Bose-Einstein condensation in a gas of sodium atoms

Davis, K.B.; Mewes, M.O.; Andrews, M.R.; van Druten, N.J.; Durfee, D.S.; Kurn, D.M.; Ketterle, W.

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.75.3969

Citation for published version (APA):
Plants may talk, but can they hear?

Interest in interplant communication via airborne signals has recently been revived. Bruin et al. review evidence for signalling and its role in plant defense. We find the evidence tantalizing but, as yet, inadequate to support a "talking tree" hypothesis. No one has demonstrated that airborne signals (e.g. methyl jasmonate, ethylene) produced from wounded plants occur in sufficient quantities to be detected by undamaged plants under realistic environmental conditions. This criterion of recipient detection is, to our minds, more important than demonstrating that damaged plants produce biologically active volatiles. A few simple calculations reveal a large discrepancy between signal release from wounded plants and the sensitivity of undamaged receiver plants, given signal dilution in air. Consider 5 x 10^{10} g wounded leaves in 1 m^3, releasing ethylene into an air stream that passes into an adjacent 1 m^3 containing an undamaged receiver plant. Ethylene production by undamaged plants ranges from 5 x 10^{-11} to 5 x 10^{-10} g leaf h^{-1}, increasing several-fold on wounding. Assume the maximum release rate increases 100-fold, and all leaves are wounded. This would produce 2.5 x 10^{-1} g-1 h^{-1} into 1 m^3. Suppose a very gentle breeze of 0.1 m s^{-1} is blowing (c.f. mean wind speeds of 4 m s^{-1} in the UK). Thus, in 1 h, 3.6 x 10^{41} of air containing 2.5 x 10^{-14} g ethylene will have passed to the receiving plant, a dilution of >10^{10}, and an effective ethylene concentration of only 7 x 10^{-11} g-1 h^{-1} air. It is generally accepted that ethylene is physiologically active at 10^{-6} to 10^{-11} g-1 h^{-1}, at least two orders of magnitude higher than we can calculate given very generous estimates of ethylene release and wind speed. Similar calculations (not shown) suggest that signal concentrations are, at best, only likely to be sufficient to result in physiological responses in undamaged plants under very rare circumstances — perhaps large areas of vegetation being heavily attacked (e.g. an outbreak) at very low wind speeds (e.g. below the top of the canopy).

It is clear that if wounded plants produce ubiquitous signals that are also produced by unwounded plants, the concentration in air will have to be significantly higher than that released by unwounded plants (as well as being at or above the physiological response threshold). If this is not so, then wounded plants will be unable to distinguish signal from noise, and responses will not occur. The signal-to-noise problem could be overcome if plants used specific rather than ubiquitous chemical signals. However, this would require the capacity to specifically detect a vast array of compounds at very low concentrations. This seems unlikely and there is no evidence to support this.

It is perhaps inevitable that some compounds from plants will evoke plant physiological responses when applied in high doses. Such evidence is not sufficient to ascribe a role. Support for the hypothesis that airborne signals can induce plant defenses awaits evidence that plants listen, even if talking seems more appealing at present.

Richard D. Firn
Dept of Biology, University of York.
York, UK YO1 5DD

Clive G. Jones
Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545, USA

References

Reply from J. Bruins, M.W. Sabelis and M. Dicke

We can smell from quite a distance the small lawn opposite our lab in Amsterdam is being mown. If we can smell this, why could the grass plants under our window not be able to? Even tiny insects, herbivores as well as predators and parasitoids, react to (damage-related) plant volatiles1-3. If they are able to detect the airborne signals, why would plants not be able to? No a priori reason comes to mind. Indeed, as pointed out by Firn and Jones, damage-related signals will be diluted, increasingly so with increasing distance from the source. Moreover, changing wind-directions will ensure that undamaged plants will only be briefly exposed to the low concentrations. But is this necessarily a problem? Plants are much larger than insects and therefore receive more signal molecules. In addition, signal molecules may adsorb to the exposed plant surface and accumulate there. Thus, the initially low concentrations will increase, in principle to any concentration.

As argued by Firn and Jones, the crucial question is how plants can distinguish signal from noise. For some reason, they take a ubiquitous compound, like ethylene, as an example. Generally, however, upon attack, several compounds are released that are not ubiquitous and occur in specific ratios. Hence, there is every opportunity for plants to detect "changes in the air".

The "paradox" of polyembryony

Hardy reports Gleeson et al. population genetic models of polyembryony. Polyembryony can be found in a wide diversity of organisms, including arachidales, cyclostephryne bryozoa4, starfish5, parasitic flatworms6 and dioecious7,8, as well as parasitic wasps9. The resultant embryos are genetically identical with the initial one, which generally develops from a sexually produced zygote. If the mother's genotype is relatively successful, and if the environment doesn't change rapidly, then parthenogenesis may be advantageous compared with sexual reproduction.