Measurement of Z boson production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS detector

DOI
10.1103/PhysRevLett.110.022301

Publication date
2013

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Measurement of Z Boson Production in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 24 October 2012; published 8 January 2013)

The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15 nb$^{-1}$ of integrated luminosity obtained in the 2011 LHC Pb + Pb run at $\sqrt{s_{NN}} = 2.76$ TeV. The Z bosons are reconstructed via dielectron and dimuon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.

DOI: 10.1103/PhysRevLett.110.022301

The ATLAS detector [9] at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer incorporating three superconducting toroid magnet systems.

The inner detector system (ID) is immersed in a 2 T axial magnetic field and provides charged particle tracking in the range $|\eta| < 2.5$. The high-granularity silicon pixel detector covers the vertex region and is surrounded by the silicon microstrip tracker and the transition radiation tracker.

The calorimeters cover the range $|\eta| < 4.9$. Within the region $|\eta| < 3.2$, electromagnetic calorimetry is provided by barrel and end-cap high-granularity lead liquid-argon (LAr) calorimeters, with an additional thin LAr presampler covering $|\eta| < 1.8$. The electromagnetic calorimeter is backed by a hadronic calorimeter. Forward calorimeters (FCal) are located in the range 3.1 < $|\eta|$ < 4.9.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers that measure the deflection of muons in a magnetic field generated by superconducting air-core toroids. The precision chambers cover the region $|\eta| < 0.7$ with three layers of monitored drift tubes (MDT), complemented by cathode strip chambers (CSC) in the innermost layer of the forward region. The muon trigger system covers the range $|\eta| < 2.4$ with resistive plate chambers in the barrel, and thin gap chambers in the end-cap regions.

This analysis uses the 2011 LHC Pb + Pb collision data at $\sqrt{s_{NN}} = 2.76$ TeV, obtained by the ATLAS experiment with integrated luminosity of approximately 0.15 nb$^{-1}$. The data sample for this study was collected using a three-level trigger system [10], which selected events with electron or muon candidates.

Electron candidates were identified at the first trigger level (L1) as a cluster of cells in the electromagnetic calorimeter, formed into $(\Delta \phi \times \Delta \eta) = 0.1 \times 0.1$ trigger towers, within the range $|\eta| < 2.5$, excluding the transition region between calorimeter sections (1.37 < $|\eta|$ < 1.52). The cluster transverse energy was required to exceed $E_T = 14$ GeV.

Muon candidates were selected using all three trigger levels. The L1 muon trigger searched for patterns of hits in the trigger chambers consistent with muons. If a muon...
had p_T exceeding 4 GeV, the event was accepted for further processing by the high-level trigger (HLT). The L_1 muon algorithm also identified regions of interest (RoI) within the detector to be investigated by the HLT. In the HLT, the track parameters of each muon were recalculated by including the precision data from the MDT or CSC in the RoI defined by the previous trigger level. Muon candidates were reconstructed either solely from the MS or using combined data from the MS and ID. In addition to the events selected using the RoI-based muon trigger, the reconstruction was performed over the whole MS by the HLT to identify muons with $p_T > 10$ GeV. The full scan searched all events in which a neutral particle signal was detected in each of two zero degree calorimeters (ZDC) ($|\eta| > 8.3$), or which contained an energy deposition in the calorimeters of $E_T > 10$ GeV.

In addition to the single-lepton trigger, each event had to pass the minimum-bias (MB) event selection, which required a timing signal coincidence of better than 3 ns between the MB trigger scintillators $(2.1 < |\eta| < 3.8)$, as well as the reconstruction of a collision vertex in the ID. The total number of sampled events is $(1.03 \pm 0.02) \times 10^9$ [11].

Analyzed events are divided into centrality classes. Centrality reflects the overlap volume of the two colliding nuclei. Collisions with a small (large) impact parameter are referred to as central (peripheral). The overlap volume is closely related to the average number of participant nucleons which scatter inelastically in each nuclear collision $<N_{\text{part}}>$, and to the average number of binary collisions between the nucleons of the colliding nuclei $<N_{\text{coll}}>$. Equivalently, $<N_{\text{coll}}>$ may be defined as the average nuclear thickness function (T_{AA}) multiplied by the total inelastic $p + p$ cross section of 64 ± 5 mb [12].

