase of the quoted nucleon-WIMP cross section limits. The exclusion in the region $1 \text{ GeV} < m_\chi < 3.5 \text{ GeV}$ (1 GeV < $m_\chi < 1 \text{ TeV}$) for spin-independent (spin-dependent) interactions is shown in Table 1.

![FIG. 2 (color online). Observed (solid lines) and expected (dashed lines) 95% C.L. limits on M_D as a function of the number of extra spatial dimensions n in the ADD model. The results are compared with previous results [1,3,6] (other lines). In [6], weights are applied that suppress the region with $\hat{s} > M_D^2$.](image1)

![FIG. 3 (color online). 90% C.L. upper limits on the nucleon-WIMP cross section as a function of m for spin-dependent (left) and spin-independent (right) interactions [12,39]. The results are compared with previous monojet and monophoton results at colliders [4,6,8] and results from direct detection experiments [11].](image2)
nucleon-WIMP interactions is driven by the results from collider experiments, with the assumption of the validity of the effective theory, and is still dominated by the monojet results. The cross section upper limits improve upon CDF results [4] and are similar to those obtained by the CMS experiment [5,6].

In summary, we report results on the search for new phenomena in events with an energetic photon and large missing transverse momentum in proton-proton collisions at $\sqrt{s} = 7$ TeV at the LHC, based on ATLAS data corresponding to an integrated luminosity of 4.6 fb$^{-1}$. The measurements are in agreement with the SM predictions for the background. The results are translated into model-independent 90% and 95% confidence level upper limits on $\sigma \times A \times e$ of 5.6 and 6.8 fb, respectively. The results are presented in terms of improved limits on M_D versus the number of extra spatial dimensions in the ADD model and upper limits on the spin-independent and spin-dependent contributions to the nucleon-WIMP elastic cross section as a function of the WIMP mass.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRSRT, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYs (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, U.K.; DOE and NSF, U.S. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.), and BNL (U.S.) and in the Tier-2 facilities worldwide.

[16] ATLAS uses a cylindrical coordinate system about the beam axis with polar angle θ and azimuthal angle ϕ. Anticlockwise beam direction defines the positive z axis, while the positive x axis is defined as pointing from the collision point to the center of the LHC ring and the positive y axis points upwards. We define transverse energy $E_T = E \sin \theta$, transverse momentum $p_T = p \sin \theta$, and pseudorapidity $\eta = -\ln \tan(\theta/2)$.
The strange and charm quark masses (relevant for the D_1 operator) are set to 0.1 and 1.42 GeV, respectively.

In consultation with the authors of Ref. [12], a factor $4.7 \times 10^{-39} \text{cm}^2$ is used in the cross section formula for D_8 and D_9 operators instead of the quoted 9.18 $\times 10^{-40} \text{cm}^2$.
J. Wetter, 161 C. Weydert, 55 K. Whalen, 29 S. J. Wheeler-Ellis, 163 A. White, 8 M. J. White, 86 S. White, 122a, 122b
S. R. Whitehead, 118 D. Whiteson, 163 D. Whittington, 60 F. Wicke, 115 D. Wicke, 175 F. J. Wickens, 129
K. W. Wozniak, 39 K. Wraight, 53 M. Wright, 53 B. Wrona, 73
S. L. Wu, 173 X. Wu, 49 Y. Wu, 33b, ll E. Wulf, 35 B. M. Wynne, 46 S. Xella, 36 M. Xiao, 136 S. Xie, 48 C. Xu, 33b, 5
D. Xu, 139 B. Yabsley, 150 S. Yacoob, 145a, mm M. Yamada, 65 H. Yamaguchi, 155 A. Yamamoto, 65 K. Yamamoto, 63 S. Yamamoto, 155
T. Yamamura, 155 T. Yamanaka, 155 J. Yamaoka, 155 Y. Yamazaki, 146a, 146b S. Yamazaki, 155 Y. Yang, 109 Z. Yang, 144a
S. Yanush, 91 L. Yao, 33a Y. Yao, 15 Y. Yasu, 65 G. V. Ybeles Smit, 130 J. Ye, 40 S. Ye, 25
M. Yilmaz, 4c R. Yoosoofmiya, 123 K. Yorita, 171 R. Yoshida, 6 C. Young, 143 C. J. Young, 118 S. Youssef, 22 D. Yu, 25
T. Ženíš, 144a Z. Zinonos, 8 S. Zen, 15 D. Zerwas, 115 G. Zevi della Porta, 57 Z. Zhan, 33b, 5g
H. Zhang, 88 J. Zhang, 6 X. Zhang, 33d Z. Zhang, 115 L. Zhao, 108 T. Zhao, 138 Z. Zhao, 33b A. Zhemchugov, 64 J. Zhong, 118
D. Zieminska, 60 N. I. Zimin, 66 R. Zimmermann, 21 S. Zimmermann, 21 S. Zimmermann, 48 M. Ziolkowski, 141
R. Zitoun, 5 L. Živković, 35 V. V. Zmouchko, 128a G. Zobernig, 173 A. Zoccoli, 20a, 20b M. zur Nedden, 66
V. Zutshi, 106 and L. Zwalinski 30

