Models of interacting binary stars

Kool, M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Table of contents

Nederlandse samenvatting ... 5

I. Introduction and Summary .. 15

II. The evolution of wide, low-mass interacting binaries
1) Very high mass transfer rates in binaries containing low mass giants ... 25
2) A wide low-mass binary model for the origin of axially symmetric non-thermal radio sources 29
3) Neutron star spin-up in wide, low-mass X-ray binaries 31

III. Evolutionary scenarios for observed interacting binaries
1) The minimum orbital period for ultra-compact binaries with Helium burning secondaries 39
2) An evolutionary scenario for the black-hole binary A0620-00 ... 46

IV. Bondi-Hoyle accretion flow
1) A numerical study of cylindrically symmetric accretion flow 63
2) On the accretion of angular momentum from an inhomogeneous medium .. 81
3) On the accretion of angular momentum from an inhomogeneous medium II: Isothermal flow 93
4) On the accretion of angular momentum from an inhomogeneous medium III: General case and observational consequences 101

V. Notes on the theory of Common Envelope evolution 119

Dankwoord .. 146