The $\text{Pb} + \text{Pb}$ collision centrality is measured using the scalar sum of transverse energy ($\sum E_T$) deposited in the FCal, calibrated at the electromagnetic energy scale [13]. The fraction of events with more than one $\text{Pb} + \text{Pb}$ collision is estimated not to exceed 0.05%, except for the most central 5% of events in which the fraction does not exceed 0.5%. A cut on the FCal energy of $\sum E_T < 3.8$ TeV is applied to prevent contamination by events with multiple $\text{Pb} + \text{Pb}$ interactions. Glauber model calculations relate centrality to $<N_{\text{part}}>$, and $<N_{\text{coll}}>$, following the procedure documented in Ref. [14]. In the present sample, $<N_{\text{coll}}>$ ($<N_{\text{part}}>$) ranges from 1683 ± 130 (382 ± 2) for the most central class, 0%–5%, to 78 ± 7 (46 ± 3) for the most peripheral class, 40%–80%.

The efficiencies of the electron and muon triggers are evaluated from 5.5×10^7 events selected with the MB trigger during the 2011 run. The MB trigger required a transverse energy deposition of $E_T > 50$ GeV in the calorimeters or a coincidence of both ZDC signals and a track in the ID. The average trigger efficiency for muons with $p_T > 10$ GeV decreases from (98.2 ± 0.5)% in peripheral events to (90.9 ± 0.5)% in central events, where the ID occupancy is higher. The average trigger efficiency for electrons with $|\eta| < 2.5$ and $E_T > 20$ GeV is (98.1 ± 0.1)%, independent of centrality. The trigger efficiency for $Z \rightarrow \mu \mu$ decays ranges from (99.0 ± 0.6)% in peripheral events to (95.0 ± 0.9)% in central events. For $Z \rightarrow ee$ decays the efficiency is (99.9 ± 0.1)% independent of centrality.

For the $Z \rightarrow ee$ analysis, electron candidates are formed using the standard ATLAS reconstruction algorithm [15], requiring the matching of a track to an energy cluster in the electromagnetic calorimeter. Electron selection is limited to $|\eta| < 2.5$ and both electrons are required to have $E_T > 20$ GeV. Following the reconstruction requirements, further electron identification cuts are made to reject background. The standard electron identification cuts [15] used in the $p + p$ environment are not suited to the $\text{Pb} + \text{Pb}$ environment due to the large underlying event (UE) energy deposition in the calorimeter. To address this, a different set of cuts has been developed to accommodate the modification of the calorimeter variables by the presence of the UE. The cuts used are based on the energy balance between the track momentum and cluster energy (E / p), as well as calorimeter shower shape variables. Furthermore, the UE energy is estimated (following Ref. [16]) and subtracted on an electron-by-electron basis to recover the proper electron energy.

The electron combined reconstruction and identification efficiency is evaluated in a Monte Carlo simulation using electrons from 7×10^7 PYTHIA (version 6.425) [17] $p + p \rightarrow Z \rightarrow ee$ events with $66 < m_Z < 116$ GeV and $|y| < 2.5$ embedded into $\text{Pb} + \text{Pb}$ events generated by the HIJING event generator (version 1.38b) [18]. The response of the ATLAS detector to the generated particles is modeled using GEANT4 [19,20]. The combined reconstruction and identification efficiency for electrons of $E_T > 20$ GeV ranges from 72% to 76% from central to peripheral events, with a common absolute uncertainty of 5.4%.

For the $Z \rightarrow ee$ analysis, all electrons found in triggered events are paired with each other, requiring that at least one electron in the pair matches a trigger object. The opposite-sign charged pairs with an invariant mass satisfying $66 < m_{ee} < 102$ GeV are accepted as signal Z boson candidates. The same-sign pairs in this window are taken as an estimate of the combinatorial background. In total, 772 opposite-sign pairs and 42 same-sign pairs are reconstructed.

