Moving the brain: Neuroimaging motivational changes of deep brain stimulation in obsessive-compulsive disorder
Figee, M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
A

Intentional Maps in Posterior Parietal Cortex.
Annual Rev Neurosci. 25, 189-220.

Treatment of patients with intractable obsessive-compulsive disorder with anterior capsular stimulation. Case report.

Anderson, S. W., Damasio, H., & Damasio, A. R (2005).
A neural basis for collecting behaviour in humans.
Brain: a journal of neurology, 128, 201–12.

Pathophysiology of obsessive-compulsive disorder: a necessary link between phenomenology, neuropsychology, imagery and physiology.
Prog. Neurobiol., 72, 195-221.

Deep brain stimulation of the ventral caudate nucleus in the treatment of obsessive-compulsive disorder and major depression. Case report.
J Neurosurg 101, 682-686.

Deep brain stimulation for OCD and major depression.
Am J Psychiatry, 162, 2192.

Distinct striatal targets in treating obsessive-compulsive disorder and major depression.
Journal of neurosurgery, 111(4), 775–9.

Performing functional magnetic resonance imaging in patients with Parkinson’s disease treated with deep brain stimulation.
Mov Disord 21:1154-1162.

From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses.
Biological Psychiatry 69:e55–68.

Morphological asymmetry in anterior limb of human internal capsule revealed by confocal laser and polarized light microscopy.
Psychiatry Research, 91(3), 141-154.

Quantification of striatal dopamine transporters with $[^{123}]$I beta-CIT SPECT is influenced by the selective serotonin reuptake inhibitor paroxetine: a double-blind, placebo-controlled, crossover study in healthy controls.

Neuropsychopharmacol 33, 1252–1258.

Psychiatry Res 33: 83-94.

tal confounds.

NeuroImage, 37, 508–17.

References

D

The Role of the Amygdala in Fear and Anxiety.

Decreased neuronal activity in reward circuitry of pathological gamblers during processing of personal relevant stimuli.
Hum Brain Mapp., 31, 1802-12.

Subjective experiences during dopamine depletion.
Am J Psychiatry 162, 1755.

EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing.

Neuroimaging and obesity: mapping the brain responses to hunger and satiation in humans using positron emission tomography.

Current status of deep brain stimulation for obsessive-compulsive disorder: a clinical review of different targets.
Current psychiatry reports, 13, 274-82.

Relation between structural and functional connectivity in major depressive disorder.
Biological Psychiatry, 74, 40-7.

Case report: Bilateral Globus Pallidus Lesions in a Patient with Tourette Syndrome and Related Disorders.

Synergistic dopamine increase in the rat prefrontal cortex with the combination of quetiapine and fluvoxamine.
Psychopharmacology, 176, 195-203.

Deep brain stimulation of the nucleus accumbens for treatment-refractory
obsessive-compulsive disorder.

Arch Gen Psychiatry 67, 1061–1068.

Low level of dopaminergic D2 receptor binding in obsessive-compulsive disorder.

Biol Psychiatry 55, 1041-1045.

The role of dopamine in obsessive-compulsive disorder: preclinical and clinical evidence.

On certainty: studies in obsessive-compulsive disorder.

Pharmacotherapy of obsessive-compulsive disorder and obsessive-compulsive spectrum disorders.

Dewey, S.L., Smith, G.S., Logan, J., Alexoff, D., Ding, Y.S., King, P., Pappas, N., Brodie, J.D.,
Serotonergic modulation of striatal dopamine measured with positron emission tomography (PET) and in vivo microdialysis.

Journal of Neuroscience, 15, 821– 829.

Resolution of Severe Obsessive-Compulsive Disorder After a Small Unilateral Nondominant Frontoparietal Infarct.

Functional magnetic resonance imaging of autism spectrum disorders.

Functional neuroimaging of reward processing and decision-making: a review of aberrant motivational and affective processing in addiction and mood disorders.

