Moving the brain: Neuroimaging motivational changes of deep brain stimulation in obsessive-compulsive disorder
Figee, M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
References

A


Intentional Maps in Posterior Parietal Cortex. 
*Annual Rev Neurosci. 25, 189-220.*

Treatment of patients with intractable obsessive-compulsive disorder with anterior capsular stimulation. Case report.

Anderson, S. W., Damasio, H., & Damasio, A. R (2005).
A neural basis for collecting behaviour in humans.
*Brain: a journal of neurology, 128, 201–12.*

Pathophysiology of obsessive-compulsive disorder: a necessary link between phenomenology, neuropsychology, imagery and physiology.
*Prog. Neurobiol., 72, 195-221.*

Deep brain stimulation of the ventral caudate nucleus in the treatment of obsessive-compulsive disorder and major depression. Case report.
*J Neurosurg 101, 682-686.*

Deep brain stimulation for OCD and major depression.
*Am J Psychiatry, 162, 2192.*

Distinct striatal targets in treating obsessive-compulsive disorder and major depression.
*Journal of neurosurgery, 111(4), 775–9.*

Performing functional magnetic resonance imaging in patients with Parkinson’s disease treated with deep brain stimulation.
*Mov Disord 21:1154-1162.*

From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses.
*Biological Psychiatry 69:e55–68.*

Morphological asymmetry in anterior limb of human internal capsule revealed by confocal laser and polarized light microscopy.
*Psychiatry Research, 91(3), 141-154.*


Quantification of striatal dopamine transporters with $[^{123}]$I beta-CIT SPECT is influenced by the selective serotonin reuptake inhibitor paroxetine: a double-blind, placebo-controlled, crossover study in healthy controls.


*Neuropsychopharmacol* 33, 1252–1258.


*Psychiatry Res* 33: 83-94.


C


*Depress. Anxiety* 24, 440–446.

tal confounds.

*NeuroImage, 37, 508–17.*

Clinical Case Study: Treatment of late-onset OCD following basal ganglia infarct.
*Depress Anxiety, 15, 87-90.*

Acquired Obsessive-Compulsive Disorder Associated With Basal Ganglia Lesions.

The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers.
*Neurosci.Biobehav.Rev. 29, 399-419.*

*Science 321, 421-422.*

*Clinical neurology and neurosurgery, 106, 318–29.*

*PLoS ONE, 7:e45938.*

*J. Neurosci., 29, 12574–83.*


214
References


D


obsessive-compulsive disorder.
Arch Gen Psychiatry 67, 1061–1068.


Compulsive Symptoms Associated With Frontal Lobe Injury.
*Am. J. Psychiatry, 151, 618.*


E


F


Targets for deep brain stimulation in obsessive-compulsive disorder.

*Psychiatr Ann. 40, 492-498*

Neurosurgical targets for compulsivity: what can we learn from acquired brain lesions?

Neuroimaging of deep brain stimulation in psychiatric disorders.

Dysfunctional reward circuitry in obsessive-compulsive disorder.
*Biological psychiatry 69, 867-74.*

Deep brain stimulation induces endogeneous striatal dopamine release in obsessive-compulsive disorder.
*Biological Psychiatry, in press.*

Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder.
*Nature Neuroscience 4, 386-7*

Deep brain stimulation induces striatal dopamine release in obsessive-compulsive disorder.
*Biological Psychiatry, Aug 9, Epub ahead of print.*

A review of antipsychotics in the treatment of obsessive compulsive disorder.
*J Psychopharmacomol. 20, 97-103.*

Probing Compulsive and Impulsive Behaviors, from Animal Models to Endophenotypes: A Narrative Review.
*Neuropsychopharmacol., 35, 591-604.*

Discrete coding of reward probability and uncertainty by dopamine neurons.
*Science 299, 1898-1902.*


Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: psychopathological and neuropsychological outcome in three cases. 


Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. 

*Biological Psychiatry.*

Unilateral lenticular infarcts: radiological and clinical syndromes, aetiology, and prognosis. 
*J Neurol Neurosurg Psychiatry,* 63, 611-615.

Effect of focal cerebellar lesions on procedural learning in the serial reaction time task. 