In the $Z \rightarrow \mu \mu$ analysis, single muons are reconstructed with several levels of quality [21]. High quality muons are reconstructed in both the MS and ID with consistent angular measurements, as well as with a good match to the event vertex. At least one muon in each pair, matched to the trigger, is required to be of such quality. If the second muon in the pair has hit patterns in the MS and ID satisfying criteria of high reconstruction quality, the minimum p_T threshold is set to 10 GeV for both muons. If the second muon fails this condition, both muons are required to satisfy $p_T > 20$ GeV.
The muon combined reconstruction and identification efficiency is evaluated using muons from 5.3×10^7 PYTHIA $p+p \rightarrow Z \rightarrow \mu \mu$ events with $66 < m_Z < 116$ GeV and $|y^Z| < 2.5$ embedded into HIJING events. For muons with $p_T > 20$ GeV, $|\eta| < 2.5$ and associated to the event vertex, the reconstruction efficiency of the MS varies from $(97 \pm 1)\%$ to $(98 \pm 1)\%$ from central to peripheral events. Requiring a match between the MS and ID reduces the uncertainty. The number of pairs with momentum, rapidity, and centrality. Bars represent the statistical normalized in the region $(\text{marked by the vertical dashed lines})$ is listed. The simulation measurement channels are associated with the precision to uncertainty related to the background. The two measurements are averaged with weights set by their respective uncertainties.

The main sources of systematic uncertainty in both measurement channels are associated with the precision to which the corrections applied to the data can be calculated. In the $p+p$ environment, the muon reconstruction efficiencies in data and simulation agree to 1% (2% for $p_T < 15$ GeV) [23]. The MS maintains low occupancy in the $\mu\mu$ channel. The difference in the fraction of muons reconstructed only in the MS, between data and simulation is used to estimate the systematic uncertainty on the reconstruction efficiency. To evaluate the uncertainty on the efficiency of the electron identification cuts stemming from the simulation, the efficiency is computed from the HI data using a tag-and-probe technique [15] and compared to the efficiency computed from simulation. The systematic uncertainty due to momentum resolution is estimated by introducing additional momentum smearing to the simulation. The efficiency (resolution) uncertainties are $= 5.5\% (2.5\%)$ for $Z \rightarrow \mu \mu$, and $8\% (2.5\%)$ in $Z \rightarrow ee$; these estimates vary with p_T^Z and y^Z.

The trigger efficiency uncertainties are estimated by using alternative methods and comparing their results with those obtained from the MB data set. For this comparison the simulation trigger efficiency is used, as well as the conditional trigger efficiency of a second lepton in a triggered pair reconstructed as a Z boson.

For each $Z \rightarrow ll$ analysis, correction factors to account for the efficiency (relative to Z bosons produced with $66 < m_Z < 116$ GeV) and detector resolution within the selected acceptance based on the simulation are calculated differentially in event centrality, p_T^Z, and y^Z. In each decay channel, the correction factor is applied and the background, estimated by the same-sign pairs, is subtracted. The two measurements are averaged with weights set by their respective uncertainties.

The fully corrected y^Z distribution is shown in Fig. 2. No centrality dependence of this shape is observed. The data are compared to a model composed of PYTHIA events normalized to the $Z \rightarrow ll$ cross section in $p+p$ collisions at $\sqrt{s_{NN}} = 2.76$ TeV taken from next-to-next-to-leading-order (NNLO) calculations used in Ref. [24] and scaled by $\langle T_{AA} \rangle$. Using the same computational approach as in

FIG. 1 (color online). The invariant mass distributions of $Z \rightarrow ee$ (left) and $Z \rightarrow \mu \mu$ (right) candidates, integrated over momentum, rapidity, and centrality. Bars represent the statistical uncertainty. The number of pairs with $66 < m_{ll} < 102$ GeV (marked by the vertical dashed lines) is listed. The simulation is weighted to match the centrality distribution in data and normalized in the region $66 < m_{ll} < 102$ GeV.