Brain Res.Rev., 59, 164-184.

Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, Biswal B, Walters JR,

Cereb. Cortex 18, 2735-2747.

Compulsive Symptoms Associated With Frontal Lobe Injury.
Am. J. Psychiatry, 151, 618.

American journal of neuroradiology 31, 15–23.

Brain, 133, 3661-75.

Brain structure & function, 213(1-2), 93-118.

J Neurosc 31, 7349–56.

PLoS.One. 4, e8429.

Biol Psychiatry 70, 754–62.

Neurosurgery, 69, 1281–90.

Targets for deep brain stimulation in obsessive-compulsive disorder.
Psychiatr Ann. 40, 492-498

Neurosurgical targets for compulsivity: what can we learn from acquired brain lesions?

Neuroimaging of deep brain stimulation in psychiatric disorders.

Dysfunctional reward circuitry in obsessive-compulsive disorder.
BIOLOGICAL PSYCHIATRY 69, 867-74.

Deep brain stimulation induces endogeneous striatal dopamine release in obsessive-compulsive disorder.
BIOLOGICAL PSYCHIATRY, in press.

Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder.
NATURE NEUROSCIENCE 4, 386-7

A review of antipsychotics in the treatment of obsessive compulsive disorder.
J Psychopharmacol. 20, 97-103.

Probing Compulsive and Impulsive Behaviors, from Animal Models to Endophenotypes: A Narrative Review.
Neuropsychopharmacol., 35, 591-604.

Discrete coding of reward probability and uncertainty by dopamine neurons.
Science 299, 1898-1902.

Proton Spectroscopic Imaging of the Thalamus in Treatment-Naïve Pediatric Obsessive-Compulsive Disorder.

Selective destruction of brain serotonin neurons by 5,7-dihydroxytryptamine increases responding for a conditioned reward.
Psychopharmacology (Berl) 147, 291-9.

Fontaine D, Mattei V, Borg M et al. (2004).

PET studies of the effect of the antidepressant drugs nefazodone or paroxetine on [¹¹C]raclopride binding in human brain.

Computational models of motivated action selection in corticostriatal circuits.
Current opinion in neurobiology, 21(3), 381–6.

Franzini A, Messina G, Gambini O et al. (2010.)
Deep-brain stimulation of the nucleus accumbens in obsessive compulsive disorder: clinical, surgical and electrophysiological considerations in two consecutive patients.
Neurol Sci

Improvement of Obsessive-Compulsive Disorder following Left Putaminal Hemorrhage.
European Neurology, 54, 166-170.

Obsessions and compulsions in the community: prevalence, interference, help-seeking, developmental stability, and co-occurring psychiatric conditions.

G

Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: psychopathological and neuropsychological outcome in three cases.

Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder.

Biological Psychiatry.

Unilateral lenticular infarcts: radiological and clinical syndromes, aetiology, and prognosis.
J Neurol Neurosurg Psychiatry, **63**, 611-615.

Effect of focal cerebellar lesions on procedural learning in the serial reaction time task.

Case report: Late-onset startle syndrome and obsessive compulsive disorder.

The Yale-Brown Obsessive Compulsive Scale. I. Development, use, and reliability.

The Yale-Brown Obsessive Compulsive Scale. II. Validity.

H

The Assessment of Anxiety States by Rating.

Hamilton M. (1960).
A rating scale for depression
J Neurol Neurosurg Psychiatry 23, 56–62.

Striatal IMP-SPECT decrease in obsessive compulsive disorder, normalized by pharmacotherapy.
Neuropsychiatry Neuropsychol. Behav. Neurol., 2, 290-300.

Altered corticostriatal functional connectivity in obsessive-compulsive disorder.
Archives of general psychiatry, 66, 1189-200.

Biological psychiatry.

Reduced midbrain-pons serotonin transporter binding in patients with obsessive-compulsive disorder.