Case report: Late-onset startle syndrome and obsessive compulsive disorder. 
*Behav. Neurol.,* 11, 113-116.

The Yale-Brown Obsessive Compulsive Scale. I. Development, use, and reliability. 
*Arch.Gen.Psychiatry* 46, 1006-1011.

The Yale-Brown Obsessive Compulsive Scale. II. Validity. 


H


The Assessment of Anxiety States by Rating.

Hamilton M. (1960).
A rating scale for depression
J Neurol Neurosurg Psychiatry 23, 56–62.

Striatal IMP-SPECT decrease in obsessive compulsive disorder, normalized by pharmacotherapy.
Neuropsychiatry Neuropsychol. Behav. Neurol., 2, 290-300.

Harrison, B. J., Soriano-Mas, C., Pujol, J., Ortiz, H., López-Solà, M., Hernández-Ribas, R.,
Altered corticostriatal functional connectivity in obsessive-compulsive disorder.
Archives of general psychiatry, 66, 1189-200.

Harrison, B. J., Pujol, J., Cardoner, N., Deus, J., Alonso, P., López-Solà, M.,
Contreras-Rodríguez, O., et al. (2012).
Biological psychiatry.

Reduced midbrain-pons serotonin transporter binding in patients with obsessive–compulsive disorder.

Traitement stéréotaxique des tics et cris inarticulés ou copralalique considérés comme phénomène d’obsession motrice au cours de la maladies de Gilles de la Tourette.
Revue Neurologique (Paris), 123, 89-100.

Hesse, S., Muller, U., Lincke, T., Barthel, H., Villmann, T., Angermeyer, M.C., Sabri, O.,
Serotonin and dopamine transporter imaging in patients with obsessive-compulsive disorder.
Psychiatry Res. 140, 63–72.

Intraoperative functional MRI as a new approach to monitor deep brain stimulation in Parkinson’s disease.
Eur Radiol 14:686-690

‘Behavioral’ addictions: do they exist?


References

Frontal glioma presenting as anxiety and obsessions: a case report.

Aberrant ventral striatal responses during incentive processing in unmedicated patients with obsessive-compulsive disorder.
*Acta psychiatraca Scandinavica,* 123(5), 376–86.

K

Therapeutic subthalamic nucleus deep brain stimulation reverses cortico-thalamic coupling during voluntary movements in Parkinson’s disease.
*PloS one,* 7(12)

Review series Children with obsessive-compulsive disorder: ‘ are they just “ little adults ” ?,
*119*, 737-746.

Obsessive-compulsive disorder after closed head injury: review of literature and report of four cases.
*Brain Inj.,* 10, 55-63.

Serotonin-dopamine interaction and its relevance to schizophrenia.
*Am J Psychiatry.* 153, 466-76. Review.

Stability of \([¹²³I]\)IBZM SPECT measurement of amphetamine-induced striatal dopamine release in humans.
*Synapse 31,* 302–8.

Robust smoothness estimation in statistical parametric maps using standardized residuals from the general linear model.
*Neuroimage.* 10, 756-766.

Kim CH, Cheon KA, Koo MS et al. (2007)
Dopamine transporter density in the basal ganglia in obsessive-compulsive disorder, measured with \([¹²³I]\)IPT SPECT before and after treatment with serotonin reuptake inhibitors.
*Neuropsychobiology.* 55, 156-162.
Dopamine transporter density of basal ganglia assessed with [¹²³I]IPT SPET in obsessive-compulsive disorder.

Grey matter abnormalities in obsessive-compulsive disorder:
Statistical parametric mapping of segmented magnetic resonance images.

Obsessive-Compulsive Disorder Associated With a Left Orbitofrontal Infarct.

Mapping brain regions in which deep brain stimulation affects schizophrenia-like behavior in two rat models of schizophrenia.
Brain stimulation, Oct 8.

Nucleus accumbens deep brain stimulation results in insula and prefrontal activation: a large animal fMRI study.
PloS one, 8, e56640.

Anticipation of increasing monetary reward selectively recruits nucleus accumbens.
J Neurosci. 21, RC159.

Dissociation of reward anticipation and outcome with event-related fMRI.
Neuroreport 12, 3683–3687.