FIG. 2 (color online). The corrected per-event rapidity distribution of measured Z bosons. Bars and boxes represent statistical and systematic uncertainties, respectively. The data are compared to the model distribution shown as a band whose width is the normalization uncertainty.
Ref. [24] but incorporating $p + n$ and $n + n$ collisions would increase the cross section by 3%. The shape is well reproduced by PYTHIA, and the integrated yield is in good agreement with the T_{AA}-scaled NNLO cross section.

The fully corrected p_T distributions in five centrality classes are shown in the left panel of Fig. 3 along with the model prediction. The shape as a function of p_T is well reproduced by PYTHIA. The right panel of Fig. 3 shows the ratios of the data to the PYTHIA prediction scaled by T_{AA}. The ratios are constant within uncertainties for all centrality classes over the range of measured p_T.

To further examine the binary collision scaling of the data, the Z boson per-event yields, divided by $\langle N_{\text{coll}} \rangle$, are shown in Fig. 4 as a function of $\langle N_{\text{part}} \rangle$, in several p_T bins. The figure demonstrates that the $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ results are consistent within their uncertainties for all p_T and centrality regions. Within the statistical significance of the data sample, the Z boson per-event yield obeys binary collision scaling.

The elliptic anisotropy v_2 of the Z boson is defined as $v_2 = \langle \cos 2(\phi - \Psi_2) \rangle / \sigma_2$, where ϕ is the azimuthal angle of the Z boson momentum vector and Ψ_2 is the azimuthal angle of the event plane, the plane containing the momentum vectors of both lead nuclei and measured with resolution σ_2 [25]. The v_2 values measured in the two decay channels are consistent and are combined. The main uncertainty on the v_2 measurement arises from the event plane (EP) resolution, which is measured from the difference of Ψ_2 determined using the two sides of the FCal at positive and negative rapidities [25]. To ensure that the jets associated with Z boson production do not affect the determination of Ψ_2, the EP resolution is also measured comparing the FCal signal on the side which may be affected by a recoiling jet to the one of the unaffected side. A systematic uncertainty of 12 mrad is assigned for possible EP distortion.

The v_2 of the Z boson is shown in Fig. 5 as a function of $|y|$ and p_T. The averaged v_2 of the Z boson has been measured to be $v_2 = -0.015 \pm 0.018(\text{stat}) \pm 0.014(\text{sys})$, which indicates an isotropic distribution. This observation is an independent measurement consistent with $Z \rightarrow ll$ yields being unaffected by the medium in HI collisions.

FIG. 3 (color online). Left: corrected per-event p_T^Z spectra of measured Z bosons in five centrality classes. The data are compared to a PYTHIA simulation corrected to the NNLO $p + p$ cross section and scaled by T_{AA}, shown as bands. Right: ratios of the data to the model in each centrality class. Bars represent statistical uncertainties, boxes represent systematic uncertainties, and bands represent the normalization uncertainty.

FIG. 4 (color online). Centrality dependence of Z boson yields divided by $\langle N_{\text{coll}} \rangle$. Results for ee (upward pointing triangles) and $\mu\mu$ (downward pointing triangles) channels are shifted left and right, respectively, from their weighted average (diamonds). Bars and boxes represent statistical and systematic uncertainties, respectively. For the combined results, the brackets show the combined uncertainty including the uncertainty on $\langle N_{\text{coll}} \rangle$, and the dashed lines show the results of fits, using a constant.

FIG. 5. v_2 as a function of $|y|$ (left), p_T (center), and $\langle N_{\text{part}} \rangle$ (right). Bars and boxes represent statistical and systematic uncertainties, respectively. The dashed lines show the results of constant fits to the v_2 values, considering only statistical uncertainties.
Using the ATLAS detector, Z boson production has been measured in Pb + Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV using 0.15 nb$^{-1}$ of integrated luminosity collected in the 2011 LHC physics run. Within $|y| < 2.5$, and 66 $< m_{t\bar{t}} < 102$ GeV, a total of 772 and 1223 Z boson candidates are reconstructed in the $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ channels, respectively. The combinatorial background is at the level of 5% in the dielectron channel and 1% for the dimuon channel. The Z boson production yield integrated over $|y| < 2.5$ is consistent between the two channels in all measured p_T and centrality regions. The momentum and rapidity distributions of the Z bosons are consistent with PYTHIA simulations of Z boson production in $p + p$ collisions scaled to the NNLO cross section and multiplied by $\langle T_{AA}\rangle$. Within the uncertainties the Z boson yield is found to be proportional to $\langle N_{\text{coll}}\rangle$. The elliptic anisotropy of the Z boson measured as a function of rapidity, p_T^2 and $\langle N_{\text{part}}\rangle$ is consistent with zero within the uncertainties of the measurements.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPHI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DLRF, DNSTC, and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNIWiS, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.) and in the Tier-2 facilities worldwide.