Traitemt stéréotaxique des tics et cris inarticulés ou copralalique considérés comme phénomène d’obsession motrice au cour de la maladies de Gilles de la Tourette.
Revue Neurologique (Paris), 123, 89-100.

Serotonin and dopamine transporter imaging in patients with obsessive-compulsive disorder.
Psychiatry Res. 140, 63–72.

Intraoperative functional MRI as a new approach to monitor deep brain stimulation in Parkinson’s disease.
Eur Radiol 14:686-690

‘Behavioral’ addictions: do they exist?
Imaging monetary reward in pathological gamblers.
World J Biol Psychiatry. 6, 113-120.

Imaging brain response to reward in addictive disorders.

Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: Outcomes after one year.

Case Reports: Functional brain imaging in Obsessive-Compulsive disorder secondary to neurological lesions.

I

Inactivating Anterior Insular Cortex Reduces Risk Taking.

J

Functional magnetic resonance imaging during deep brain stimulation:
a pilot study in four patients with Parkinson’s disease.
Mov Disorder 16:1126-1132

Neuromodulation of the inferior thalamic peduncle for major depression and obsessive compulsive disorder.
Acta Neurochir Suppl 97, 393-398.

Preliminary study in patients with obsessive-compulsive disorder treated with electrical stimulation in the inferior thalamic peduncle.
Neurosurgery 65, 203-209

Kim CH, Cheon KA, Koo MS et al. (2007) Dopamine transporter density in the basal ganglia in obsessive-compulsive disorder, measured with $[^{123}]$I IPT SPECT before and after treatment with serotonin reuptake inhibitors. *Neuropsychobiology.* 55, 156-162.
Dopamine transporter density of basal ganglia assessed with [¹²³I]IPT SPET in obsessive-compulsive disorder.

Grey matter abnormalities in obsessive-compulsive disorder:
Statistical parametric mapping of segmented magnetic resonance images.

Obsessive-Compulsive Disorder Associated With a Left Orbitofrontal Infarct.

Mapping brain regions in which deep brain stimulation affects schizophrenia-like behavior in two rat models of schizophrenia.
Brain stimulation, Oct 8.

Nucleus accumbens deep brain stimulation results in insula and prefrontal activation: a large animal fMRI study.
PloS one, 8, e56640.

Anticipation of increasing monetary reward selectively recruits nucleus accumbens.
J.Neurosci. 21, RC159.

Neuroreport 12, 3683–3687.

EEG delta oscillations as a correlate of basic homeostatic and motivational processes.
Neuroscience and biobehavioral reviews, 36, 677–695.

R-fluoxetine increases extracellular DA, NE, as well as 5-HT in rat prefrontal cortex and hypothalamus: an in vivo microdialysis and receptor binding study.
Neuropsychopharmacology. 27, 949-59.

Neurocircuitry of addiction.
Neuropsychopharmacology, 35, 217-38.

L

References

Neuroscience and biobehavioral reviews, 35, 1219–36.

Malison RT, Price LH, Berman R, van Dyck CH, Pelton GH, Carpenter L et al. (1998). Reduced brain serotonin transporter availability in major depression as measured by \([^{123}\text{I}]-2\text{bcarbomethoxy-3b-(4-iodophenyl)}\text{tropane and single photon emission computed tomography. Biol Psychiatry 44, 1090–1098.}]

How does deep brain stimulation work? Present understanding and future questions.

McIntyre, C.C. & Hahn, P.J. (2010).
Network perspectives on the mechanisms of deep brain stimulation.

Obsessive-Compulsive Neurosis Following Head Injury: A Report of Four Cases.
Brit. J. Psychiatry, 144, 190-192.

Minneapolis, Medtronic.

Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited.
Neuroscience and biobehavioral reviews, 32, 525-49.

Brain functional connectivity in stimulant drug dependence and obsessive-compulsive disorder.