EEG delta oscillations as a correlate of basic homeostatic and motivational processes.
Neuroscience and biobehavioral reviews, 36, 677–695.

R-fluoxetine increases extracellular DA, NE, as well as 5-HT in rat prefrontal cortex and hypothalamus: an in vivo microdialysis and receptor binding study.
Neuropsychopharmacology. 27, 949-59.

Neurocircuitry of addiction.
Neuropsychopharmacology, 35, 217-38.


References

*Neuroscience and biobehavioral reviews, 35, 1219–36.*


* M


Malone, D. a, Dougherty, D. D., Rezai, A. R., Carpenter, L. L., Friehs, G. M., Eskandar, E. N.,


How does deep brain stimulation work? Present understanding and future questions.  
*Journal of clinical neurophysiology: official publication of the American Electroencephalographic Society, 21, 40–50.*

McIntyre, C.C. & Hahn, P.J. (2010).  
Network perspectives on the mechanisms of deep brain stimulation.  

Obsessive-Compulsive Neurosis Following Head Injury: A Report of Four Cases.  
*Brit. J. Psychiatry, 144, 190-192.*

*Minneapolis, Medtronic.*

Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited.  
*Neuroscience and biobehavioral reviews, 32, 525-49.*

Brain functional connectivity in stimulant drug dependence and obsessive-compulsive disorder.  
*NeuroImage, 59, 1461–1468.*

Neurobiology of basal ganglia circuits in Tourette syndrome: faulty inhibition of unwanted motor patterns?  
*Advances in Neurology, 85, 113-22.*

Identification and Treatment of a Pineal Region Tumor in an Adolescent With Prodromal Psychotic Symptoms.  
*Am. J. Psychiatry, 167, 1033-1037.*

Essai d’un traitement chirurgical de certaines psychoses.  

Mechanisms of action of deep brain stimulation (DBS).  


Nielen MM, den Boer JA, Smid HG (2009). Patients with obsessive-compulsive disorder are impaired in associative learning based on
external feedback.

Brainstem involvement in obsessive-compulsive disorder.

Nuttin, B. J., Gabriëls, L. a., Cosyns, P. R., Meyerson, B. a., Andréewitch, S., Sunaert, S. G.,
Long-term Electrical Capsular Stimulation in Patients with Obsessive-Compulsive Disorder.
*Neurosurgery*, 52, 1263-1274.

Electrical stimulation in anterior limbs of internal capsules in patients with
obsessive-compulsive disorder.
*Lancet* 354, 1526.

O

Neural responses during anticipation of a primary taste reward.
*Neuron* 33, 815–826.

A right orbitofrontal region and OCD symptoms: A case report.

Obsessive-Compulsive Behavior Disappearing after Left Capsular Genu Infarction.

Deep brain stimulation in the internal capsule and nucleus accumbens region: responses
observed during active and sham programming.
*J Neurol Neurosurg Psychiatry* 78, 310-314.

Olver JS, O’ Doherty G, Jones GR, Burrows GD, Tochon-Danguy HJ, Ackermann U, Scott A,
Norman TR (2009).
Dopamine D1 receptor binding in the striatum of patients with obsessive-compulsive disorder.

Serotonin/dopamine interaction in learning.
*Prog Brain Res* 172, 567-602.

P


References

Functional magnetic resonance imaging study of regional brain activation during implicit sequence learning in obsessive-compulsive disorder.

Reduced availability of serotonin transporters in obsessive-compulsive disorder correlates with symptom severity – a [¹¹C]DASB PET study.
J Neural Transm 114, 1603–1609

Pathological gambling is linked to reduced activation of the mesolimbic reward system.
Nat Neurosci. 8, 147-8.

Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder.
Arch.Gen.Psychiatry 63[11], 1225-1236.

Cognitive inflexibility in obsessive-compulsive disorder and major depression is associated with distinct neural correlates.
PloS one, 8, e59600.

Is magnetic resonance imaging safe for patients with neurostimulation systems used for deep brain stimulation?
Neurosurgery 57, 1056- 1062; discussion 1056-1062.

Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry.

