Likeness and Likeliness: Exploring Multidimensional Classification for the Multiverse of Information

van den Heuvel, C.; Smiraglia, R.P.

Published in:
Advances in Classification Research Online

DOI:
10.7152/acro.v23i1.14235

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Likeness and Likeliness
Exploring Multidimensional Classification for the Multiverse of Information

Charles van den Heuvel
Huygens Institute for the History of the Netherlands
Royal Netherlands Academy of Arts and Sciences
Prins Willem-Alexanderhof 5
2509 LT Den Haag
Netherlands
charles.van.den.heuvel@huygens.knaw.nl

Richard P. Smiraglia
School of Information Studies,
University of Wisconsin, Milwaukee,
Bolton Hall 510
Milwaukee (WI) 53201-0413
USA
smiraglio@uwm.edu

ABSTRACT
In previous studies grouped under the common denominator “Idea Collider,” the CERN Hadron-Collider was used as a metaphor to explore the meaning of breaking down existing structured and less-structured clusters of information into the finest particles to get a better understanding of the laws and nature of the universe of knowledge (Heuvel & Smiraglia, 2010). Moreover we compared past conceptualizations and visualizations of multidimensional classifications, in particular of faceted systems, and tried to assess their potential for future information retrieval (Heuvel 2011; Heuvel & Akdag Salah, 2011).

Where most classification theories focused on knowledge integration in a single universe of knowledge, we outlined the framework of an elementary theory of knowledge interaction in a multiverse of knowledge (Smiraglia, Heuvel & Dousa 2011). We believe that similar to the real universe, not only matter, but also energy and gravitational forces are of importance for understanding the multiverse of information better. For that reason we want to elaborate on the question of how one perceives and interacts with knowledge production.

“Likeness” has been a recurrent theme in classification theory. Here the focus is on the concept “likeliness” which we, unlike Hjørland (2008), do not describe in the terms of Richardson and Bliss as “putting together of like things, - likeness” or “alike”, but rather refer to as the probability that a meaningful relationship or pattern will be recognized at a certain moment (event). We assume that the likeliness that knowledge “interacts” is conditioned by cognitive and cultural forces of perception. Vertical and horizontal lines might be considered universally as dividers and connectors, but the way we read ascending or descending steps is culturally defined by differences in reading and writing practices. (see Figure 1)

Figure 1 Cognitive and cultural forces of perception

In order to put our still very abstract elementary theory of knowledge interaction to the test we are in need of empirical research. In this lightning paper examples will be shown from art history, musical notation and literature that are more or less likely to interact. (see Figures 2 and 3)
In the future we will continue with our Idea Collider experiment and explore the implications of multidimensional classification for information retrieval further in two ways: empirically and theoretically.

The empirical research will build upon the (analysis of) two types of experiments with multi-modal non-semantic information retrieval. The first type consists of experiments with search engines that query for “alike” structural features of multimedia expressions such as color, composition (compare IBM-QBIC), but also rhythm, texture etc. In a recent experiment at Lawrence Technological University, 994 paintings of 34 artists of various art historical styles such as Renaissance, Mannerism, Baroque, Rococo, Romanticism, Impressionism, Expressionism, Surrealism, Fauvism and Abstract Expressionism were compared by automatic computer analysis for form, color and texture. The pattern recognition algorithms were able to measure and quantify visual similarities between paintings, painters, and schools of art and reproduced results in agreement with the analyses of styles by art historians. (see Figure 4) (Shamir & Tarakhovsky, 2012)

The research of such experiments focuses on the concept of “likeness.” The second type of experiment is based on collaborative filtering technology that allow for the deconstruction of various expressions of multi-media. An example is the Art.Similarities experiment (G.J Nauta 2008) which uses a custom-made interface to record visual behavior: the non-verbally expressed visual similarity associations and judgments of distributed individuals which can be assessed both according to human analysis and statistical procedures. This research focuses on the concept of “likeness.”(see Figure 5)
Furthermore, we will continue our formulation of an elementary theory of knowledge interaction in a multiverse of knowledge. So far, we individuated the components of such a theory derived from epistemology, semiotic theory and phenomenology. We stressed the importance of creating temporary interfaces to knowledge interaction and stated that they can be described in terms of instantiation and event-ontologies (Heuvel & Smiraglia 2010; Heuvel 2012 forthcoming). We challenged the universe of knowledge metaphor, but our multiverse of knowledge is still a metaphor. To see whether we can go beyond the metaphor, our next step will be to look into the theory of transdisciplinarity of the Romanian astro-physicist Basarab Nicolescu. Transdisciplinarity in his view not only solves the problem of reduction of multidimensional knowledge, but also provides an explanation for the dynamics, that is for the interactions, within a discontinuous (knowledge) universe that is compliant to the laws of quantum physics. (see Figure 6)

![Figure 6 Nicolescu Transdisciplinarity Ontology of Levels of Reality and Hidden Third](image)

Keywords
Classification theory, Universe of Knowledge metaphor, Multi dimensional classification, Non semantic information retrieval, Transdisciplinarity

REFERENCES