Neurobiology of basal ganglia circuits in Tourette syndrome: faulty inhibition of unwanted motor patterns?
Advances in Neurology, 85, 113-22.

Identification and Treatment of a Pineal Region Tumor in an Adolescent With Prodromal Psychotic Symptoms.

Essai d’un traitement chirurgical de certaines psychoses.

Mechanisms of action of deep brain stimulation (DBS).

Nielen MM, den Boer JA, Smid HG (2009). Patients with obsessive-compulsive disorder are impaired in associative learning based on
References

external feedback.

Brainstem involvement in obsessive-compulsive disorder.

Nuttin, B. J., Gabriëls, L. a., Cosyns, P. R., Meyerson, B. a., Andréewitch, S., Sunaert, S. G.,
Long-term Electrical Capsular Stimulation in Patients with Obsessive-Compulsive Disorder.
Neurosurgery, 52, 1263-1274.

Electrical stimulation in anterior limbs of internal capsules in patients with
obsessive-compulsive disorder.
Lancet 354, 1526.

O

Neural responses during anticipation of a primary taste reward.
Neuron 33, 815–826.

A right orbitofrontal region and OCD symptoms: A case report.

Obsessive-Compulsive Behavior Disappearing after Left Capsular Genu Infarction.

Deep brain stimulation in the internal capsule and nucleus accumbens region: responses
observed during active and sham programming.
J Neurol Neurosurg Psychiatry 78, 310-314.

Olver JS, O’ Doherty G, Jones GR, Burrows GD, Tochon-Danguy HJ, Ackermann U, Scott A,
Norman TR (2009).
Dopamine D1 receptor binding in the striatum of patients with obsessive-compulsive disorder.

Serotonin/dopamine interaction in learning.
Prog Brain Res 172, 567-602.

References

A differential neural response in obsessive-compulsive disorder patients with washing compared with checking symptoms to disgust.
Psychol. Med. 30, 1037-1050.

Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus—initial experience.
Radiology 239, 209-216.

Imaging serotonin and dopamine transporters with 123I-ß-CIT SPECT: binding kinetics and effects of normal aging.
J Nucl Med 41, 36–44.

Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder.
Am. J Psychiatry 166, 702-710.

SERT and DAT availabilities under citalopram treatment in obsessive-compulsive disorder (OCD).
Eur Neuropsychopharmacol. 15, 521-524.

Elevated brain serotonin transporter availability in patients with obsessive-compulsive disorder.

Symptom-specific EEG power correlations in patients with obsessive-compulsive disorder.

Should addictive disorders include non-substance-related conditions?
Addiction. 101(suppl 1), 142-151.

Neural Differentiation of Expected Reward and Risk in Human Subcortical Structures.
Neuron 51, 381–90.

References

Predictive reward signal of dopamine neurons.
J Neurophysiol. 80, 1-27.

Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice.
Translational psychiatry, 3, e240.

Late-Life Obsessive-Compulsive Disorder and Huntington's Disease.

Deep brain stimulation of the nucleus accumbens shell increases impulsive behavior and tissue levels of dopamine and serotonin.
Experimental Neurology 225, 302-309.

Neuropsychiatry and SPECT of an Acute Obsessive-Compulsive Syndrome Patient.

A common role of insula in feelings, empathy and uncertainty.

Idiopathic basal ganglia calcification and pathological hoarding.

Serotonergic modulation of dopamine measured with [¹¹C]raclopride and PET in normal
References

human subjects.
Am J Psychiatry 154, 490–496

MRI case study.

Mov Disord 18, 1508-1516.

References

T

U

References

Obesity reviews : an official journal of the International Association for the Study of Obesity, 14(1), 2–18.

Neurology, 58, 488–490.

Neurocase 19, 360-70.

J Clin Psychiatr 70, 1001-1008.

Psychiatry Research, 154, 181-90.

Arch. Neurol., 46, 233-235.

References