Ventral Striatum Response During Reward and Punishment Reversal Learning in Unmedicated Major Depressive Disorder.

Adults with early-onset obsessive-compulsive disorder.


Predictive reward signal of dopamine neurons. 
*J Neurophysiol.* 80, 1-27.

Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. 
*Translational psychiatry*, 3, e240.

Late-Life Obsessive-Compulsive Disorder and Huntington's Disease. 

Deep brain stimulation of the nucleus accumbens shell increases impulsive behavior and tissue levels of dopamine and serotonin. 
*Experimental Neurology* 225, 302-309.


Serotonin transporters in obsessive-compulsive disorder: a positron emission tomography study with [*¹¹C*]McN 5652. 

Neuropsychiatry and SPECT of an Acute Obsessive-Compulsive Syndrome Patient. 

A common role of insula in feelings, empathy and uncertainty. 

Idiopathic basal ganglia calcification and pathological hoarding. 

Serotonergic modulation of dopamine measured with [*¹¹C*]raclopride and PET in normal
human subjects.

Am J Psychiatry 154, 490–496

The neurobiological underpinnings of obesity and binge eating: a rationale for adopting the food addiction model.
Biological psychiatry, 73(9), 804–10.

Deep Brain Stimulation Targeted at the Nucleus Accumbens Decreases the Potential for Pathologic Network Communication.
Biological Psychiatry Apr 23.

A case of self-inflicted leucotomy.
Br. J. Psychiatry, 151, 855-870.

Selective serotonin re-uptake inhibitors (SSRIs) versus placebo for obsessive compulsive disorder (OCD).

Anticipation of monetary and social reward differently activates mesolimbic brain structures in men and women.

A 1H magnetic resonance spectroscopy study in adults with obsessive compulsive disorder: relationship between metabolite concentrations and symptom severity.
J Neural Transm. 115, 1051-62.

Dissociation of decisions in ambiguous and risky situations in obsessive–compulsive disorder.
Psychiatry Research. 175, 114–20.

Should OCD be classified as an anxiety disorder in DSM-V?
Depress Anxiety 27, 495-506

Deep brain stimulation for Parkinson’s disease dissociates mood and motor circuits: a functional
MRI case study.
*Mov Disord* 18, 1508-1516.

Serotonin transporter imaging with [¹²³I]beta-CIT SPECT before and after one year of
citalopram treatment of obsessive-compulsive disorder.
*Neuropsychobiology* 53, 40-5.

Reduced serotonin transporter-availability in obsessive-compulsive disorder (OCD).

Hyperactive error responses and altered connectivity in ventromedial and frontoinsular cortices
in obsessive-compulsive disorder.

Reward circuitry responsivity to food predicts future increases in body mass:
Moderating effects of DRD2 and DRD4.
*Neuroimage* 50, 1618–1625.

Effective connectivity of a reward network in obese women.
*Brain research bulletin,* 79, 388–95.

The nucleus accumbens: a target for deep brain stimulation in
obsessive-compulsive- and anxiety-disorders.

DBS in the basolateral amygdala improves symptoms of autism and related self-injurious
behavior: a case report and hypothesis on the pathogenesis of the disorder.
*Frontiers in human neuroscience,* 6, 341.

Surgical Treatments for Drug Addictions in Humans.
*Deep Brain Stimulation: A New Frontier in Psychiatry.* Berlin;
Heidelberg: Springer, 131-140

Frontal abnormalities in a patient with obsessive-compulsive disorder:
The role of structural lesions in obsessive-compulsive behavior.
*Neurol.,* 45, 2130-2134.
References

T


U


References


References


X


Y

_Aust N Z J Psychiatry_ 42, 467-77.

_Archives of General Psychiatry_ 64, 946-955.

Z


Zandbelt, B. B., Van Buuren, M., Kahn, R. S., & Vink, M. (2011). Reduced proactive inhibition in schizophrenia is related to corticostratial dysfunction and poor working memory. 
_Biological Psychiatry_ 70, 1151–8.

_Neuron_ 46, 65-74.

_Neuropsychopharmacology_ 32, 1661-8.

_Neuropsychopharmacology_ 33, 3126-34.

_World neurosurgery_, 76, 164–72.