[8] The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin. The anticlockwise beam direction defines the positive z axis, while the positive x axis is defined as pointing from the collision point to the center of the LHC ring and the positive y axis points upwards. Transverse quantities, such as p_T and E_T, are defined in the (x, y) plane. The azimuthal angle ϕ is measured around the beam axis, and the polar angle θ is measured with respect to the z-axis. The rapidity is given by $y = \frac{1}{2} \ln \frac{E_{z} + p_{z}}{E_{z} - p_{z}}$ and pseudorapidity is defined as $\eta = -\ln \tan \frac{\theta}{2}$.
(ATLAS Collaboration)

1School of Chemistry and Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4aDepartment of Physics, Ankara University, Ankara, Turkey
4bDepartment of Physics, Dumlupinar University, Kütahya, Turkey
4cDepartment of Physics, Gazi University, Ankara, Turkey
4dDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey
4eTurkish Atomic Energy Authority, Ankara, Turkey
5LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7Department of Physics, University of Arizona, Tucson, Arizona, USA
8Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
9Physics Department, University of Athens, Athens, Greece
10Physics Department, National Technical University of Athens, Zografou, Greece
11Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
13aInstitute of Physics, University of Belgrade, Belgrade, Serbia
13bVinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
14Department for Physics and Technology, University of Bergen, Bergen, Norway
15Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
16Department of Physics, Humboldt University, Berlin, Germany
17Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19aDepartment of Physics, Bogazici University, Istanbul, Turkey
19bDivision of Physics, Dogaş University, Istanbul, Turkey
19cDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
19dDepartment of Physics, Istanbul Technical University, Istanbul, Turkey
20a,20bINFN Sezione di Bologna, Bologna, Italy
21Physikalishes Institut, University of Bonn, Bonn, Germany
22Department of Physics, Boston University, Boston, Massachusetts, USA
23Department of Physics, Brandeis University, Waltham, Massachusetts, USA
24aUniversidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
24bFederal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
24cFederal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
24dInstituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25Physics Department, Brookhaven National Laboratory, Upton, New York, USA
26aNational Institute of Physics and Nuclear Engineering, Bucharest, Romania
26bUniversity Politehnica Bucharest, Bucharest, Romania
26cWest University in Timisoara, Timisoara, Romania
27Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29Department of Physics, Carleton University, Ottawa, Ontario, Canada
30aCERN, Geneva, Switzerland
30bEnrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
31Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
32aDepartamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32bIndian Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
33aDepartment of Modern Physics, University of Science and Technology of China, Anhui, China
33bDepartment of Physics, Nanjing University, Jiangsu, China
Also at TRIUMF, Vancouver, British Columbia, Canada.
Also at Department of Physics, California State University, Fresno, CA, USA.
Also at Novosibirsk State University, Novosibirsk, Russia.
Also at Fermilab, Batavia, IL, USA.
Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
Also at Department of Physics, UASLP, San Luis Potosi, Mexico.
Also at Università di Napoli Parthenope, Napoli, Italy.
Also at Institute of Particle Physics (IPP), Canada.
Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
Also at Manhattan College, New York, NY, USA.
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at School of Physics, Shandong University, Shandong, China.
Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.
Also at Section de Physique, Université de Genève, Geneva, Switzerland.
Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at California Institute of Technology, Pasadena, CA, USA.
Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
Also at Nevis Laboratory, Columbia University, Irvington, NY, USA.
Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
Also at Department of Physics, Oxford University, Oxford, United Kingdom.
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.