(Atlas Collaboration)
Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
Physics Department, Brookhaven National Laboratory, Upton, New York, USA
National Institute of Physics and Nuclear Engineering, Bucharest, Romania
University Politehnica Bucharest, Bucharest, Romania
West University in Timisoara, Timisoara, Romania
Departamento de Fisica, Universidad de Buenos Aires, Buenos Aires, Argentina
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, Carleton University, Ottawa, Ontario, Canada
CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
Departamento de Fisica, Pontificia Universidad Catolica de Chile, Santiago, Chile
Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Valparaiso, Chile
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
Department of Modern Physics, University of Science and Technology of China, Anhui, China
Department of Physics, Nanjing University, Jiangsu, China
School of Physics, Shandong University, Shandong, China
Laboratoire de Physique Corpusculaire, Clermont Universite and Universite Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
Nevis Laboratory, Columbia University, Irvington, New York, USA
Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
INFN Gruppo Collegato di Cosenza, Cosenza, Italy
Dipartimento di Fisica, Universita della Calabria, Arcavata di Rende, Italy
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
Physics Department, Southern Methodist University, Dallas, Texas, USA
Physics Department, University of Texas at Dallas, Richardson, Texas, USA
DESY, Hamburg and Zeuthen, Germany
Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
Department of Physics, Duke University, Durham, North Carolina, USA
SUPA—School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
INFN Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
Section de Physique, Université de Genève, Geneva, Switzerland
Dipartimento di Fisica, Università di Genova, Genova, Italy
E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
Department of Physics, Hampton University, Hampton, Virginia, USA
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Department of Physics, Indiana University, Bloomington, Indiana, USA
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City, Iowa, USA
Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
169Department of Physics and Astronomy, University of Victoria, Victoria, BBritish Columbia, Canada
170Department of Physics, University of Warwick, Coventry, United Kingdom
171Waseda University, Tokyo, Japan
172Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
174Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
175Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
176Department of Physics, Yale University, New Haven, Connecticut, USA
177Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

aDeceased.
bAlso at Laboratorio de Instrumentacao e Fisica Experimental de Particulas–LIP, Lisboa, Portugal.
cAlso at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
dAlso at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
eAlso at TRIUMF, Vancouver, British Columbia, Canada.
fAlso at Department of Physics, California State University, Fresno, CA, USA.
gAlso at Novosibirsk State University, Novosibirsk, Russia.
hAlso at Department of Physics, University of Coimbra, Coimbra, Portugal.
iAlso at Department of Physics, UASLP, San Luis Potosi, Mexico.
jAlso at Università di Napoli Parthenope, Napoli, Italy.
kAlso at Institute of Particle Physics (IPP), Canada.
lAlso at Department of Physics, Middle East Technical University, Ankara, Turkey.
mAlso at Louisiana Tech University, Ruston, LA, USA.
nAlso at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
oAlso at Department of Physics and Astronomy, University College London, London, United Kingdom.
pAlso at Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada.
qAlso at Department of Physics, University of Cape Town, Cape Town, South Africa.
rAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
sAlso at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
tAlso at Manhattan College, New York, NY, USA.
uAlso at School of Physics, Shandong University, Shandong, China.
vAlso at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
wAlso at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
xAlso at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
yAlso at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.
zAlso at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.
aaAlso at Section de Physique, Université de Genève, Geneva, Switzerland.
bbAlso at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
cAlso at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA.
dAlso at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
eAlso at California Institute of Technology, Pasadena, CA, USA.
fAlso at Institute of Physics, Jagiellonian University, Krakow, Poland.
gAlso at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
hhAlso at Nevis Laboratory, Columbia University, Irvington, NY, USA.
iiAlso at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
jjAlso at Department of Physics, Oxford University, Oxford, United Kingdom.
kkAlso at Institute of Physics, Academia Sinica, Taipei, Taiwan.
llAlso at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.
mAlso at Disciplne of Physics, University of KwaZulu-Natal, Durban, South Africa.